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Error Analysis of Approximated PCRLBs for Nonlinear Dynami cs
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Abstract— In practical nonlinear filtering, the assessment of
achievable filtering performance is important. In this pape, we
focus on the problem of dficiently approximate the posterior
Cramer-Rao lower bound (CRLB) in a recursive manner. By
using Gaussian assumptions, two types of approximations rfo
calculating the CRLB are proposed: An exact model using the
state estimate as well as a Taylor-series-expanded modeling
both of the state estimate and its error covariance, are devied.
Moreover, the difference between the two approximated CRLBs
is also formulated analytically. By employing the particlefilter
(PF) and the unscented Kalman filter (UKF) to compute, simu-
lation results reveal that the approximated CRLB using mean
covariance-based model outperforms that using the mean-isad
exact model. It is also shown that the theoretical dference
between the estimated CRLBs can be improved through an
improved filtering method.

Index Terms— Posterior Cramer-Rao lower bound (CRLB),
approximated CRLB, Fisher information matrix (FIM), non-
linear dynamical system, Taylor series expansion.

|. INTRODUCTION

and Galdos [6] generalized it to the multi-dimensional case
The main shortcoming of these formulations is the batch
form of implementation resulting high computational loads
Tichavsky [7] was the first to derive a recursive CRLB for
updating the posterior Fisher information matrix (FIM)rfto
one time instance to the next while keeping the FIM constant
in size.

Subsequently, CRLB theory was extended to many ap-
plications, e.g., introducing the CRLB to multiple target
tracking [9], incorporating data association for trackimigh
the CRLB [10], target detection for the case having a
detection probability less than unit [8], etc.

It is well known that the matrices in recursive form of
FIM, can only be theoretically determined by the true value
of state. Unfortunately, we cannot obtain the true stataenl
in practice, except in some well-designed experiments gvher

It is well known that optimal estimators for the nonlineartrue value of the state is given as a prior knowledge. There-
filtering of the discrete-time dynamic systems is an activéore we naturally focus on how to determine an approximate
area of research and that a large number of suboptim@RLB by using online state estimates (as opposed to the true
approximated approaches were developed [1]. It is impostate values).
tant to quantify the accuracy of estimates obtained for the
design of algorithms such as the interacting multiple medel We have mainly two ways to approximate the CRLB [5]:
(IMM) where weighted estimates from multiple estimatorsl) Make full use of the first-two order moments of the state
are simultaneously employed. estimate, i.e., expectation and covariance, by incorparat
During the past thirty years many attempts have bedhem with the Taylor series expansion of the dynamics. 2)
made to theoretically derive the achievable performance §fombine the expectation of the state with the exact dynamic
nonlinear filters. Deriving performance bounds are impurta model directly. The first method use both estimates and is
since such bound serve as indicators to measure systéather complex while the second method is considerably
performance, and can be used to determine whether impogg@ple, but depends heavily on an exact model. The second
performance requirements are realistic or not. method is mostly preferred in practice for its simpleness an
For dynamical statistical models, a commonly used bourig suficient to obtain an usable approximated CRLB.
is the CRLB that has been investigated by various re-
searchers: Van Trees [2] presented the batch form of aThe following question therefore needs to be addressed:
posterior CRLB for random parameter vectors and a pr&y how much the CRLB employed the two kinds of approxi-
1989 review [3] summarized several lower bounds for nonlinhations difer from, and which one is a better approximation
ear filtering, which heavily emphasized the continuous timé the true CRLB. This is the main motivation of this
case. Bobrovsky [4] applied CRLB to discrete time problemi#§ivestigation. In addition, determining the accuracy o th
estimated CRLB by using a state estimate, rather than the
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true state under a recursive framework for a general ncenline
dynamics, has not been addressed previously.

In this paper, we show how the state estimates can be ap-
plied to determine the fference between the two estimated
CRLBs. By using Monte Carlo simulations, we show that the
proposed method achieve a satisfactory approximation, and
the accuracy of estimated CRLB can be explicitly improved
by increasing the accuracy of filtering.
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Il. ProBLEM FORMULATION A. AGF by the First-two Order Moment of Sate Estimate

A. Nonlinear Dynamical Model Assume that the first and second moment estimation of state
Consider the following discrete-time nonlinear dynamicgk is known and given by and P, = E[g(ki'klzlzk], and also
with additive Gaussian noise: assume that the distribution ®f.1 can be approximated by
a Gaussian. We immediately have
Xir1 = fie(Xi) + Wi, 1) 3
Zx = he(Xk) + Vi, (2) Xk+1 = N[Xk+l§ Xk+1 P)I§+1] ) 9

where the nonlinear vector-valued functiofise R™* and  where Xis1 = E[X1|z14] ~ Tk + Tk, in which fx = fi(X),
hk € R™ be used to model the state kinematics and medg =1 " atr [sf(lﬁ{(ll g € R™! denotes thé-th unit normal
surement respectively, and generaily m. xx € R™ is the  vector in column shape, anti[-] denotes trace operation.
state vectorzc € R™? is the measurement vectorc e R™ & ~ v, [V, fk,i(xk)]' is the Hessian matrix dfth element
is a zero-mean white Gaussian process noise with knowp .y of the vector-valued functiofi(x). Notation Ff =

. rn><l _ . . A
covarianceQ, anglvk E.R a zero mean.G'a}ussuan white [kafl’((xk)] = [8fki(xk)/6xj] denotes the Jacobian matrix
measurement noise with varian&. The initial statexg ’ o« nxp . Sfafongy,
=Py, +Qk P, = FL P (F) +

is assumed as a Gaussian distribution with m&arand vlwthnnx: dlmensl?nlli’KJ%l ket kel = _
variancePy. Moreover, a general accepted assumption lik@ iz % j-1 S €jtr [S(,i PkS(,ij]' Similar to [9), the Gaussian
coV(Xo, Vi) = 0, CoV(Xo, W) = 0. form of the measuremem; can be approximated by

B. Posterior CRLB 7~ Nz Z PE. (10)

Let Xk andCy denote the unbiased state estimate and its err\c/)vrhere the expectatiod. — E ~ P+ Fi. the covari-
covariance at time instalkt We therefore have p k = E[zdxi] ~ hic+ varl

ancePZ ~ Ry + PZ, in which hy= 3 3™ atr [$il5h], Pz =

_elg, -1 ShAhEhy, &h Bhah & ' "
Cr=E[%i&] > 3%, @) EWPLEY + § T 5T, e[, ) PY). The termsh,

where % = xc - % is the prediction error of statel > is  Fi and S are similar to the definitions dk, F, andS,; in

the posterior CRLB (PCRLB), defined to be the inverse ofd). respectively.

FIM, Jx. The superscript-Y in (@) denotes the transpose ' .

of a vector or a matrix, and the inequality il (3) meang' AGF by the First Order Moment of State Estimate

that the dfferenceCk—J;1 is a positive semidefinite matrix. As an alternative to the approximation presented in Section

From [7], [11] we know that the sequential FIBk can be [MI-A] we use the state estimafg to represenky.1 andz.

recursively calculated by By denoting this version of representation s, and z,
Je1=DZ-DR+DY)IDE (k>0), (4 "V
Jo = E[-Alog p(xo)|. (5) X ~ NXinr fio Qi (11)
Dt = E[-A¥ 1og p(xicr1/xi) . (6) Z; ~ N|z; i, R, (12)
D2 = (Dﬁl)' =E [—Ai‘;” log p(Xk+1|Xk)], (7)  where the definitions df, andhy are same as that in Section
DE? = E A% log pOxksalxi) | + A
E [‘Aitﬁ log p(zk+l|Xk+1)] , (8) IV. AppPROXIMATED FIM

here letV and A be operators of the first and second-ordeA. The Case Using Mean and Covariance

. . . . _ P P ’ y _ , . . . . .
partial derivatives, i.e.Vx = [a_xl »a_xn] A% = Vx(Vy)'. According to distribution ofk.1 andz in @) and [ID), the
Note that all the above expectations are taken with respect|bg_pDF of state and measurement, givenxayand X1

the joint probability density function (PDR)(Xox+1lZ1k+1),  can be respectively formulated by

where xXgk+1 and zi441 denote all the states and measure- 1 L

ments up to timek+ 1. log p(Xk.1/XK) = €1 — > log det[PﬁJrl] -5 [(Xk1 — Xie1)”
Il. A pprOXIMATED GaussIAN ForM (AGF) oF NONLINEAR

X ’ VA
DyNamics X(Ppq) (Xke1 Xk+l)]’ (13)

1 1 _
According to CRLB theory, the derivatives il (4) should be 10gp(zc:1lXk:1) = C2 - 5 log det[PﬁH] -5 [(Zkse1 — Zeer)
evaluated at the true value of statg Our final aim is to Pz y _ 14
use the moments of state estimate instead of the true state to X(Pi1) (Zs1 = Z"‘fl)]’ (14)

calculate the dference between the approximated PCRLBSyherec, andc, are constants. Calculate the derivatives of

thus the FIM matrices (i.e D}, D&Z and Dﬁz should be  |6qp(xy.1/x) and logp(zis1lxks1) With respective ta and
represented, therefore, the density functigi.alxk) and ' respectively, specifically we have
P(zk+1/Xk+1) from (@) and [[2) should be firstly formulated

explicitly. Vserr 109 DXk 11X0)] = = (P, 1) ™ (X1 — Xies1), (15)



then consider the definitions of FIM i ]J(€)}(8) and afterwhere

algebra arrangement, finally we obtain 18,8 16Pk+1 16P§+1
non - _ 222=—ZZae’-tr (Pr)  ——(Pf,1)”
M1 OXier1 2Lz ] 9%, 9%
oF =31 )| Tl Ly o
i=1 j=1 X 6 X O\ 6h,k+l 3 Py
l HP* oPX _‘Pk+Zzae P Rk+l j
z )t k+1( )t k+l (16) i=1 j=1 Xk+l X1
2 k+l 5Xi k+1 9 j > 5 v, _
{ X 0z, ., R-1 ohy,, gz 0Zys1
12 6Xk+l X \—1 +(9 i k+1(9 i k+1(9 ] .
Dy =- W(Plﬁ-l) , (17) K1 Xer1 Xer1
n n > — For matrixD}?, substituting P¥, ;)™ = Q.1 — ¥} andXi.1 ~
0z k+1 k K +
DF=(P) ™+ ) e k+1( pz, )1t fi+ T into (@3) yields
i=1 j=1 axk+l aX|J<+1 2 4 <
1 AP? AP? D% = —a—f‘i N + My L ﬂQ‘l (22)
+§tr((P§+1) 16 Lz ) ;“l”. (18) KT oxe ok T axe axk) K axk K
Mer1 X1

I, z
It is explicit that the right hand of[{16) and the secon N
term on the right hand of(18) is similar with that in [12].
We observe that all derivatives involved [0 116)4(18) can b
evaluated by using the mean and covariance of the st
estimate instead of the true state.

So far, based on the Gaussian model assumption, we

%o after the above steps, we successfully rewrite the neatric
D!, D22 and D}? into two parts respectively, then we
ubmlt expressmns in_(R0)-(22) into the definition of FIM

@]) using the matrix inversion lemma again, after some
xpansmns and arrangements yield

formulate the matrices used by the PCRLBI[ih (4) as above. ke = 222_2'1*2(\]k+211) i+, (23)
In order to obtain the dlierence between the two kinds
of approximated PCRLBs, matrices in_{16)418) should be e

decomposed as shown in the follows. According to the welwhere
known matrix inversion lemma [13], we have a simplified H=222—(D§2)'(JK+D11)‘1212—

formulas as below [ ( 11) 1 ]
> (Jk+D SEDIAN (1] D
A+B)t=A"1-(AB'A+A) (19) - 1 e -1
. _ _ _ D= |(I+Z5)Z1) Ik +Z7 ) + (I + =5
whereA, B are the nonsingular matrices, and the inversion [( 1w w+ 11)]

of every matrix is assumed to exist. For the maiig, we B. The Case Using only Mean
can decompose the inversion of the Covariance ma&fiy By comparing the mean-based Gaussian form presented in

defined in [[®) into two terms Pﬁu)_l v , where (18)-(I8), we straightforwardly arrive at (use the supepsc
W= [Qk(ﬁ’ﬁ)_lQHQk] . Substituting it and the expreSS|0n5ymb°1|2* to d'St'”gu'ig with that in Sectiol IV3A)D =
of Xis1 into (I8), after some arrangements yield I} D™ =X, and D7) = X7,. Then substituting matrices

0 on p ~ of D*s into the definition of FIM in[(#) yields

11 / k -1 6fk * % % * %
Di¢ =ZZaej[6—XLQk &i]ﬂn, (20) Ji.1 = D22 - (DY (+ D) DI =0.  (24)
=1 j=1
G V. DirrereNcE BETWEEN THE Two PCRLB APPROXIMATIONS
1 Our final aim is to calculate the fiierence between the

where two approximated PCRLBs, where the one approximation

employ the first-two order moment of state estimate and the
] other one only use the first order moment.

1 uhN X —lapk+l lap)lé+l
Ell:izzae}tr[(Pk‘Fl) aX{( ( k+l) 6XIJ<

i=1 j=1 Performing the matrix inversion Iemmalon the FIM,1
+iie, ] af.’ leﬁfk 0%, [leafk 5%«71]} defined in [IZB)_agaln,_we ge_t the PE:RL_%l directly
ST ox T ax o ox ox ox Jh=01-mte+) e (25)
For matrix D2, we decomposePg, )t = Rt — W2, Explicitly the difference between the two kinds of approx-

imated PCRLBs, defined byt = Jit- 3.1,
formulated by

=@ e+)7e =@y +1) (3, ) (26)

n n 6h' 8h
k+l -1 k+1
+ZZ@' [3Xk k+1 P +222, (1) wherel denotes an identity matrix with appropriate dimen-
=1 =1 1 k1 sion. In Sectio VI, Monte Carlo simulations show that the

5, boundJL} is always higher than thﬂhl, that is to say, the

) can be
where ¥z, = [Rk+1(Pk+1) Rk+l+Rk+1] . Substituting it

and the expression & into (I18) yields
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‘‘‘‘‘ CRLB-PF
CRLB-UKF

RMS error
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Fig. 1. Comparison RMS errors of state estimation generbtedwo  Fig. 2. Comparison of the true posterior CRLB with the firspeyof

different estimators: Particle filter (PF) and Unscented Kalfil@n (UKF). approximations. The approximated PCRLB corresponds tontathod of

100 runs of Monte Carlo simulations and the initial numbepafticles is  “exact model and expectation of state estimation”, and vgengerated by

1000. Particle filter (PF) and Unscented Kalman filter (UKF). 10@gw0f Monte
Carlo simulation.

J., is more closer to the true PCRLB than thatJf?, of ..
course this is for the case with finite number of particles.Fo ¢ [ — CRUB-TRUE
the situation as sampliny tends to infinity, the convergence o S
theoretically needs further investigation. !

3.5H

VI. EXPERIMENTAL RESULTS :

To evaluate the performance of the proposed algorithm, th R 3 . .
following typical univariate nonlinear model [14] is stedi e : :
25X ' :
X =O.5xk_1+1# +8cos[12(k— 1)] + Wi, Mk :
+ X ' '

) 1 (27) '.

X 15 i

_k -
yk_20+vk’ k 1929 9T

here usingvk ~ N(0,02) denotes the process noise, apd
N(0,02) is the measurement noise. Data was generated &,
usingo?, = 1,02 =5, andT = 50. The initial prior distribution
was chosen ap(xp) ~ 20x N(0,1). Fig. 3. Comparison of the true posterior CRLB with the sectygk

For comparison purposes, we implemented two state e¥-approximations. The approximated PCRLB correspondshéortethod

. . . f “Taylor expanded model and first-two moments of staterestion”, the
timation methods: 1) The unscented Kalman filter (UKFf\)N yor &b !

- ) T two estimators: Particle filter (PF) and Unscented KalmaerflUKF), were
where it is not necessary to compute Jacobian matricesployed. 100 runs of Monte Carlo simulation.

and the performance is accurate to the third-order term (in
the Taylor series expansion) for Gaussian inputs, even for
nonlinear systems. For non-Gaussian inputs, approximstioRMS error in Fid.1 clearly reflects thefect of the nonlinear
are accurate to at least the second-order term [15]. 2) Tlnamic phenomena.
particle filter (PF), where an initial sample sid= 1000 Fig[2 shows the comparison of the true PCRLB and the
is adopted, and 100 runs of Monte Carlo simulation arapproach of “exact model and mean of state estimation”,
performed. which refers the recursive FIM formulated Hy {24). We can
Filtering accuracy by using the same trajectories is showsee from the figure that there exists an explicit error betwee
in Fig.1. Here the root mean square (RMS) error is useifhie true PCRLB and both approximations. The PCRLB
as an evaluation criterion. It should be firstly noted that focorresponding to UKF is overall worse than the PCRLB
the PF the initial number of samples is generally chosegenerated by the PF. As expected, the true PCRLB is a lower
by trial-and-error and that its accuracy can be improvebound (always lower than the approximations in all instants
by increasing the sample size. Secondly, according to [14], In Fig[3, the true posterior CRLB is compared with
the likelihood p(yk|xx) has a bimodal nature whexx > 0, the approach of “Taylor series expanded model and first-
and this bimodality causes the state too acutely fluctuate/o order moments of state estimation”. This approach is
and complicates to track using conventional filtering. Th@erformed by substituting Eqn.(16)-(18) in{d (4) and using

Time(second)



(4

(5]

(6]

PCRLB GAP

(7]

(8]

(9

Time(second)

[10]
Fig. 4. Comparison of two kinds of theoretical gap of postelCRLB,
upper and lower plots corresponds to Unscented Kalman f{ltd{F) [11]
and Particle filter (PF), respectively. As expected, the igaprove as the
accuracy of filtering improves.

[12]

[13]

first-two order moments of state estimation as parametef&4]
we observe that both estimated PCRLBs are more accur?{%
approximations compared with the true PCRLB. In many
instants the PCRLB corresponding to PF is closer to the
true PCRLB than the approximation using the UKF. Due
to the acute nonlinearity of the system, the PCRLBs appear
strongly oscillatory throughout the simulation.

We can directly calculate the fierence between the two
PCRLB approximations: PCRLB in Fig.2 minus the corre-
sponding one in Figl3. However, as a theoretical analysis,
we employ the formula in[{26) and the calculated results
are presented in Fig.4. The PCRLB generated by the PF
is generally more accurate throughout simulation. When the
initial sampling used by PF was increased, the accuracy of
its corresponding PCRLB was improved.

VII. CoNcLusION

In this paper, we considered the problem of approximate
calculation of CRLB by using Gaussian assumptions and
the moments of state estimate instead of using true state.
Two kinds of approaches were proposed: One was an exact
model using the expectation of state estimate; the other was
an approximated model using the expectation and covariance
of state estimate. Furthermore, thefelience between the
two estimated CRLBs was formulated analytically. By using
state estimators of PF and UKF, we compared the proposed
approximations with true PCRLB. Simulation results demon-
strated the significance and validity of our approach.
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