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Abstract— Control allocation deals with the allocation of are related to how the optimization problem is formulated,
control among a redundant set of effectors, while taking into \which models are used, and which numerical algorithms is
account the individual constraints. The use of model predictive employed to solve it. This is reviewed in the next paragraphs

control (MPC) for control allocation allows the response times In th lassic f lati f th trained trol
of the actuators to be accounted for, and in particular to take e Classic I0rMLIAtons =0 € consirainéd contro

advantage of predictions of the virtual control input as well as  allocation problem the actuator dynamics are neglected [2]
differences in dynamic control authority and cost of use among under the assumption that all dynamic phenomena are ac-
the actuators. The use of online quadratic programming (QP)is counted for by the controller that commands the virtual
essential for implementation of the optimal constrained control control to the control allocation module. This may in some

allocation strategies. The main contributions of the present b listi di ient fi Ben th
paper are the investigation of using the software system CVX- cases be an unrealistic and inconvenient assumption when

GEN and the MPC-based control allocation method. CVXGEN ~ actuator dynamics are limiting the control performancesin
synthesizes a customized portable and library-free C-source response times and different dynamic authorities of the-act
code QP solver for the specific QP problem resulting from the  ators are not taken into account. For systems where actuator
MPC formulation, exploiting structural properties of the QP dynamics are known, the interactions between the control

and optimizing the source code for execution speed. Two case locati lqorith d th tuator d . i
studies, one being a missile auto-pilot, illustrates the benefits of aflocation algorithm an € actuator dynamics working on

using the MPC formulation, and the efficiency of CVXGEN.  the aircraft body become more complex, requiring a more
sophisticated control allocation method. Actuators caveha
. INTRODUCTION different response times, i.e. a fast actuator can be used to

fchieve fast transient response, while slow actuators ean b

ator and effectors, for reasons such as fault tolerance aHﬁ?q for steady state or _trlr_nmed flight, to improve power
design issues related to cost, response-time, size, arid flexclency. .A I Predlgtwe Contrql (MPC) aIIocgtlon
bility. Examples include flight control systems [2], dynami schgme W',” be ablg to optimally exploit S.UCh prop_emes.
positioning systems for ships with using thrusters [8], and Itis r.elat|vely.stra|ghtforward t(.) (re-)design abasmtroh
airjet controlled paper motion in machines [4]. allocation algorithm to comply with actuator rate consttsj

Control algorithm design for systems with input redun<:9: [8], by incorporating this as a constraint on the change

dancy is challenging since the same control effect (Iikén control inputs from the previous sample to the current

a generalized force) can be generated by a number E)?mple' Mor;e (jsobph|st|pat(at(rj] dynam|;: Ia;ﬂu;egofr modelskn:ay
different actuator settings, and actuator constraintaulsho € incorporated by using the powertu ramework 1o

be accounted for. In order to systematically manage su Ive the constrained control allocation problem [9], [10]

control design challenges, one may decompose the cont 6£] [20]. MPC is an optimization-based control algorithm

problem into two parts - a controller that commands a virtu 8 ich can be used n control allocation, beeing _able to
control input of minimal dimension (like the generalized andle actuator dynamics as well as actuator saturatio® MP

force), and a control allocation module that maps the virtuéml'zes.a model of the F_)Iant n predicting outputs and state
é?ere in control allocation this model describes the actuat
t

Some control systems are designed with redundant ac

control input into the redundant actuator settings. Sinc . -~
there are more degrees of freedom available in the actua namics. Because of the predictive nature of the controlle
e calculated control can pre-act to the actuator system

system than virtual control variables, the available deg)@f
freedom in the actuator system can be used to satisfy actuaﬂyn
constraints and to meet secondary objectives such as faul
tolerance, power consumption minimization, and actuat

wear minimization. In general, the control allocation devb ! P | wdied in th text of
can be formulated as an optimization problem where Certaf{ogrammlng (QP) solvers are studied in the context o

objectives are minimized subject to actuator and effect jnear actuator and effector models in [1]'[15]’[3.]’ [1&}or .
constraints, and the constraint that the resulting coefifect nonlinear effector models, the use of sequential quadratic

fulfills the requirements of the virtual control commandeTh tphrograipmllng |stpr?p(|)|sedt_|n [5.]' Instea? c:jf demzndwt\g th?]t
main difference between different control allocation noeth € optimal controt aflocation 1S computed exactly at eac
sample, the dynamic online optimization appraoch in [6]
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ow to implement the numerical optimization for the opti-
al control allocaiton in real time, is a challenging task-O
ine optimization using off-the-shelf or customized quetir



optimization approach reduces the online computational r&or a system wittK actuators and effectors, the model will
quirements, and at the same time guarantees that clodesl

loop stability is not lost due to sub-optimality, one may . As O 0

also use multi-parametric programming to pre-compute arj 01 0 As, - O 01 Bs, | | Ocmd1
explicitly represented piecewise affine solution functidhe N I :
remaining online computations corresponds to the evalu 8. : 6. B. 5 '
tion of a piecewise linear function resulting from multi- -°€ 0 e Ag | UK & Lfemdk

parametric programming and explicit MPC [7],[19]. While 3)
this is highly attractive from the online processing poifit o!N @ more compact form, this can be written
view, its memory consumption and offline processing does 5:A55+Be;5cmd 4)
not scale very well - in particular when considering control
efficiency matrices that are time- or state-dependent due The corresponding MPC control allocation problem is posed
nonlinear to time-varying characteristics like in faullet@nt as follows: For the constrained system
control allocation [17]. .

This key idea of the present paper is to employ a family of 6(t) = As0(t) +BsBemd(t)
highly customized QP solvers that are automatically gener- T(t) =Ba(t) 5)
ated using CVXGEN [13],[11] to solve MPC-based dynamic Omin < 0 < Omax
control allocation problems. CVXGEN has the unique fea- )
ture that the C code of the customized solvers is completefif?d dcmd(t) such thatr (t) trackst*(t) as closely as possible,
standard and standalone, i.e. portable, and extremeljeetfic Wheret"(t) is the virtual control input vectoB is the control
since the key structural properties of the QP problem igfficiency matrix anddmin, dmax are the upper and lower
exploited in the automatic code generation that leads te cogaturation limits of the effectors or actuators, respedfiv
with only static data structures and almost branch-freeecod The System (5) is used to predict the commanded control
where for-loops are rolled out for efficiency and deterntiais MPUts&cma, the control commanda and outputgy through-
execution on pipeline processor architectures. Perfocman©ut the prediction horizon,

improvement also comes for low software overhead as the 5 U (KK oo B (Kt N —1/K 6
CVXGEN targets small-scale problems, in some contrast to o' [ Ocmalkk) -+ Ocma(k+ k1)
most off-the-shelf solvers that target large-scale probsle ‘? = [§(k+1|k)v "'7 A6(k+ NIk) | ()
Orders of magnitude faster execution compared to state- T = [T(k+1k), ---, T(K+NIK) ] (8)

of-the-art off-the-shelf solvers have been reported on tes . - .
problems, including MPC problems [13],[11]. This makes “yvhereN 1S the length of the predlc_tlon h_onzon, akds_ the
interesting to study CVXGEN's performance in chaIIengingcurArem time ?t.ep.' The MPC algon'thm finds the optimal set
control allocation problems that are of relatively smaklsc of 8emg by minimizing a cost function on the form
compared to typical MPC problems. N o _ . o

The paper is organized as follows. First the dynamic MPC-  J() = > W[ T(k+] [K) —T"(k+]) ]
based control allocation problem formulation is introdiice ’N:ll K
Then the use of CVXGEN to address this problem is ; , P 2
described, before the computational performance is as$ess +a ;1 i;Wa(l)[ Bemdi(k-+ ] — 11k ] ®)

in a simulation benchmark study. subject to (5)

In the cost functionW is a weight matrix weighing the

II. DYNAMIC CONTROL ALLOCATION importance of tracking* at time j. W, weighs the relative
cost of use of effectore {1...K}. As beforeK is the num-
A. Optimization problem formulation ber of control actuatorsx > 0 weighs the relative importance

) _between the tracking term and the effector penalty term, and
It is assumed that all control actuators have dynamigg ysually small. Only the first commanded control sample
which can be approximately modelled as second order syg; (k|k) is applied to the actuator. The whole algorithm is

tems, repeated when computing the consequdygg(k+ 1|k+1).
6 —2Z w00 — 6§ = whmd (1) B. CVXGEN Solver

The CVXGEN solver is currently available through a web
interface htt p: // ww. cvxgen. com An optimization
problem specification can be entered through a MATLAB-
like programming language. Syntax specifics can be found
in CVXGEN's user manual [12]. The problem is entered in
) a fixed problem structure, specifying the problem’s dimen-
0i = A5 0i +B50cmdi (2) sions, parameters, variables, cost function and consgrain

where d:mg is the commanded control input, andl is
the actuator responsé€. and ay are the actuators relative
damping ratio and natural frequency, respectively. Résrit
in state-space form, the model for actuatawill be on the
form
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Fig. 1. QP CA Virtual Input Tracking Fig. 2. MPCA Virtual Input Tracking

The library-free custom C solver is automatically gener-
ated. In addition to C code, a MATLAB interface is also
available, making the custom solver available for e.g.ggrot 15 gk
typing and initial testing within the MATLAB environment. 2

The solver is used by calling a pre-made function, witr_ *°| i
the problem instance’s specific parameters as functiort.inpté 51 - LS 7
Solver settings can also be entered when calling the solveg - Tt 1o
After the call, the solver solves the convex optimizationg °[*"
problem with respect to the instance parameters, and (mtptg
the globally optimal solution. a

CVXGEN lends itself naturally to MPC problems, see [11] -1ot g
for a detailed overview.

Ill. CASE STUDIES
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tween control performance, accuracy and cost of actuatic Samples
(power, wear,...) that can be systematically adressed with
dynamic predictive control allocation. Furtermore, compu Fig. 3. QP CA Actuator Response

tational performance characteristics of the CVXGEN imple-
mentation are reported.

A. Simple test - actuators/effectors with different costl anprediction for the MPCA is done using a second order
dynamic response extrapolation based on the current and most recent samples.

First, a simple test is conducted, comparing the perfor- The virtual input tracking of the QP and MPCA methods
mance of similar MPCA and QP formulations. The virtualcan be seen in Figures 1 and 2 respectively. It is clear tleat th
control command™® is one-dimensional, consisting of a sineMPCA does a far better job than the similar QP formulation
with increasing and then decreasing frequency. There are twhen it comes to tracking*. This is because the QP CA
actuatorsd; and &, with associated effectors, both modeledgnores the actuator dynamics, leading to it commanding
as second order systems. Actuator 1 will be fast but expensimnostly the slow actuatod, to deflect to trackr*. As the
to use, while actuator 2 will be slow and inexpensive. Thérequency of the virtual input increases, actuator 2 can not
actuator coefficients and corresponding cost weight are follow, causing a larger tracking error. MPCA is aware of

the actuator dynamics and optimally combines both actaator
w1=150 =07 Wp=1 to meet the requirement of the virtual input. The actuator
w2=10, (=09, W, =01 responsed; and &, for the QP and MPCA methods can

This means that the control allocation module should ud® S€en in Figures 3 and 4, respectively. In these plots the
actuator/effector 1 only when necessary. In addition,cefie actuator saturation limits are shown as dashed lines.

2 will be more efficient than effector 1, reflected in the A comparison of the cost is shown in Figure 5, which
control efficiency matrixB = [ 0.3 0.8 ]. The virtual input summarizes the two methods’ performance.
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Fig. 5. Cumulative cost for QP CA and MPCA.

B. Missile auto-pilot

MPCA is also tested in a more realistic setup,
of a missile flight control system. The missile dynamics ar

p | Roll Rate a | Angle of Attack
g | Pitch Rate | B | Sideslip
r | Yaw Rate dr | Roll Control Moment
6 | Pitch Angle | & | Pitch Control Moment
¢ | Roll Angle | & | Yaw Control Moment
¢ | Yaw Angle

TABLE |

SYMBOLS IN MISSILE MODEL

constant speed 300m/s, and has an inertia matrix

5 1 1
l=1{0 150 O |kgn?
0 0 150

The missile is tail controlled, where it has four fins placed i
an x-configuration. The fins are controlled by four actuators
1.4, modeled as second order systems (1). The actuator
characteristics and cost are summarized below.

w1=10, 1=09, W =01
wp2=10, =09, W, =01
w3=150, {3=07, Wz=1
o4 = 150, Z4 = 0.77 W;=1

The four missile fins are placed in pairs with one slow and
one fast on each side. The slow and inexpensive pair are
thought to be used while in trimmed flight, while the fast,
expensive pair will be added on in agile flight.

The control allocation is part of a flight control system
together with a bank-to-turn autopilot, designed to follow
lateral and longitudal references. The autopilot design ha
two loops. The outer loop is controlling andy position,
while beeing fed back missile lateral and longitudal accel-
erations. This loop uses a bank-to-turn design to command
the inner angular control loop. All controllers within tiees
loops are PI- or P-controllers. The autopilot’s virtual troh
output T = [ & & & |7 is the input to the control
allocation module, which computes a commanded control
demd;, 1 € {1,2,3,4}, which is applied to the actuators. The

as a parflptual actuator respons®, i € {1,2,3,4} is mapped with

gﬂe control efficiency matrixB to form the control vector

_ T : - i
approximated using decoupled longitudal and lateral nsodef = [ 98 9 & |'. These are in turn inputs to the missile
[22]. Such models are valid for small angles, but this i&nodel-

assumed to be sufficient for testing control allocation.

The models are on the form

where

Xlong = A|0ngXIong‘|‘Blongulong

Xiat AatXiat + BiatUiat

X|0”9:[a q G]Ta Uiong = Op
Xa=[Bproyl,

Uat = [Or Oy }T

An MPCA formulation like the one described in II-A
is used, and a QP control allocation problem is used as
a comparison. The prediction for the MPCA is created by
holding the current value througout the prediction horjzon
which spans five samples.

The lateral and longitudal references are steps ah58nd
the missile step responses are seen in Figure 6. The response
for MPCA and QP CA are relatively similar, though the
MPCA performs notably better in the longitudal step case.

Looking at the virtual input tracking, the MPCA and QP
CA cases are shown in Figures 7 and 8, respectively. Also

Subscripts denote longitudal and lateral models, and sisnbdnere it is clear that the MPCA, being aware of the actuator
are summarized in Table I.

The simulated missile has a mass of 200kg, flying ahe QP CA case. The actuator response for MPCA and QP

dynamics, provides significantly better tracking ©f than
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is shown in Figures 9 and 10. The MPCA clearly utilizes
the fast actuator®; and &4 more actively, leading to the
previously mentioned improved virtual input tracking.

Lastly, the cost is compared. The cumulative cost is shown
in Figure 11. As expected, the MPCA cost is well below that
of QP CA.

CVXGEN is used during this simulation, and it is in-
teresting to review the time consumption of the solver.
During the 10-second simulation, 1045 calls are made to the
model predictive control allocation function calculatitfe
commanded control inpud.ng. By isolating MATLAB on
one CPU and using the progranggofiler utility, it is found
that these calls took a total of4B4 seconds (CPU time),
making each call on average consum@0041531 seconds
CPU time. This is considered to be very fast, taking the large
problem size into account. The MPCA problem size statistics
are summarized in Table II.



Parameter entries 155 4
Original variables 78 4]
Variables in solver 114
Equalities in solver 94
Inequalities in solver| 80 (5]
TABLE Il
MPCA OPTIMIZATION PROBLEM SIZE STATISTICS FORMISSILE
EXAMPLE [6]
[7]
12
------ MPCA Cost [8]
— QP Cost
10+
[9]
8 |-
[10]
[11]
al
[12]
2r [13]
0
0 [14]
Time [s]
Fig. 11. Cumulative Cost, Step Response [15]
[16]

IV. CONCLUSIONS

It is shown that the dynamic constrained allocation prob-
lem for typical configurations can be solved efficiently gsin (171
MPC and CVXGEN.

The MPC formulation leads to improved overall controll18]
performance compared to a more conventional static control
allocation method, and it is able to exploit an actuaton9]
configuration with different dynamic properties. Although
the impact of actuator saturations are not illustrated vety,
clearly in the examples, additional tests have shown that th
MPCA and QP CA tend to degrade their performance in %1]
similar manner when these constraints are activated.

The use of CVXGEN leads to a customized quadratic
programming solver that typically require less than 1 mill22]
lisecond computation time on a powerful processor. This may
considered computationally feasible for implementation i
a flight control system, although important aspects such as
software code verifiability needs to be addressed carefully
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