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Abstract— A moving horizon observer is analyzed for non- Il. PRELIMINARIES

linear N-detectable discrete-time systems. Conditions for global : . :
exponential stability are given. T?l/e algorithm can be irgple- TThe following notation and nomenglature IS us§d|.|,§:
mented with regularization to ensure graceful degradation of X AX by A> 0. For two vectorsx € R" andy € R™ we let
performance when the data are not exciting. This regularization ~col(x,y) denote the column vector iR™™™ wherex andy
relies on monitoring an estimate of a Hessian-like matrix and are stacked into a single column. The composition of two
conditions for local exponential convergence are given. functions f andg is written f og(x) = f(g(x)). A function

I. INTRODUCTION ¢ :R™ — Rt is called aK-function if ¢(O) =0 and itis

Movina Hori S Esti MHE K ; strictly increasing. A functionp : Rt — R" is called aK-
oving Horizon State Estimator ( ) makes use o Junction if ¢ € K and it is radially unbounded. A function

finite memory moving window of both current and recen ‘R xR" — R* is called aKL-function if for each fixed

measurement data in a least-squares criterion, possibly Q%' R*, B(-,K) €K and for each fixede R, B(s,-) is non-
addition to a state estimate and covariance matrix estitnateincrea'Sing ’and lime B(s,K) = 0. For a seq,uenc’&(j)} for
set the initial conditions at the beginning of the data wimdo i >0, z, denotes the {runcation ofz(j)} at timet, ie.
see [1], [2], [3] for different formulation relying on soméat 7o — ~’{z([j])} for 0< j <t '
different assumptions. it -

) RO . . We define the notion of global incremental input-to-state
Uniform observability is typically assumed for stability stability [8].

or convergence proofs. However, uniform observability is & Hafinition 1: The system (1a) is globally incrementally
restrictive assumption that is likely not to hold in Certaininput-to-state stable {SS), if there exist a KL-function
interesting and important state estimation applicatidss 5" .4 4 K. _function y s'uch that for anyt > 0, any
is in particular true for some combined state and parametﬁ{itiaI Condi;onsx(o) )?(5) © R and anyuy u:t 1,with
estimation problems, for systems that are detectable kut rl?(j) {@j) € R,0< | ’< (-1 the foIIowing[i; ]t7ru[e7' ]
observable, or when the data may not be persistently egcitin ="’ = ’ :
Consider the following discrete-time nonlinear system:  [|x(t) —x(t)|| < 6(|[x(0) —x(0)[],t) + Yu(||Ujt—1) — Up—q[)-

(2)
X(t+1) = f(x(t),u(t)) (1a) Definition 2: (61SSLyapunov Function) A continuous
y(t) = h(x(t), u(t)), (1b)  functionV : R* x R — R> 0 is called adlSSLyapunov
wherex(t) € R, u(t) € R™ andy(t) € RV are respectively zur:le(;)r(l))ftir(;he system (1a) if the following holds:

the state, input and measurement vectors,tasthe discrete
time index. In this paper a nonlinear MHE approach base%‘
on the work [4], [5], [6] is extended. In [4], [5], strongly ar(|[x—X]|) <V(xX) < az(]|x—X]|). (3)
detectable systems [7] are considered, and convergence on ) ) _
compact sets is analyzed. In [6] the strong detectability There exists &-function g, such that for any,x and
conditions is relaxed by using the concept of increment&nY couple of input signals,u

input-to-state stability [8] and provide global conditsofor V(f(x,u), f(X0) —V(x,X) < —az(|[x—X]|) + o(|ju—d]|)
exponential stability. The present paper provides adutitio 4)
results on the choice of weighting matrix in the movingyih a3 positive onR*.

horizon cost function in order to achieve regularizatiorewh ¢ following results are taken from [6]

data are not persistently exciting, based on monitoring of Thegrem 1:If there exists a51SSLyapunov function for

information contents using the singular value decompmsiti 1, system (1a), then the system (1aJiSS Moreover, the
similar to [4], [5]. Conditions for local exponential stébji 51SSproperty holds with

There exisKy-functionsay, a, such that for any, x,

are derived. 20(9
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PT > 0 is called a global quadrati&l SSLyapunov function can be reconstructed asymptotically. This correspondseo t

for the system (1a) if the following holds: notion of detectability [7], where we suppose there exists a
1.V(0,0,P) =0. coordinate transfornT : R* — R™
2. There exist a symmetric matri® > 0 and a symmetric &
matrix A > 0, such that for any,X and any couple of input d= ( 5 ) =T(x) (10)
signalsu, U, )
that lead to the following form
— < - .

V(f(x7u)7f(x7a)7p) V(X’X’P) — V(vaaQ) +V(u7u7A()6) E(t—f—l):F]_(E(t),Z(t),U(t)) (11&)

Lemma 1:Consider the system (1a) with globally Lip- Z(t+1) = F(z(t),u(t)) (11b)
schitz and continuously differentiable. The system has a y(t) = g(z(t),u(t)). (11c)

quadraticélSSLyapunov functionV with a symmetric ma- ) ) N )
trix Q >0 and a symmetric matri& > 0 and a Lyapunov This transform effectively partitions the state into an

matrix P=PT > 0 if for all x,xc R andu € R observable sub-statee R™ and an unobservable sub-state
T & € R, and the following global detectability definition can
2\ (%, X)PA(x,x) — P < —Q, (7)  be given, [6]:

for some symmetri® > 0 andA(x,X) = fol%f((l—s)x—k Definitiqn 6: The system (1a)-(1b) is globallyN-
sCu)ds detectablaf

Proof: The proof is given in [6]. - 1) There e_xists a coordinate transfoiimthat brings the
system in the form (11a)-(11c).
2) The sub-system (11b)-(11c) is globaMtobservable.

) ) 3) The sub-system (11a ) has a global quadrati§S
TheN+1 consecutive measurements of outputs and inputs | yapunov function.

IIl. NONLINEAR MHE PROBLEM FORMULATION

until time t are denoted as Definition 7: The inputU, is said to beN-excitingfor a
y(t—N) u(t—N) globally N-detectable system (1a)-(1b) at tirhef it is N-
y(t—N+1) ut—N+1) exciting for the associated globally-observable sub-system
Y= S| U= |- () (11b)-(11lc) at time.
' ' The following regularity properties are assumed throughou
y(t) ut) this paper:

To expressY;, as a function ofx(t —N) and U;, denote (Al) Thg functionsf andh are globally Lipschitz and twice
Ut (x(t)) = f(x(t),u(t)) and @ (x(t)) = h(x(t),u(t)), and ~differentiable. _ . _ _
note from (1b) that the following algebraic map can bdA2) The functionT is continuously differentiable, globally

formulated [2]: Lipschitz and bounded away from singularity for gk R™
such thatT1(x) is well defined. It is also assumed that
Yo = H(X(t—N),Ut) = Hi(x(t =N)) T-1(x) is globally Lipschitz.
hUEN) (x(t — N)) (A3) The system (1a)-(1b) is globallj-detectable and the
hU(t*NJrl)ofU(t*N)(X(t_N)) input U; is N-exciting for all t > 0. Moreover, the sub-

= e system (11a) has a global quadraliSSLyapunov function
V(&1,&2,Pg) such thals =Py > 0 with symmetric matrices

hut) o fUlt-1) ... 0 fu(th)(x(t —N)) Qs >0 anda, > 0,4, > 0, that is,
Definition 4: The system (1a)-(1b) is globallyN- V(E TAN= 7o W) P —V =)
observableif there exists aK-function ¢ such that for any (Fu(Se,21, un), Fa(82, 22, Ua), Pe) =V (6,2, )
X1, % there exists &J; such that < —V(81,82,Q) +V(Un, Uz, Au) +V (21,22, 87). (12)

(A4) x(t), u(t) andy(t) are bounded for all > 0.

The proposed MHE problem consists in estimating, at any

timet=N,N+1,..., the state vectorg(t —N),...,x(t), on

the basis of a priori estimategt —N) and the information

vector I(t). It is assumed that an a priori estimator is
(|11 —X2||?) < [|H(x2,Ut) — H(x2,Up)]| 2. determined from the last estimat®(t'— N — 1|t — 1), by

Define theN-information vector at time as Kt —N) = F(R(t —N— 1t — 1), u(t — N — 1)).

H(t) = col(y(t =N),....y(t),ut =N),...,u(t)). (9 A convergent estimator is pursued by minimizing the follow-
When a system is nol-observable, it is not possible to ing weighted regularized least-squares criterion
reconstruct exactly all the state components from fhe IR — N X —N),1(t) = % — H(R(t N|t)7Ut)||5\4
information vector. However, in some cases one may be R _ 2
able to reconstruct exactly at least some components, based +[[X(t = NIt) = x(t = N)[ [y
on theN-information vector, and the remaining components

¢ (1% —Xel|) < [[H(x1,Ur) —H(xe, Up) %
Definition 5: The inputU; is said to beN-exciting for
the globallyN-observable system (1a)-(1b) at timé there
exists aK-function ¢; such that for any, x, satisfying

(13)



with M > 0 andwW > 0 being symmetric time-varying weight using (10), there exisd(t —N) = T (x(t —N)), d°(t — NJt) =
matrices. The first term is a standard least-squares ter(X°(t —N|t)) such that in the new coordinates, the system
while the second term provides a regularizing effect as is in the form of (11a)-(11c). Note that the first term in the
penalizes deviation from an open loop observer. The regulaight-hand side of expression (13) in the new coordinates ca
ization leads to graceful degradation of performance ihdatbe rewritten as

are notN-exciting and the system is subject to uncertainty

5 2

such as noise and unknown disturbances. [IYe = G(2(t = NJt), U)oy

Let J° = ming,_njp J(R(E — NJt); X(t — N),1(1)), let X(t - = [|G(z(t —N),U) — G(2(t — N[t), Up) |-
N|t) be the associated optimal estimate, and the estimati%rgom Proposition 2.4.7 in [9], since (A1) and (A2) hold, we
error is defined as s ) )
have
e(t—N) =x(t—N) —°(t — NJt). (14) Glz(t - N).Up) — G(2(t — Nit),Uy)
V. STABILITY OF NONLINEAR MHE = cbt(z(t —N),22(t —=N|t))(z(t —=N) — 22(t = N|t)).

In the stability analysis we will need to make use of the COThen we have
ordinate transform into observable and unobservablesstate
although we emphasize that knowledge of this transform i$v; — G(2°(t — N|t),Up)|[3 = ||z(t —N) — 2°(t — N]t)

Haﬂvm
not needed for the implementation of the observer. To egpres a7
Y: as a function ofz(t — N) and U, the following algebraic Taking zero as the lower bound on the second term of (13)
mapping can be formulated similar to the mapphig we get
(o]
Y, = G(z(t — N),U;) = Gy(z(t —N)) I =zt —N) -2t - '\||t)\|q,T\,\“,t
g Nzt —N)) Upper bound on the optimal cosf J
guit=N+1) o FZU(I_N)(z(t ~N)) Let X(t —N) = f(X(t—N—1),u(t =N —1)). From the opti-

(15) mality of X°(t — NJt), we havel? < J(X(t —N);x(t —N),I(t)).
“p ) : Combining the upper and lower bound dh
u(t) u(t—1 u(t—N -
0T eR” ToreRt TN I —N); Rt~ N).I (1) = 2t — N) — 2(t NIt

&rwia,

In order to state the stability result and the proof, the (18)
following definitions are given: Proof of the stability.
P 5 Considering the cost functiai{(X(t —N); x(t —N), 1 (t)), ||[Yi —
=P —N t—Njt <
LSRN N H(X(t—N). U = [1G(t — N),Up) — Glz(t —N). Uy =
/ —N)+s2(t — N[t),Up)ds 0. Also, from Proposition 2.4.7 in [9],
¢ = (t—N 1),% (t—N 1t — 1)) X(t—N) = X(t—N) = Y (X(t =N —1) - 2°(t =N - 1|t — 1)),
5 X(t-N-1)-%°(t-N-1t-1)
:/0 ox (A=9X(t-=N-1) — Fudt—N—1)—d°t - N— 1}t — 1))
+s°(t-N—-1t-1),ut —N—-1))ds _p [ E-N-1t-1) - & -N-1jt—1)
Fo=e(d(t—N—1),d°(t —N— 1]t — 1)) ‘ Zt-N-1)-2(t—N-1jt—1)
1 y =N (Zt—N—-1) -2t -N-1t—1
B :dT - 9dt-N_1) e (Z ) =2 t=1)),
h =0 Inxn,)- Let Qt =TnT. We h
+Sd°(t—N—1|t—1))ds, wheren = [On,xn;, In;xn,] Lt Qt =Tn ‘e have
9t NN 7t N2
wherex(t —N—1) = T-3(d(t —N— 1)) with d(t—N—1) = [X(t = N) ={t =N)lfa
col (§°(t—N — l|t— 1),z(t — N — 1)) and d°(t — N — 1]t - = ||zt =N 1) = 2(t =N -1t - )l [remya,-

H=TF(t-—N-1t-1)).

Theorem 2:Suppose that assumptions (Al)-(A4) hold.
Theq for anyM > 0, there exists a sufficiently large wgighF ||z(t —N) —2(t — N|t)||q)TV\m>t
matrix W > 0 sug:h that the observer error dynamics is <|[zt—N-1)— Pt —N—1ft—1
globally exponentially stable.

Proof: The proof is found in [6], and repeated here forconsider a Lyapunov function
completeness since it is needed in the proof of the maintresul
in the next section. The basic idea behind the proof consists V(s(t)) = [[s1(t)[[3, + lls2(t) [, (20)
in establishing upper and lower bounds on the optimal co _ o A
JP, and use these bounds to show convergence. ih(elr;)s) fi)r_z;?tl(ilg_%fzeg[ ). P>0andr, =P (e is given

Lower bound on the optimal cosf J - R
Using the fact that system (la)-(1b) can be transformesi(t) = z(t — N) —2°(t — NJt), sx(t) = &(t —N) — &°(t —NJt).

Therefore,

2
)HQE'MYtTMAYtQt' (19)



In the followingV (s(t)) —V/(s(t — 1)) < 0,Vs(t) # O for some  where & = &y (x(t — N),2(t — N[t)) = fg ZH((1—9)x(t —
W is shown. N) +s°(t — NJt),U;)ds SinceY; —H(X°(t —NJt),U;) =Y —
G(2(t—NJt),Uy),

Vv -V(s(t—1
(s(t)) = V(s(t—1)) P (X(t — N) —(t —N[t)) = P (z(t —N) — 2(t — N[t)).

= |Isu()I[3, — [se(t = DI, +lIs2(t) B, — lIs2(t = D)I[E,-
Considering the optimization problem (13), it is easy towno and
that £°(t — N|t) = £(t — N). Since (A3) holds, then there  x(t —N) —%°(t — N|t)
exists a global quadratiélSSLyapunov function such that —Tea(d(t—N) ofo(t ~N[t))(d(t —N) _aO(t ~N[D)
(12) is true. Then, ’ ’

RIS _|Sg(t_1)|léé+||Sl(t_1)(|2%) B My = Ta(d(t—N),d°(t—NJt) (25)
Therefore, we know that = 01 %T_l((l— s)d(t—N-1)
V(s(t)) ~V(s(t 1)) < ~[[s2(t - 1)[3, +[Isa (V)] 3 +sd°(t—=N-1t-1))ds (26)
—|Ist = 1)[I3, + 2t — D13, With z=nd, we have
Since (A1)-(A4) hold @, has full rank and|®{ ®|| > ¢l for D= Dy = & = Blgan’. (27)

somee > 0, there always existé4 such that Suppose that|e(t — N)|| is sufficiently small. Then the
following approximations can be made by neglecting higher

A Teay 4
O WP = Py 22) " order terms
It follows that &)t ~ d')ta _ &Jt ()20(4[ _ N|t),)20(t o N|t))
2 2 2
ISR < 01w < 156~ D1Egusa = M e ..
Then, we have A ~ . )
and®; ~ ®F = A 1nT, [y ~Ty. Inthis paper we propose
Hsl(t)HE,l —||se(t— 1)\|§,1 +|[s1(t — 1)\|§Z < to choose the matrid such that
st = Dlarerwsg — ISt = DIIR + st — I3, M = Bln,, (28)
Since ||¥:|| and ||| are bounded, there always exists avhereff >0 is a scalar and define
sufficiently large weight matrix\{ such that for allt > 0 5, = &)?TW&)?’ 29)
ST A Since||lt11]| is always bounded, there always exist a positive
Oy Wy > Py, (232)  scalary such that
P> QI YT MYQ + A, + A, 23b
=2 Tt Iea TS (23D) MM > Vo (30)
W >0, (23c) .
. Similarly, since||Y:||,||l't|| are bounded, there always exist
for some arbitrary symmetria > 0. Then we have a positive scalad such that
V(s(t)) -V (s(t—1)) < —[[sut— |IZ - |Is2(t - D)I[, . (24) oM > TV M¥r. (31)

which implies thas(t) is globally exponentially stable. Since Since (A3) holds, there always exists a non-negative scalar
(A2) holds, it is easy to obtain that the error dynamics ig such that

globally exponentially stable. n mn' >N, (32)
Theorem 3:Suppose that assumptions (A1)-(A4) hold.
V. SELECTING WEIGHT PARAMETERS For any given3 >0 andA=unn' > 0 with a scalaw > 0,
This section presents the main result of the pape'lf. the choice of\f > 0 satisfies
From (23), we know that the condition off depends on s> 5B+T+u| (33)
@, Y;, I, M andA;. Unfortunately, sincab; depends on the N = y N2>

unknown state we cannot monitor it. Hence, we have to re

. . . - | |Qﬁen the observer error dynamics is locally exponentiall
on some approximation or estimate @f. Since (Al)-(A2) y y &® y

" . stable.
hold, from Proposition 2.4.7 in [9], we have Proof: From (23), it is easy to know that if the choice
Ye — H(R(t —NJ[t),Uy) = @t(x(t —N)—R(t—N[t)), of W > 0 satisfies the following inequality,

Yt — G(2(t —NJt),U;) = Dy (z(t — N) — 2(t —N[t)), OTW D > QI T MY Q¢ + 4, +A4, (34)



then the observer error dynamics is exponentially stable. VI. NUMERICAL EXAMPLE

Supposd|e(t — N)|| is sufficiently small, then by neglecting  consider the following system
higher-order terms

S Teay 4 - - - X1 = —4X1+ X2 (38a)

th \M(Dt = r’rt+lzt rt+lr’ > Vrlztrl ’ )'(2 = —Xo+X3U (38b)

6pnnT = nriY{MYirin’ = QI FiMFQy, % =0 (38¢)
T

mn = Ay, V=X +V. (38d)

A=unn'.

It is clear thatx; is not observable, but corresponds to a
Therefore, since (33) holds for somg > 0, the observer 5ISS system. It is also clear that the observabilityefwill
error dynamics is locally exponentially stable. m depend on the excitatiom while x, is generally observable.

There are many methods to fikig such that (33) holds. Here One may think oks as a parameter representing an unknown
one possiblé is provided, similar to [4], [5]. Consider a 9ain on the input, where the third state equation is an
singular value decomposition (SVD) [10] augmentation for the purpose of estimating this parameter.
ca N aeT The same observability and detectability properties hold
P =USV . (35)  for the discretized system with sampling intervgl =
Any singular value (diagonal elements of the mafiy that 0.1. It is easy to know that the sub-system (38a) has a
is zero or close to zero indicates that a linear combinatioguadratic 51SS-Lyapunov function withP; =1 and A; =
of states is unobservable or the input is rdtexciting. diag(0.020.01). B
Moreover, the corresponding row of the matrix will indi- In this simulation example we choosg= [4,-7,2],x =
cate which linear combination of states cannot be estimatéd —5.9,—1]. ChooseN = 2 and A = l».,. Measurement
(locally). The Jacobian has the structural property that ithoise, with independent uniformly distributeet [-0.5,0.5],
rank will be no larger thardim(z) = n,, due to a certain is added to the base case. The input is chosen with periods
manifold being unobservable. Théexcitation of data may Without informative data as follows: During 9t < 3Qts,
therefore be monitored through the robust computation &f= 0. During 3@; <t <60, u is discrete-time white noise.
the rank of the Jacobian matrix using the SVD. We knowuring 6Q@; <t <12Q¢, u=0. In the simulation, true system
that the convergence depends\dhbeing chosen such that has an input disturbance with-0.15, and the model used in
(33) holds. To pursue this objective, we propose to choo$Be MHE observer (13) has an input disturbance with0.3.
W such that, whenever possible, In the following figures, true states are shown in solid line;
estimated states of proposed work are shown in dash-dot line

—WTW
Ve =W W, (36) « Case 1: Choosg =08, a =1.3 andd = 0.058. The
with _ o simulation result is shown in Figure 1.
W = vaiSh, U . Case 2: Choos@ =0 anda =1 and 3 = 0.01. The

wherea > 0 is a scalar, and the thresholded pseudo-inverse simulation result is shown in Figure 2. _

35.; = diag(0,...,0,1/Gi1,..., 1/Gts) Where iy, ..., G, are The regularlzgtlon_ls ac_hleved tﬁ_/> 0 since other\lee_the
the singular values larger than sompe> 0 and the zeros parameter estimation will be mainly dominated by noise, as
correspond to small singular values whose inverse is set $§0Wn by case 2. The threshodd> 0 will effectively turn

zero [10]. Then we have off the updating of the un-excited states which is seen in
xaTer za Case 1 fott < 30ty andt > 60, any may prevent undesired
2 =@ W =aDb, drift of the estimates.
where D = diag(0,...,0,1,...,1). For N-exciting input and VIl. CONCLUSIONS

p> 0 §ufficient|y small, [4], such choice & also satisfies
®2 WP > 0. The problem becomes to find a suitalsle
such that (33) holds. A sufficient condition to choasés

We propose a regularization-based adaptive weight selec-
tion method for nonlinear moving horizon estimators, samil
to [4], [5]. The class of nonlinear systems is slightly exted
a>(6B+1+v)/y. (37) by considering a globall-detectability condition introduced
in [6]. Conditions for exponential convergence are giverd a

It should be necessary to note that the choice shtisfying the weight selection method is illustrated with simulasion

(37) is mostly relevant as a qualitative guideline rathemth
as a practical tuning method, since the scalars in (37) may APPENDIXA-THE PROOF OFTHEOREM 1

be both hard to compute, and will in many cases also The proof is similar to the one in [13]. From the hypothesis
be conservative compared to the linear matrix inequalityye know thata (|[x—X]|) <V (x,X) < az(||x—X[|). Forx,xe

conditions (23). R™\ {0}, due toV(x,X) < az(||x—X[|), we obtain
For inputs that are nol-exciting, the parametep > 0

may be tuned in order to enhance robustness of the algorithiv (x,X) — asz(||x—X]|) <V (x,X) — as(||x—X]|) VXX
such thaw\f gives zero weight on state combinations that are az(|[x X))
not excited by the given input [4], [5]. The effectiveness of - ag(Hx—)?H))V(X’)O.

this appraoch is studied in some case studies [11], [12]. a(][x— X))



............

Fig. 1. Simulation results of case 1.

Fig. 2. Simulation results of case 2.
Let py(az,a3) = 1 — %:;H; Now we will show that

pi(0g,a3) € [0,1). Since (4) holds fou—u=0,
0<V(F(xu), f(X ) < V(xX) — as(|x— )
< a(|[x=X][) — as([[x=X]).

From the abovep; (a2, a3) € [0,1). Then it is easy to find
p €10,1) such thatp > p1(az,a3). Together withV (0,0) —
a3(||0]]) =0< pV(0,0), we have that

V(X(t+1),x(t+1)) < pV(x(t),X(t)) + o ([[u(t) —ult)[])-

We can apply the above inequality repetitively, which yseld

V(x(t+1),X(t+1))
t
< PHV((0).K0) + 3 plo(lutt —) ~ @t —D))

_ 1
< PV (x(0),X(0)) +0(|Juy — U[t]\|)m~
Then we have
ax(|[x(t+1) —x{t+1)[])

_ 1
< P az(|[x(0) ~ X(0)[]) + o (||uy — UnlD1—5

The facta; € Ke implies a;t € Ke. Then
[X(t+1) = x(t+1)]|

< a5 (0l |(0) ~XO)) + ol ~ Tyl )
< ap*(2max(p" " az(|[x(0) — X(0)[]),

_ 1
U(Hu[t]—u[t]H)H))

< ay (20" az(|[x(0) —X(0)
1

D)

+ a7 (20(||ug *U_[t]H)ﬁ)-

Whenp = 0 we have that

[1x(t) = X()| < oy (20(|Jug—g) — Te1))
< 6(IIx(0) = X(0) ||, t) + o (20 ([|ug g — U1)),

for any 6 € KL. For p € (0,1), let 8(s,t) = a; *(2ptax(s)).

It is easy to know thad € KL. Now let y;(s) = afl(zl‘i(;)).
Since ¥ (1—p) > 0, it follows thaty, € K. Hence the system
(1a) isdISS
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