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I. INTRODUCTION

HE teleoperator device allows the human operator to

perform mechanical actions that are usually performed
by human hands and arms. Since the introduction of the first
modern master/slave  manipulator m the late 1940s,
teleoperation systems have been used for a number of
different tasks, for example, the handling of toxic and
harmful matenal in  remote environments, such as
submarines or space, and perform tasks that require extreme
precision, manipulators will continue to play a role in this
type of applications in the future [1].

Stability is the most important aspect to build a
teleoperation system with a high level of telepresence. If a
system exhibits unstable or closely unstable behavior, the
illusion of the operator being virtually present at the remote
will be destroyed, making the task difficult or impossible to
complete. For applications of teleoperation in which the
remote side is physically remote, tme delays are the major
cause of stability issues.

The first work dealing with the problem of delay was
published in 1965 [2], where the system was operated in
open-loop, so it did not present the issue of instability [3].

In 1966 and later it was determined that a time equal to or
less than 50 ms delay can destabilize bilateral controllers [3].
The problem is due to the generation of energy in the
communication channel which makes this component of the
system not passive [3].

A way of solving this problem is the addition of damping
to the master and slave in order to absorb the energy
generated in the system.

However, this technique does not guarantee stability and
results in poor performance [4], [5]. As an alternative, it is
possible to modify bilateral control in such a way such that
the communication channel acts as a line without loss of
transmission [3].

Several control schemes are proposed in literature to deal
with specific problems in the field of robotics teleoperation
[6]. Control schemes have been proposed which use
different non-linear control techniques, such as passivity,
sliding mode control, adaptive control or robust [7] [8], [9],
[10] which result in stable master-slave systems when the
communication channel presents small delays and the
environment is considered soft. However, in the design of
the control algorithms is considered a linear dynamic for the
teleoperator and the effect of the delay are analyzed using
linear approaches (5], [6].

A first step towards the unification of the analysis of
stability for teleoperators with time delay was presented in
[11]. They proposed a general Lyapunov — like function as a
candidate, and analyzed the stability of different control
schemes, ranging from constant time delay to variable, with
or without transformation of dispersion, and with or without
position tracking.

The work presented here is a continuation of the method
of design and control presented in [12], which is based on
the development of the teleoperation system as a linear
system of order n in state space, the control signal allows the
remote manipulator follow to the local manipulator through
the state convergence even if it has a delay in the
communication channel.

The goal of this study is to advanced the previous
algorithm by modeling the behavior of the local and remote
manipulator, and the channel communication by applying
nonlinear state space equations, and proposed a control
strategy to show the stability of a nonlinear bilateral
teleoperation system for both local and remote manipulators
with constant time delay.



II. NONLINEAR SYSTEM OF STATE CONVERGENCE

The local and remote manipulator robot are modeled
using theLagrange - Euler formulation as a couple of serial
links of n degrees of freedom with rotational joints.

M, (‘h )'11 +C;(‘l: N )'11 +g1(‘11)= r, +F,

M (g )i +C.lg..9. ). +2.(q.)=1,. —F, (1)

Where g¢,.4,.9, € R" correspond to the acceleration, speed
and position vectors of the jointi= {/, r}

{— local manipulator robot
r— remote manipulator robot

M,(g,)e R™  Inertia matnix

Clg,.q )eR™™ Coriolis and centrifugal forces matrices
g.lg )er" Gravitational forces vector

T, €R" Torque vector

F,eR" Operator interaction force vector

F eR" Environment interaction force vector

In the block diagram of the teleoperator system, Fig. 1,
the dynamics of the local and remote manipulator is given
by (1). It 1s presumed that the interaction of the human
operator with the local handle is a constant force mn the
following way [13]:

F, =F, Constant vector € R (2)

The interaction of the environment with the remote
manipulator is considered passive.
F,=Kq4, +B.gq, (3)

K., B.are definite positive matrix ™"

We proposed the control law (4) [14], as show in Fig. 1
this control law compensates for gravitational forces, so that
the torques 7, are given by:

no=n+gle) ro=r+g(q) (4

Where reR" correspond to the signal control torque.
Replacing (4) in (1) yields:

Mg, )i, +Ci9,.4,)q, =7, + F,,

Mg ). +C.g,.4. )4 =1, - F, (5)

Consider the local and remote manipulator (1) connected
via a communication channel with a constant delay, 7. as
show in Fig.1.
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Fig. 1. Block diagmm of nonlincar control of teleoperation system
considering delay.

Consider that control algorithm, the coupling torque for
the local and remote manipulator is given by:

7, =K,q,+Ksg, +R,q.(t =T)+ Roq,(t-T)
r,=K,q +K. g +Rq(t-T)+R,4,t -T)+ G:F,.,.(" T) (6)
Where:

K, = IK.'I K, ]-R.' = IR.'I R, ]'Kr = [Kfl K, ]'Rr = lRfl Rf:]
Where: K”, K;_v, R”, R;_v, K,-J, K,-_V, R,-J and R,-_v are order nxn
matrices constant diagonal positive definite. G is a constant.
The equilibrium points of the position of local and remote
manipulator are defined as % € %'y 7 €& hen by using (2).
(3), (5) and (6).

0=K,3 +Rg +F,

0=K,g, +R,g, + G"_‘."('—T)—K.—;f (7
Defining new position variables:

Q)=9(0)-7>4()=3+7 ®

q.(1)=4.(0)-7, > q.lt)=q. +7, )

Replacing (6), (8) and (9) in (5), the dynamics of a
bilateral teleoperation system in closed-loop is given by:

MG +Cq,=Kog, + R\t ~T)+ K G, + +R.G.(t~T)
MG +Cq =K. G +RGlt-T)+K.q +R .gt-T)-K.§. - B3,
(10)

Theorem 2.1

For the bilateral teleoperation system given by (10),
making the following considerations



K, K, =-3K,, We obtain:

R, =K, Krl =_3K|’ el 2 (ll)
V=gK[g(-17)-3 (0)]-e!K e, +§ Klg,(e-1)-G,(1)] (18)

i -el Ké, -4 B4, -4,'K4,-43,Kq,

i

]
|
x

Where: K; and K are positive definite constant diagonal
Using the following relations

matrices.
If the following is satisfied:
a T
K-Stk -5—K>0, K, ——K——K 0 (12) - T _ -
2" 2a 2a, gle-1)-3.00)=-[4(e~oMe, G.(t-T)-G.()=-[G.(t-o)c
Where @, &, and T"are scalar constants, then Replacing in (18)
lim, ,, §, =lim,,, §. =lim,_ g, =lim__ g =0 ‘ ‘ ‘ woo
’ ’ IV(I.\- = —Ié'K e ds Ié-{Kléi d.\'—I(?,TK,q,d.\'— '[(7,7 g ds
0 0 } } 0 0
Proo oL L ‘ .
! [4K[4. (e~ olods - [4,K[4,(t~ olads - [ 4, Bgds
0 0 0
For the stability analysis considering the constant delay, (19)
we used a Lyapunov-Krasovskii functional [15], [16], [17].
Defining ¥, a positive definite function, as: For any vector signals x, y, any vanable time delay 7.
o | L ay, ¢5 = () we have that:
V444 v)=7 M, +34 Mg, +—|4 -4 ) kG -4, )+—‘I K4,
Ui T Ui
- fartemaems [ (e -vjj’xjj(:-ayodma,jj-’ia-du—j,\’x,\m
N I (20)
(13) 2
=a 2. (K +—4 KW
T: Constant delay )
K. K.y K, positive definite constant diagonal matrices _ ,J- ‘TKJ'.‘_(’ —oMadt=a, J- ¥ Kyt +;j“ Kidt
The time denvative of (13) along the system trajectories . " 20
described by (10) 1s given by, =aA,. (K ]I‘" +a_,1"" (K )"""
Where 4, (4) specifies the smallest eigenvalue of A, and
the notation |||, specifies L,norm of a signal in the

i'i.'h'li'i +4, Mi? l"'Mtl +(,- 4,1\14 -4 )+q'K g,
'(t T (r=T k-7
~TH -4 TR, ) (14) inlcrval[O,t,].
Replacing (20) and (21) n (19)

[¥is = -2 i Jou | - 2 (5,

e o |

Replacing (10), applying the property of the robots
dynamics [13], by simplifying and grouping terms, yields:
r =4 (K, +1<yr, [3'1« gle- r) 47K -2 [K ——K—’—K]"q" (22)
(7 59
e T)K.q (t— T)]+q A.q (15) . i
-2, (Kl_ﬂx_r_x]lq
- 2 2a, N2

[3 K:q +q/ R, q -71)-4,
g, (K, +K)g, +q, "Rl -T)-4,"Kq,

GTK. & 4R a,.u_r)_a.m_r)x,a.u_r)]s,rx,a,
=4 B4, From (22) desso if the relations in (12) are satisfied,

Replacing (11) in (15) one obtain )

considering lims, = qc,J'Vd.\- <0, we conclude that the

v =5 Kale-1)-3. 0 -1 ki k-3 e 3 k- 1)-300) T -
o signals {l."qr’qr _‘Izs‘lr}e L, andig,.q,, € }E L.
From close-loop dynamic (10), thus g.q. €L, . are

bl cle-rrilirsi -irki-i'xi
(16)
uniformly continuous [18], using Barbalat’s Lemma [19],

we conclude that:

Taking
-‘71('_T)"‘7r (17) )
lim, g, =lim_ ¢ =lim__ ¢ =0.

& =4 (t-1)-4,. & = '
g, =lim,



Probing thatg,.q =L _, hence the signals are uniformly

continuous. The signal continuity mmply that the integral
exist and is bounded.

As show above lim, g, =lim, g =0. Using Barbalat’s
Lemma [19] lim, g, =lim, g, =0.

As a result for the dynamics of the system (10) with
K,=-K, K,=-K, R,=K. R,=K wehave that
il (1~7) g, |=0. timfg,(~7)-3 |=K 'K, img, (23)

Using the fact that

§-7)=G, - [qar. G.-1)=3, - [qar

e-T e-T

And the lim,__ g, =lim, g, =0 , yields

limlg, ~g|=0. limlg, -4 |=K 'K, limg, (24)
The above equations mply that
lim,,, g, =lim,_,, q,=0.

Therefore the origin of the system §,.3.7,.5, is
asymptotically stable and lim, ,, g, (l)= g,.lim, q,(t): q,.
This guarantees the stability of the teleoperation system.

A. Reflection Static Force
Consider the system described by (5) and the control law

(6) for the range of control (12), we have the following:
0= F.‘. +K,q, +R,q.

Wherek,=-K, R,=K,K,=-K, R,=K
F,=k(g,-7,)

0=-F,+K,.7, +R.g,+G,F, (25)
0=-F,+K(g, -7, )+ G,F,

= F

F = - 26
" =T+ G)) el

B. Local-Remote Manipulator Position Coordination

If F,_=F =0,(25)and (26) can be written as g, -7, =0.

This implies that the equilibrium points of the local and
remote manipulator are identical. Then, the position
coordination error g(t)=g,(¢)-¢.(t)

Tends to zero like lim,  g(t)=1lim,  (g,(t)-¢ () =0
Then, there is positions coordination between the local
and remote manipulator.

I1I. SIMULATION

Control law (4) and (6) along with the dynamics of the
teleoperation  system (1) have been simulated using
Matlab™ and Simulink”™. For a local manipulator will use a
PHANTOM Omni" haptic device from Sensable
Technologies. For a remote manipulator we employed a
planar serial arm with three degrees of freedom, actuated by
DC motors [20]:

M, (g, ), +Cla,.q,)a +g,0q,)+ filg,)=1, +F,
‘wl (ql )"ir +Cl(ql ".’l hl +gl(ql )+ .fl(q.I )= r.— F:

flg)e R It is a static model of joints friction, defined by
[14]:
005 0 0 a
@)= flg.)=rlg)=| 0 005 0 |4,

All the simulations have been realized using a
communication channel time delay of the 7'= 05 s.

The inertia matrix M,, the corolis and centrifugal forces
matrix C,, the force of gravity matrix g, of remote
manipulator are defined by:

My M. M, ¢, G G b1l
M =M, M, M, C=|C, C, C.|, g =g
M, M. M, C, Co G By

Where:

M, = 0.045879 +0.031 T6casly, )
M, =M, =0.012801+0.01588cos{q, )
M, =M, =00014037

M, =0.012801

M, =M, =00014037
M, = 00014037
C,=C,=0

C,. = -0.01588sin(g. . +24,)

C,, =001588sin{g. }j,

C,.=C,=0, C,=C.=C,,=0

2, =-0.T¥sinlg, Jeosly, )-0.73%0s{q, lsin{g, )- 1.6409sinly,)
2. =-0.T3%0sg, )sin‘q_. )- 0.7395in4q.)oos‘q_. )

£ =0

Considering the gains K y K, in(13) as:

40 0 0 o0 0
K=(0 30 0f, K=[{0 59 0
0 0 10 0 0 15

The controller parameters Ky, Kp, K., K, Ry, Rp, R,
and R, they are determined by (12), in addition G= 1.

In order to assess the stability of the contact, n
simulations, we considered a soft environment modeled by
means of a spring -damper system, with the spring and
damper gains as:



25 0 0 1 00
K.=|0 25 0{N/m, B.=[0 1 0 s/m
0 0 25 001

Fig. 2 show the force (torque) applied by the human
operator to the local manipulator.
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Fig. 2. Force (torque) applied by the human operator.
A. Case A: Without Environment Interaction

Fig. 3 and Fig. 4 show the joints positions of the local and
remote manipulator. From simulations can be show that is
guaranteed stability for the considered time-delay.

S WAger s aramiemey drce

o Y
j————t—
" b Y ; i i b | .

f i
oo b fofh ; ‘ i b | —
T : ; : : J

‘ H H

< H
Ll 4 ] ' ' ] ' E

£ : t
- 00 4 i § 5 i .

£ f ; i
2 smfpfs 2 H 2 | N——
otk S SETeaet S

P 17 A S S SES—— S— T "]
— — dashed e remone
am - - -
5 » 5 2 F 0 » 0
Tavw (3)

Fig. 3. Joint | angles position of local and remote manipulator (rad) Vs.
Time(s).
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Fig. 4. Joint 2 angles position of local and remote manipulator (rad) Vs.
Time(s).

B. Case B: Environment Interaction

Fig. 5, Fig. 6 and Fig. 7 show the joints positions of the
local and remote manipulator.

When the remote manipulator does not contact with the
environment (0 - 4s and 10-40 s) position coordination of
the local and remote manipulator position is achieved.
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Fig. 5. Joint | angles position of local and remote manipulator (rad) Vs.
Time(s).
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Fig. 6. Joint 2 angles position of local and remote manipulator (rad) Vs.
Time(s).
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Fig. 7. Joint 3 angles position of local and remote manipulator (rad) Vs.
Time(s).

IV. CONCLUSION

We have shown in this paper that it is possible to control
a nonlinear bilateral teleoperator system with the proposed
state convergence framework. The method is based on a
nonlinear state space formulation and it allows the remote



manipulator to follow the local manipulator through state
convergence, even when the passivity of the human operator
1s not guaranteed.

The analysis has shown that, assuming a constant delay,
when the local and remote manipulators are coupled using
the proposed framework, the result is a stable, nonlinear
teleoperation system (both local and remote) were position
coordination is achieved.

We also performed simulatons which validate the
theoretical results of this paper. Experimental results are
currently under way and will be reported in the near future.
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