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Abstract— A moving horizon observer is analyzed for non-
linear N-detectable discrete-time systems. Conditions for global
exponential stability are given. The algorithm can be imple-
mented with regularization to ensure graceful degradation of
performance when the data are not exciting. This regularization
relies on monitoring an estimate of a Hessian-like matrix and
conditions for local exponential convergence are given.

I. INTRODUCTION

Moving Horizon State Estimator (MHE) makes use of a
finite memory moving window of both current and recent
measurement data in a least-squares criterion, possibly in
addition to a state estimate and covariance matrix estimateto
set the initial conditions at the beginning of the data window,
see [1], [2], [3] for different formulation relying on somewhat
different assumptions.

Uniform observability is typically assumed for stability
or convergence proofs. However, uniform observability is a
restrictive assumption that is likely not to hold in certain
interesting and important state estimation applications.This
is in particular true for some combined state and parameter
estimation problems, for systems that are detectable but not
observable, or when the data may not be persistently exciting.

Consider the following discrete-time nonlinear system:

x(t +1) = f (x(t),u(t)) (1a)

y(t) = h(x(t),u(t)), (1b)

wherex(t) ∈ Rnx, u(t) ∈ Rnu and y(t) ∈ Rny are respectively
the state, input and measurement vectors, andt is the discrete
time index. In this paper a nonlinear MHE approach based
on the work [4], [5], [6] is extended. In [4], [5], strongly
detectable systems [7] are considered, and convergence on
compact sets is analyzed. In [6] the strong detectability
conditions is relaxed by using the concept of incremental
input-to-state stability [8] and provide global conditions for
exponential stability. The present paper provides additional
results on the choice of weighting matrix in the moving
horizon cost function in order to achieve regularization when
data are not persistently exciting, based on monitoring of
information contents using the singular value decomposition,
similar to [4], [5]. Conditions for local exponential stability
are derived.
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II. PRELIMINARIES

The following notation and nomenclature is used.||x||2A =
xTAx by A ≥ 0. For two vectorsx ∈ Rn and y ∈ Rm we let
col(x,y) denote the column vector inRn+m where x and y
are stacked into a single column. The composition of two
functions f and g is written f ◦g(x) = f (g(x)). A function
ϕ : R+ → R+ is called aK-function if ϕ(0) = 0 and it is
strictly increasing. A functionϕ : R+ → R+ is called aK∞-
function if ϕ ∈ K and it is radially unbounded. A function
β : R+×R+ → R+ is called aKL-function if for each fixed
k∈ R+, β (·,k) ∈ K and for each fixeds∈ R+, β (s, ·) is non-
increasing and limk→∞ β (s,k) = 0. For a sequence{z( j)} for
j ≥ 0, z[t] denotes the truncation of{z( j)} at time t, i.e.
z[t] = {z( j)} for 0≤ j ≤ t.

We define the notion of global incremental input-to-state
stability [8].

Definition 1: The system (1a) is globally incrementally
input-to-state stable (δ ISS), if there exist a KL-function
θ and a K∞-function γu such that for anyt ≥ 0, any
initial conditionsx(0), x̄(0) ∈ Rnx and anyu[t−1], ū[t−1] with
u( j), ū( j) ∈ Rnu,0≤ j ≤ t −1, the following is true:

||x(t)− x̄(t)|| ≤ θ(||x(0)− x̄(0)||, t)+ γu(||u[t−1]− ū[t−1]||).
(2)

Definition 2: (δ ISS-Lyapunov Function) A continuous
function V : Rnx ×Rnx → R≥ 0 is called aδ ISS-Lyapunov
function for the system (1a) if the following holds:
1. V(0,0) = 0.
2. There existK∞-functionsα1,α2 such that for anyx, x̄,

α1(||x− x̄||)≤V(x, x̄)≤ α2(||x− x̄||). (3)

3. There exists aK-function σ , such that for anyx, x̄ and
any couple of input signalsu, ū

V( f (x,u), f (x̄, ū))−V(x, x̄)≤−α3(||x− x̄||)+σ(||u− ū||)
(4)

with α3 positive onR+.
The following results are taken from [6]

Theorem 1:If there exists aδ ISS-Lyapunov function for
the system (1a), then the system (1a) isδ ISS. Moreover, the
δ ISSproperty holds with

θ(s, t) = α−1
1 (2ρ tα2(s)), γu(s) = α−1

1 (
2σ(s)
1−ρ

), (5)

for someρ ∈ [0,1).
Proof: Given in Appendix A for completeness.

Definition 3: (Global Quadratic δ ISS-Lyapunov Func-
tion) A continuous functionV(x, x̄,P) = ||x− x̄||2P with P=



PT > 0 is called a global quadraticδ ISS-Lyapunov function
for the system (1a) if the following holds:
1. V(0,0,P) = 0.
2. There exist a symmetric matrixQ > 0 and a symmetric
matrix ∆ > 0, such that for anyx, x̄ and any couple of input
signalsu, ū,

V( f (x,u), f (x̄, ū),P)−V(x, x̄,P)≤−V(x, x̄,Q)+V(u, ū,∆).
(6)

Lemma 1:Consider the system (1a) withf globally Lip-
schitz and continuously differentiable. The system has a
quadraticδ ISS-Lyapunov functionV with a symmetric ma-
trix Q > 0 and a symmetric matrix∆ > 0 and a Lyapunov
matrix P= PT > 0 if for all x, x̄∈ Rnx andu∈ Rnu

2ΛT(x, x̄)PΛ(x, x̄)−P≤−Q, (7)

for some symmetricQ> 0 andΛ(x, x̄) =
∫ 1

0
∂
∂x f ((1− s)x+

sx̄,u)ds.
Proof: The proof is given in [6].

III. N ONLINEAR MHE PROBLEM FORMULATION

TheN+1 consecutive measurements of outputs and inputs
until time t are denoted as

Yt =











y(t −N)
y(t −N+1)

...
y(t)











, Ut =











u(t −N)
u(t −N+1)

...
u(t)











. (8)

To expressYt as a function ofx(t − N) and Ut , denote
f u(t)(x(t)) = f (x(t),u(t)) and hu(t)(x(t)) = h(x(t),u(t)), and
note from (1b) that the following algebraic map can be
formulated [2]:

Yt = H(x(t −N),Ut) = Ht(x(t −N))

=











hu(t−N)(x(t −N))

hu(t−N+1) ◦ f u(t−N)(x(t −N))
...

hu(t) ◦ f u(t−1) ◦ · · · ◦ f u(t−N)(x(t −N))











.

Definition 4: The system (1a)-(1b) is globallyN-
observableif there exists aK-function ϕ such that for any
x1,x2 there exists aUt such that

ϕ(||x1−x2||2)≤ ||H(x1,Ut)−H(x2,Ut)||2.
Definition 5: The input Ut is said to beN-exciting for

the globallyN-observable system (1a)-(1b) at timet if there
exists aK-function ϕt such that for anyx1,x2 satisfying

ϕt(||x1−x2||2)≤ ||H(x1,Ut)−H(x2,Ut)||2.
Define theN-information vector at timet as

I(t) = col(y(t −N), . . . ,y(t),u(t −N), . . . ,u(t)). (9)

When a system is notN-observable, it is not possible to
reconstruct exactly all the state components from theN-
information vector. However, in some cases one may be
able to reconstruct exactly at least some components, based
on theN-information vector, and the remaining components

can be reconstructed asymptotically. This corresponds to the
notion of detectability [7], where we suppose there exists a
coordinate transformT : Rnx → Rnx

d =

(

ξ
z

)

= T(x) (10)

that lead to the following form

ξ (t +1) = F1(ξ (t),z(t),u(t)) (11a)

z(t +1) = F2(z(t),u(t)) (11b)

y(t) = g(z(t),u(t)). (11c)

This transform effectively partitions the statex into an
observable sub-statez∈ Rnz and an unobservable sub-state
ξ ∈Rnξ , and the following global detectability definition can
be given, [6]:

Definition 6: The system (1a)-(1b) is globallyN-
detectableif

1) There exists a coordinate transformT that brings the
system in the form (11a)-(11c).

2) The sub-system (11b)-(11c) is globallyN-observable.
3) The sub-system (11a ) has a global quadraticδ ISS-

Lyapunov function.
Definition 7: The inputUt is said to beN-exciting for a

globally N-detectable system (1a)-(1b) at timet if it is N-
exciting for the associated globallyN-observable sub-system
(11b)-(11c) at timet.
The following regularity properties are assumed throughout
this paper:
(A1) The functionsf andh are globally Lipschitz and twice
differentiable.
(A2) The functionT is continuously differentiable, globally
Lipschitz and bounded away from singularity for allx∈ Rnx

such thatT−1(x) is well defined. It is also assumed that
T−1(x) is globally Lipschitz.
(A3) The system (1a)-(1b) is globallyN-detectable and the
input Ut is N-exciting for all t ≥ 0. Moreover, the sub-
system (11a ) has a global quadraticδ ISS-Lyapunov function
V(ξ1,ξ2,Pξ ) such thatPξ = PT

ξ > 0 with symmetric matrices
Qξ > 0 and∆z > 0,∆u > 0, that is,

V(F1(ξ1,z1,u1),F1(ξ2,z2,u2),Pξ )−V(ξ1,ξ2,Pξ )

≤−V(ξ1,ξ2,Qξ )+V(u1,u2,∆u)+V(z1,z2,∆z). (12)

(A4) x(t), u(t) andy(t) are bounded for allt ≥ 0.
The proposed MHE problem consists in estimating, at any
time t = N,N+1, . . ., the state vectorsx(t −N), . . . ,x(t), on
the basis of a priori estimates ¯x(t −N) and the information
vector I(t). It is assumed that an a priori estimator is
determined from the last estimate ˆxo(t −N−1|t −1), by

x̄(t −N) = f (x̂o(t −N−1|t −1),u(t −N−1)).

A convergent estimator is pursued by minimizing the follow-
ing weighted regularized least-squares criterion

J(x̂(t −N|t); x̄(t −N), I(t)) = ||Yt −H(x̂(t −N|t),Ut)||2Wt

+ ||x̂(t −N|t)− x̄(t −N)||2M
(13)



with M ≥ 0 andWt ≥ 0 being symmetric time-varying weight
matrices. The first term is a standard least-squares term,
while the second term provides a regularizing effect as it
penalizes deviation from an open loop observer. The regular-
ization leads to graceful degradation of performance if data
are notN-exciting and the system is subject to uncertainty
such as noise and unknown disturbances.

Let Jo
t = minx̂(t−N|t) J(x̂(t −N|t); x̄(t −N), I(t)), let x̂o(t −

N|t) be the associated optimal estimate, and the estimation
error is defined as

e(t −N) = x(t −N)− x̂o(t −N|t). (14)

IV. STABILITY OF NONLINEAR MHE

In the stability analysis we will need to make use of the co-
ordinate transform into observable and unobservable states,
although we emphasize that knowledge of this transform is
not needed for the implementation of the observer. To express
Yt as a function ofz(t −N) andUt , the following algebraic
mapping can be formulated similar to the mappingH:

Yt = G(z(t −N),Ut) = Gt(z(t −N))

=













gu(t−N)(z(t −N))

gu(t−N+1) ◦Fu(t−N)
2 (z(t −N))

...

gu(t) ◦Fu(t−1)
2 ◦ · · · ◦Fu(t−N)

2 (z(t −N))













. (15)

In order to state the stability result and the proof, the
following definitions are given:

Φ̂t = Φ̂t(z(t −N), ẑo(t −N|t))

=
∫ 1

0

∂
∂z

G((1−s)z(t −N)+sẑo(t −N|t),Ut)ds,

ϒ̂t = ϒt(x̆(t −N−1), x̂o(t −N−1|t −1))

=
∫ 1

0

∂
∂x

f ((1−s)x̆(t −N−1)

+sx̂o(t −N−1|t −1),u(t −N−1))ds,

Γ̂t = Γt(d̆(t −N−1), d̂o(t −N−1|t −1))

=
∫ 1

0

∂
∂d

T−1((1−s)d̆(t −N−1)

+sd̂o(t −N−1|t −1))ds,

wherex̆(t −N−1) = T−1(d̆(t −N−1)) with d̆(t −N−1) =
col(ξ̂ o(t −N−1|t −1),z(t −N−1)) and d̂o(t −N−1|t −
1) = T(x̂o(t −N−1|t −1)).

Theorem 2:Suppose that assumptions (A1)-(A4) hold.
Then for anyM ≥ 0, there exists a sufficiently large weight
matrix Wt ≥ 0 such that the observer error dynamics is
globally exponentially stable.

Proof: The proof is found in [6], and repeated here for
completeness since it is needed in the proof of the main result
in the next section. The basic idea behind the proof consists
in establishing upper and lower bounds on the optimal cost
Jo
t , and use these bounds to show convergence.

Lower bound on the optimal cost Jo
t

Using the fact that system (1a)-(1b) can be transformed

using (10), there existd(t−N) = T(x(t−N)), d̂o(t−N|t) =
T(x̂o(t −N|t)) such that in the new coordinates, the system
is in the form of (11a)-(11c). Note that the first term in the
right-hand side of expression (13) in the new coordinates can
be rewritten as

||Yt −G(ẑo(t −N|t),Ut)||2Wt

= ||G(z(t −N),Ut)−G(ẑo(t −N|t),Ut)||2Wt
.

From Proposition 2.4.7 in [9], since (A1) and (A2) hold, we
have

G(z(t −N),Ut)−G(ẑo(t −N|t),Ut)

= Φ̂t(z(t −N), ẑo(t −N|t))(z(t −N)− ẑo(t −N|t)).

Then we have

||Yt −G(ẑo(t−N|t),Ut)||2Wt
= ||z(t−N)− ẑo(t−N|t)||2Φ̂T

t Wt Φ̂t
.

(17)
Taking zero as the lower bound on the second term of (13)
we get

Jo
t ≥ ||z(t −N)− ẑo(t −N|t)||2Φ̂T

t Wt Φ̂t
.

Upper bound on the optimal cost Jo
t

Let x̆(t −N) = f (x̆(t −N−1),u(t −N−1)). From the opti-
mality of x̂o(t−N|t), we haveJo

t ≤ J(x̆(t−N); x̄(t−N), I(t)).
Combining the upper and lower bound onJo

t ,

J(x̆(t −N); x̄(t −N), I(t))≥ ||z(t −N)− ẑo(t −N|t)||2Φ̂T
t Wt Φ̂t

.

(18)
Proof of the stability.

Considering the cost functionJ(x̆(t−N); x̄(t−N), I(t)), ||Yt −
H(x̆(t−N),Ut)||2Wt

= ||G(z(t−N),Ut)−G(z(t−N),Ut)||2Wt
=

0. Also, from Proposition 2.4.7 in [9],

x̆(t −N)− x̄(t −N) = ϒ̂t(x̆(t −N−1)− x̂o(t −N−1|t −1)),

x̆(t −N−1)− x̂o(t −N−1|t −1)

= Γ̂t(d̆(t −N−1)− d̂o(t −N−1|t −1))

= Γ̂t

[

ξ̂ o(t −N−1|t −1)− ξ̂ o(t −N−1|t −1)
z(t −N−1)− ẑo(t −N−1|t −1)

]

= Γ̂tηT(z(t −N−1)− ẑo(t −N−1|t −1)),

whereη = [0nz×nξ , Inz×nz]. Let Ωt = Γ̂tηT . We have

||x̆(t −N)− x̄(t −N)||2M
= ||z(t −N−1)− ẑo(t −N−1|t −1)||2ΩT

t ϒ̂T
t Mϒ̂t Ωt

.

Therefore,

||z(t −N)− ẑo(t −N|t)||2Φ̂T
t Wt Φ̂t

≤ ||z(t −N−1)− ẑo(t −N−1|t −1)||2ΩT
t ϒ̂T

t Mϒ̂t Ωt
. (19)

Consider a Lyapunov function

V(s(t)) = ||s1(t)||2P1
+ ||s2(t)||2P2

, (20)

wheres(t) = col(s1(t),s2(t)), P1 > 0 andP2 =Pξ (Pξ is given
in (12)) for all t ≥ 0. Let

s1(t) = z(t −N)− ẑo(t −N|t), s2(t) = ξ (t −N)− ξ̂ o(t −N|t).



In the followingV(s(t))−V(s(t−1))< 0,∀s(t) 6= 0 for some
Wt is shown.

V(s(t))−V(s(t −1))

= ||s1(t)||2P1
−||s1(t −1)||2P1

+ ||s2(t)||2P2
−||s2(t −1)||2P2

.

Considering the optimization problem (13), it is easy to know
that ξ̂ o(t −N|t) = ξ̄ (t −N). Since (A3) holds, then there
exists a global quadraticδ ISS-Lyapunov function such that
(12) is true. Then,

||s2(t)||2P2
−||s2(t −1)||2P2

≤−||s2(t −1)||2Qξ
+ ||s1(t −1)||2∆z

.

(21)

Therefore, we know that

V(s(t))−V(s(t −1))≤−||s2(t −1)||2Qξ
+ ||s1(t)||2P1

−||s1(t −1)||2P1
+ ||s1(t −1)||2∆z

.

Since (A1)-(A4) hold,Φ̂t has full rank and||Φ̂T
t Φ̂t || ≥ εI for

someε > 0, there always existsWt such that

Φ̂T
t WtΦ̂t ≥ P1. (22)

It follows that

||s1(t)||2P1
≤ ||s1(t)||2Φ̂T

t Wt Φ̂t
≤ ||s1(t −1)||2ΩT

t ϒ̂T
t Mϒ̂t Ωt

.

Then, we have

||s1(t)||2P1
−||s1(t −1)||2P1

+ ||s1(t −1)||2∆z
≤

||s1(t −1)||2ΩT
t ϒ̂T

t Mϒ̂t Ωt
−||s1(t −1)||2P1

+ ||s1(t −1)||2∆z
.

Since ||ϒ̂t || and ||Γ̂t || are bounded, there always exists a
sufficiently large weight matrixWt such that for allt ≥ 0

Φ̂T
t WtΦ̂t ≥ P1, (23a)

P1 ≥ ΩT
t ϒ̂T

t Mϒ̂tΩt +∆z+ ∆̃, (23b)

Wt ≥ 0, (23c)

for some arbitrary symmetric̃∆ > 0. Then we have

V(s(t))−V(s(t−1))≤−||s1(t−1)||2∆̃−||s2(t−1)||2Qξ
, (24)

which implies thats(t) is globally exponentially stable. Since
(A2) holds, it is easy to obtain that the error dynamics is
globally exponentially stable.

V. SELECTING WEIGHT PARAMETERS

This section presents the main result of the paper.
From (23), we know that the condition onWt depends on
Φ̂t , ϒ̂t , Γ̂t ,M and∆z. Unfortunately, sincêΦt depends on the
unknown state we cannot monitor it. Hence, we have to rely
on some approximation or estimate ofΦ̂t . Since (A1)-(A2)
hold, from Proposition 2.4.7 in [9], we have

Yt −H(x̂o(t −N|t),Ut) = Φ̃t(x(t −N)− x̂o(t −N|t)),
Yt −G(ẑo(t −N|t),Ut) = Φ̂t(z(t −N)− ẑo(t −N|t)),

where Φ̃t = Φ̃t(x(t −N), x̂o(t −N|t)) = ∫ 1
0

∂
∂xH((1− s)x(t −

N)+sx̂o(t −N|t),Ut)ds. SinceYt −H(x̂o(t −N|t),Ut) =Yt −
G(ẑo(t −N|t),Ut),

Φ̃t(x(t −N)− x̂o(t −N|t)) = Φ̂t(z(t −N)− ẑo(t −N|t)).
and

x(t −N)− x̂o(t −N|t)
= Γt+1(d(t −N), d̂o(t −N|t))(d(t −N)− d̂o(t −N|t)),

Let

Γt+1 = Γt+1(d(t −N), d̂o(t −N|t)) (25)

=

∫ 1

0

∂
∂d

T−1((1−s)d(t −N−1)

+sd̂o(t −N−1|t −1))ds. (26)

With z= ηd, we have

Φ̃tΓt+1 = Φ̂tη ⇒ Φ̂t = Φ̃tΓt+1ηT . (27)

Suppose that||e(t − N)|| is sufficiently small. Then the
following approximations can be made by neglecting higher
order terms

Φ̃t ≈ Φ̃a
t = Φ̃t(x̂

o(t −N|t), x̂o(t −N|t))

=
∂H
∂x

(x̂o(t −N|t),Ut),

andΦ̂t ≈ Φ̂a
t = Φ̃a

t Γt+1ηT , Γt ≈ Γ̂t . In this paper we propose
to choose the matrixM such that

M = β Inx, (28)

whereβ ≥ 0 is a scalar and define

Σt = Φ̃aT

t WtΦ̃a
t . (29)

Since||Γt+1|| is always bounded, there always exist a positive
scalarγ such that

ΓT
t+1ΣtΓt+1 ≥ γΣt . (30)

Similarly, since||ϒ̂t ||, ||Γt || are bounded, there always exist
a positive scalarδ such that

δM ≥ ΓT
t ϒ̂T

t Mϒ̂tΓt . (31)

Since (A3) holds, there always exists a non-negative scalar
τ such that

τηηT ≥ ∆z. (32)

Theorem 3:Suppose that assumptions (A1)-(A4) hold.
For any givenβ ≥ 0 and∆̃ = υηηT > 0 with a scalarυ > 0,
if the choice ofWt ≥ 0 satisfies

ηΣtηT ≥ δβ + τ +υ
γ

Inz, (33)

then the observer error dynamics is locally exponentially
stable.

Proof: From (23), it is easy to know that if the choice
of Wt ≥ 0 satisfies the following inequality,

Φ̂T
t WtΦ̂t ≥ ΩT

t ϒ̂T
t Mϒ̂tΩt +∆z+ ∆̃, (34)



then the observer error dynamics is exponentially stable.
Suppose||e(t −N)|| is sufficiently small, then by neglecting
higher-order terms

Φ̂T
t WtΦ̂t = ηΓT

t+1ΣtΓt+1ηT ≥ γηΣtηT ,

δβηηT ≥ ηΓT
t ϒ̂T

t Mϒ̂tΓtηT = ΩT
t Γ̂T

t MΓ̂tΩt ,

τηηT ≥ ∆z,

∆̃ = υηηT .

Therefore, since (33) holds for someWt ≥ 0, the observer
error dynamics is locally exponentially stable.

There are many methods to findWt such that (33) holds. Here
one possibleWt is provided, similar to [4], [5]. Consider a
singular value decomposition (SVD) [10]

Φ̃a
t = Ũt S̃tṼ

T
t . (35)

Any singular value (diagonal elements of the matrixS̃t ) that
is zero or close to zero indicates that a linear combination
of states is unobservable or the input is notN-exciting.
Moreover, the corresponding row of theVt matrix will indi-
cate which linear combination of states cannot be estimated
(locally). The Jacobian has the structural property that its
rank will be no larger thandim(z) = nz, due to a certain
manifold being unobservable. TheN-excitation of data may
therefore be monitored through the robust computation of
the rank of the Jacobian matrix using the SVD. We know
that the convergence depends onWt being chosen such that
(33) holds. To pursue this objective, we propose to choose
Wt such that, whenever possible,

Wt = W̄T
t W̄t , (36)

with
W̄t =

√
αṼtS̃

+
ρ ,tŨ

T
t

whereα > 0 is a scalar, and the thresholded pseudo-inverse
S̃+ρ ,t = diag(0, ...,0,1/σt,1, ..., 1/σt,`) whereσt,1, ..., σt,` are
the singular values larger than someρ > 0 and the zeros
correspond to small singular values whose inverse is set to
zero [10]. Then we have

Σt = Φ̃aT

t WtΦ̃a
t = αD,

where D = diag(0, ...,0,1, ...,1). For N-exciting input and
ρ > 0 sufficiently small, [4], such choice ofWt also satisfies
Φ̂aT

t WtΦ̂a
t > 0. The problem becomes to find a suitableα

such that (33) holds. A sufficient condition to chooseα is

α ≥ (δβ + τ +υ)/γ . (37)

It should be necessary to note that the choice ofα satisfying
(37) is mostly relevant as a qualitative guideline rather than
as a practical tuning method, since the scalars in (37) may
be both hard to compute, and will in many cases also
be conservative compared to the linear matrix inequality
conditions (23).

For inputs that are notN-exciting, the parameterρ > 0
may be tuned in order to enhance robustness of the algorithm
such thatWt gives zero weight on state combinations that are
not excited by the given input [4], [5]. The effectiveness of
this appraoch is studied in some case studies [11], [12].

VI. N UMERICAL EXAMPLE

Consider the following system

ẋ1 =−4x1+x2 (38a)

ẋ2 =−x2+x3u (38b)

ẋ3 = 0 (38c)

y= x2+v. (38d)

It is clear thatx1 is not observable, but corresponds to a
δ ISS system. It is also clear that the observability ofx3 will
depend on the excitationu, while x2 is generally observable.
One may think ofx3 as a parameter representing an unknown
gain on the input, where the third state equation is an
augmentation for the purpose of estimating this parameter.

The same observability and detectability properties hold
for the discretized system with sampling intervalt f =
0.1. It is easy to know that the sub-system (38a) has a
quadraticδ ISS-Lyapunov function withPξ = 1 and ∆z =
diag(0.02,0.01).

In this simulation example we choosex0 = [4,−7,2], x̄0 =
[3,−5.9,−1]. ChooseN = 2 and ∆̃ = I2×2. Measurement
noise, with independent uniformly distributedv∈ [−0.5,0.5],
is added to the base case. The input is chosen with periods
without informative data as follows: During 0≤ t < 30t f ,
u= 0. During 30t f ≤ t < 60t f , u is discrete-time white noise.
During 60t f ≤ t ≤ 120t f , u= 0. In the simulation, true system
has an input disturbance withu−0.15, and the model used in
the MHE observer (13) has an input disturbance withu−0.3.
In the following figures, true states are shown in solid line;
estimated states of proposed work are shown in dash-dot line.

• Case 1: Chooseβ = 0.8, α = 1.3 andδ = 0.058. The
simulation result is shown in Figure 1.

• Case 2: Chooseβ = 0 and α = 1 and δ = 0.01. The
simulation result is shown in Figure 2.

The regularization is achieved byβ > 0 since otherwise the
parameter estimation will be mainly dominated by noise, as
shown by case 2. The thresholdδ > 0 will effectively turn
off the updating of the un-excited states which is seen in
Case 1 fort < 30t f andt > 60t f , any may prevent undesired
drift of the estimates.

VII. C ONCLUSIONS

We propose a regularization-based adaptive weight selec-
tion method for nonlinear moving horizon estimators, similar
to [4], [5]. The class of nonlinear systems is slightly extended
by considering a globalN-detectability condition introduced
in [6]. Conditions for exponential convergence are given, and
the weight selection method is illustrated with simulations.

APPENDIX A–THE PROOF OFTHEOREM 1

The proof is similar to the one in [13]. From the hypothesis
we know thatα1(||x− x̄||)≤V(x, x̄)≤α2(||x− x̄||). Forx, x̄∈
Rnx \{0}, due toV(x, x̄)≤ α2(||x− x̄||), we obtain

V(x, x̄)−α3(||x− x̄||)≤V(x, x̄)−α3(||x− x̄||) V(x, x̄)
α2(||x− x̄||)

=
(

1− α3(||x− x̄||)
α2(||x− x̄||)

)

V(x, x̄).
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Fig. 1. Simulation results of case 1.
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Fig. 2. Simulation results of case 2.

Let ρ1(α2,α3) = 1− α3(||x−x̄||)
α2(||x−x̄||) . Now we will show that

ρ1(α2,α3) ∈ [0,1). Since (4) holds foru− ū= 0,

0≤V( f (x,u), f (x̄, ū))≤V(x, x̄)−α3(||x− x̄||)
≤ α2(||x− x̄||)−α3(||x− x̄||).

From the above,ρ1(α2,α3) ∈ [0,1). Then it is easy to find
ρ ∈ [0,1) such thatρ ≥ ρ1(α2,α3). Together withV(0,0)−
α3(||0||) = 0≤ ρV(0,0), we have that

V(x(t +1), x̄(t +1))≤ ρV(x(t), x̄(t))+σ(||u(t)− ū(t)||).
We can apply the above inequality repetitively, which yields:

V(x(t +1), x̄(t +1))

≤ ρ t+1V(x(0), x̄(0))+
t

∑
i=0

ρ iσ(||u(t − i)− ū(t − i)||)

≤ ρ t+1V(x(0), x̄(0))+σ(||u[t]− ū[t]||)
1

1−ρ
.

Then we have

α1(||x(t +1)− x̄(t +1)||)

≤ ρ t+1α2(||x(0)− x̄(0)||)+σ(||u[t]− ū[t]||)
1

1−ρ
.

The factα1 ∈ K∞ implies α−1
1 ∈ K∞. Then

||x(t +1)− x̄(t +1)||

≤ α−1
1

(

ρ t+1α2(||x(0)− x̄(0)||)+σ(||u[t]− ū[t]||)
1

1−ρ
)

≤ α−1
1

(

2max
(

ρ t+1α2(||x(0)− x̄(0)||),

σ(||u[t]− ū[t]||)
1

1−ρ
))

≤ α−1
1

(

2ρ t+1α2(||x(0)− x̄(0)||)
)

+α−1
1

(

2σ(||u[t]− ū[t]||)
1

1−ρ
)

.

Whenρ = 0 we have that

||x(t)− x̄(t)|| ≤ α−1
1

(

2σ(||u[t−1]− ū[t−1]||)
)

≤ θ(||x(0)− x̄(0)||, t)+α−1
1

(

2σ(||u[t−1]− ū[t−1]||)
)

,

for any θ ∈ KL. For ρ ∈ (0,1), let θ(s, t) = α−1
1 (2ρ tα2(s)).

It is easy to know thatθ ∈ KL. Now let γu(s) = α−1
1 (2σ(s)

1−ρ ).
Since 1/(1−ρ)> 0, it follows thatγu ∈K. Hence the system
(1a) isδ ISS.
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