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Abstract

The research in this master’s thesis presents a new state-space representation of the

nonlinear dynamics of two-link (thumb) and three-link (index) fingers of a robotic

hand and an effective online solution of finite-time, nonlinear, closed-loop optimal

control regulator and tracking problems using the state-dependent Riccati equations

(SDRE). The technique involves the use of the solution of the algebraic Riccati

equation for the infinite-time case (hence the technique is approximate) and the

change of variables that converts a state-dependent, nonlinear, differential Riccati

equation (SD-DRE) to a linear differential Lyapunov equation (DLE) which can

be solved in closed form. The approximate technique is demonstrated by software

simulation and hardware experimentation for the two-link and three-link fingers of

the robotic hand.
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Chapter 1

Introduction

1.1 Background

Scientists and researchers have shown significant interest in the past few decades

in the robotic hand due to the variety of its applications for prosthetic hand and

robotic surgery in the medical and biomedical fields [10, 29], operations in chemical

and nuclear hazardous environments [14, 5], space station building [3], and the

industrial field [26].

Numerous researche studies have been conducted on the robotic hand in order

to achieve an optimal model that can imitate and simulate the motions of a healthy

hand. Starting from measuring and predicating contraction and relaxation level of

flex-or and extensors muscles using neural networks, along with developing a new

controller to control impedance parameters such as the moment of inertia, joint

stiffness and viscosity of a skeletal muscle model for a robotic/prosthetic hand. Also,

control techniques have been developed for the robotic/prosthetic hand to provide

the desired torque and eliminate the closed-loop error to achieve the desired angle
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using linear hard or soft control strategies such as PID controller, optimal control,

fuzzy logic, adaptive control, sliding mode control, artificial neural networks and

genetic algorithms. A position tracking and velocity control law for a six-DOF

cable-driven parallel manipulator were derived in addition to an analytical solution

for the optimal controller using a computationally efficient model-based predictive

control scheme. A sliding mode controller was interceded for a two-link finger along

with multiple crossover GA estimation of the unknown parameters of the dynamic.

An online finite-horizon optimal tracking technique was developed using the state

dependent Riccati equation for two-link finger [24, 2, 19].

1.2 Problem Statement

In this research, we address the problem of finite-horizon nonlinear optimal tracking

control system for a robotic hand. We aim to maintain the nonlinear variables of

the hand dynamic without using any linearization techniques in order to achieve an

optimal control response. State space models of the nonlinear dynamics of two-link

and three-link fingers are derived considering the forward kinematics and Lagrangian

equation of the hand motion in order to apply a nonlinear closed-loop optimal

control technique. An online finite-time nonlinear optimal tracking controller is

implemented based on the state dependent Reccati equation (SDRE) that converts

a nonlinear differential Riccati equation to a linear differential Lyapunov equation

and solves it forward in time. Simulation results of tracking nonlinear trajectories of

thumb and index fingertips with a minimum range of tracking error are illustrated

and discussed. Experiment implementations and demonstrations using the SDRE

technique is carried out for two-link and three-link fingers.
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1.3 Chapters Review

This dissertation is composed of five chapters covering the following topics:

1. Chapter 1 provides an introduction, research goals and contributions of the

work.

2. Chapter 2 presents an overview of finite-time linear optimal regulation and

tracking problems and introduces the finite-horizon deferential state depen-

dent Riccati equation (SDRE) technique.

3. Chapter 3 expounds the dynamic of the robotic hand via forward kinematics

and Lagrangian approach and presents the derivation of state space model of

two-link and three-link fingers.

4. Chapter 4 illustrates the results of simulations and embedded real-time ex-

periments of two-link (thumb) and three-link (index) fingers using the state

dependent Riccati equation (SDRE) technique.

5. Chapter 5 presents the discussion and conclusion of simulation and embedded

real-time experiment results of two-link (thumb) and three-link (index )fingers

and future work.
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Chapter 2

Advanced Nonlinear Control

System Techniques

Due to advanced modeling techniques and modern mathematical software, engineers

have become more capable of achieving precise mathematical models that describe

the dynamic behavior of various systems such as biomedical systems, aerospace and

automotive systems, robotics and many others. The vast majority of these systems

are nonlinear [4], and they contain differential terms, yet engineers tend to linearize

these systems in order to eliminate the nonlinear terms and apply linear control

theories [9]. Therefore, an urgent need for nonlinear control systems has increased

over the last decades, which has led to develop nonlinear control system techniques

that maintain the nonlinearity features of nonlinear dynamics. The state Dependent

Riccati equation (SDRE) has evolved a solution that is used significantly for the

purpose of designing nonlinear control systems [6].
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2.1 Finite-Time Linear Quadratic Regulator Sys-

tem: Overview

Consider the time-varying linear system [21]

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) (2.1.1)

The terminal cost function is

J =
1

2
x′(tf )F(tf )x(tf )

+
1

2

∫ tf

t0

[x′(t)Q(t)x(t) + u′(t)R(t)u(t)] dt (2.1.2)

where A(t) is nxn state matrix, B(t) is nxr control matrix, C(t) is mxn output

matrix, the control signal u(t) is unconstrained, tf is specified, x(tf ) is unknown,

the terminal cost weighted matrix F(tf ) and the state weighted matrix Q(t) are nxn

symmetric, positive semidefinite matrices, and the control weighted matrix R(t) is

rxr symmetric, positive definite.

The optimal control law is

u∗(t) = −R−1(t)B′(t)P(t)x∗(t) = −K(t)x∗(t) (2.1.3)

where Kalman gain K(t) = R−1(t)B′(t)P(t) and Riccati coefficient matrix P(t),

the nxn symmetric, positive definite matrix (for all t ∈ [t0, tf ]), are the solution of

the matrix differential Riccati equation (DRE)

Ṗ(t) = −P(t)A(t)−A′(t)P(t)−Q(t) + P(t)B(t)R−1(t)B′(t)P(t)

(2.1.4)

with the final condition

P(t = tf ) = F(tf ) (2.1.5)
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The optimal state can be obtained as

ẋ∗(t) =
[
A(t)−B(t)R−1(t)B′(t)P(t)

]
x∗(t) (2.1.6)

The optimal performance index is

J∗ =
1

2
x∗′(t)P(t)x∗(t) (2.1.7)

The optimal control u∗(t), given by (2.1.3), is linear in the optimal state x∗(t).

Using the Kalman gain, DRE equation (2.1.4) becomes

−Ṗ(t) = P(t) [A(t)−B(t)K(t)] + [A(t)−B(t)K(t)]′P(t) + K′(t)R(t)K(t) + Q(t)

(2.1.8)

The finite-time linear optimal control regulator procedure is summarized in Ta-

ble 2.1.

2.1.1 Salient Features

1. Riccati Coefficient: The Riccati matrix P(t) is a time-dependent matrix that

only counts on the system matrices A(t) and B(t), the performance index

matrices Q(t), R(t) and F(tf ), and the final time tf , but does not count on

the initial state x(t0).

2. Optimal Control: The optimal control u∗(t) (2.1.3) is minimum or maximum

if the control weighted matrix R(t) is positive definite or negative definite,

respectively.

3. Definiteness of the Riccati Matrix P(t): Since the terminal cost weighted

matrix F(tf ) is positive semidefinite, and P(tf ) = F(tf ), then we can state

that P(tf ) is positive semidefinite.

4. Computation of Matrix DRE: DRE matrix (2.1.4) is supposed to be solved

backward by integrating the DRE matrix starting from its final condition but

6



Table 2.1: Procedure Summary of Finite-Time Linear Quadratic Regulator System:
Time-Varying Case

The Problem Statement

Given the linear system
ẋ(t) = A(t)x(t) + B(t)u(t),
the terminal cost function

J = 1
2x
′(tf )F(tf )x(tf ) + 1

2

∫ tf
t0

[x′(t)Q(t)x(t) + u′(t)R(t)u(t)] dt,

with the boundary conditions
x(t0) = x0, tf is specified, and x(tf ) is unknown,
find the optimal control input, state and performance index.

The Problem Solution

Step 1 Solve the matrix differential Riccati equation

Ṗ(t) = −P(t)A(t)−A′(t)P(t)−Q(t) + P(t)B(t)R−1(t)B′(t)P(t)
backward in time starting with the final condition P(t = tf ) = F(tf ).

Step 2 Solve the optimal state x∗(t) from
ẋ∗(t) =

[
A(t)−B(t)R−1(t)B′(t)P(t)

]
x∗(t)

forward in time starting with the initial condition x(t0) = x0.

Step 3 Obtain the optimal control u∗(t) as
u∗(t) = −K(t)x∗(t), where K(t) = R−1(t)B′(t)P(t).

Step 4 Obtain the optimal performance index as
J∗ = 1

2x
∗′(t)P(t)x∗(t).

in some cases an analytical solution can be obtained for the nonlinear matrix

the DRE.

5. Independence of the Riccati Coefficient Matrix P(t): Since the Riccati matrix

P(t) is independent of the optimal state x∗(t), then once the plant matrices

A(t) and B(t), and the weighted matrices F(tf ), Q(t), and R(t) are deter-

mined, we are independently capable of calculating Riccati matrix P(t). In

general, we calculate the matrix P(t) off-line from its final condition in the

backward direction during the interval t ∈ [tf , t0] and conserve these off-line

values before the optimal system starts operating in the forward direction. We

then provide these stored values to the control system when it is operating

on-line forward in time during the interval t ∈ [t0, tf ].

7



6. Controllability: Since the system is finite-time, the contribution of the un-

controllable and unstable states to the performance index function is a finite

quantity only. Therefore, controllability condition is not required in this case.

2.2 Finite-Time Linear Quadratic Tracking Sys-

tem: Overview

Consider the linear observable system in Figure 2.1 [21]

Figure 2.1: Linear Quadratic Closed-Loop Optimal Tracking System (LQT) [21]

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) (2.2.1)

8



The performance index

J =
1

2
e′(tf )F(tf )e(tf ) +

1

2

∫ tf

t0

[e′(t)Q(t)e(t) + u′(t)R(t)u(t)] dt

(2.2.2)

where z(t) is the desired output, and the error is e(t) = z(t)− y(t).

The optimal control u∗(t) is

u∗(t) = −R−1(t)B′(t) [P(t)x∗(t)− g(t)]

= −K(t)x∗(t) + R−1(t)B′(t)g(t) (2.2.3)

where Riccati coefficient matrix P(t), the nxn symmetric positive definite, is the

solution of the nonlinear matrix differential Riccati equation (DRE)

Ṗ(t) = −P(t)A(t)−A′(t)P(t) + P(t)E(t)P(t)−V(t) (2.2.4)

the final condition

P(tf ) = C′(tf )F(tf )C(tf ) (2.2.5)

where g(t) ,nth order, is the solution of the linear nonhomogeneous vector differen-

tial equation

ġ(t) = − [A(t)− E(t)P(t)]′ g(t)−W(t)z(t)] (2.2.6)

with the final condition

g(tf ) = C′(tf )F(tf )z(tf ) (2.2.7)

where the matrices E(t), V(t) and W(t) are

E(t) = B(t)R−1(t)B′(t)

V(t) = C′(t)Q(t)C(t)

W(t) = C′(t)Q(t) (2.2.8)
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The optimal state can be obtained from

ẋ∗(t) = [A(t)− E(t)P(t)] x∗(t) + E(t)g(t)] (2.2.9)

And the optimal performance index J∗ is

J∗(t0) =
1

2
x∗
′
(t0)P(t0)x

∗(t0)− x∗
′
(t0)g(t0) + h(t0) (2.2.10)

The linear closed-loop optimal tracking control is summarized in Table 2.2 [21]

2.2.1 Salient Features of Tracking System

1. Riccati Coefficient Matrix P(t): The desired output z(t) has no impact upon

the matrix differential Riccati equation (2.2.4) and its boundary condition

(2.2.5). Therefore, once the system matrices A(t), B(t) and C(t), the perfor-

mance index matrices F(tf ), Q(t) and R(t), and the final time tf are deter-

mined, the matrix P(t) can be obtained.

2. Closed Loop Eigenvalues: The closed-loop system matrix [A(t)−B(t)R−1(t)B′(t)P(t)]

from (2.2.9) is absolutely independent of the desired output z(t). Therefore,

we can state that the eigenvalues of the closed-loop optimal tracking system

are independent of the desired output z(t) too.

3. Tracking and Regulator Systems: the vector g(t) is the main difference between

the closed-loop optimal tracking and regulator systems. The desired output

z(t) can be considered as the inducing function that generates the signal g(t)

of the closed-loop optimal tracking system.

4. If C(t) = I(t), then V(t) = Q(t) in (2.2.8), then the matrix DRE (2.2.4)

becomes as (2.1.4).

2.3 State Dependent Riccati Equation (SDRE)

The state dependent Riccati equation (SDRE) is a significant technique for finite-

horizon nonlinear closed-loop optimal control systems that has emerged from the

10



Table 2.2: Summary of Linear Quadratic Tracking System

}

The Problem Statement

Given the linear system
ẋ(t) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t), e(t) = z(t)− y(t),
the terminal cost function

J = 1
2
e′(tf )F(tf )e(tf ) + 1

2

∫ tf
t0

[e′(t)Q(t)e(t) + u′(t)R(t)u(t)] dt,

with the boundary conditions
x(t0) = x0, tf is specified and x(tf ) is unknown,
find the optimal control input, state and performance index.

The Problem Solution

Step 1 Solve the matrix differential Riccati equation (DRE)

Ṗ(t) = −P(t)A(t)−A′(t)P(t) + P(t)E(t)P(t)−V(t),
with the final condition P(tf ) = C′(tf )F(tf )C(tf ),
and the non-homogeneous vector differential equation (DVE)
ġ(t) = − [A(t)− E(t)P(t)]′ g(t)−W(t)z(t),
with final condition g(tf ) = C′(tf )F(tf )z(tf ) where
E(t) = B(t)R−1(t)B′(t), V(t) = C′(t)Q(t)C(t),
W(t) = C′(t)Q(t).

Step 2 Solve the optimal state x∗(t) from
ẋ∗(t) = [A(t)− E(t)P(t)] x∗(t) + E(t)g(t)
with initial condition x(t0) = x0.

Step 3 Obtain optimal control u∗(t) from
u∗(t) = −K(t)x∗(t) + R−1(t)B′(t)g(t),
where K(t) = R−1(t)B′(t)P(t).

Step 4 The optimal cost J∗(t0) is
J∗(t0) = 1

2
x∗′(t0)P(t0)x

∗(t0)− x∗(t0)g(t0) + h(t0)
where h(t) is the solution of

ḣ(t) = −1
2
g′(t)E(t)g(t)− 1

2
z′(t)Q(t)z(t)

with final condition h(tf ) = −z′(tf )P(tf )z(tf ).

11



magnificent potential of the algebraic Riccati equation (ARE) [7, 11]. This technique

is an approximate solution that depends on solving the algebraic Riccati equation

(ARE) for the steady state value and applying a change of variables procedure [25],

that converts a differential Riccati equation (DRE) to a linear differential Lyapunov

equation (DLE) [23]. Then the procedure evaluates the coefficients of the resulting

equations based on the current state values at each time interval and then freezes

these coefficients from current time to the next time step. The Lyapunov equation

is solved in a closed form at each interval during online implementation. The use

of Lyapunov-type equations in solving optimal problems is given in [30].

2.4 Finite-Horizon Regulator for Deterministic Non-

linear Systems

In this section, we introduce the solution of the finite-horizon nonlinear differential

(SDRE) technique using linear differential Layapunov equation for finite-horizon

nonlinear optimal regulator problem [25].

2.4.1 Problem Formulation

Consider the nonlinear system:

ẋ(t) = f(x) + g(x)u(t) (2.4.1)

y(t) = h(x) (2.4.2)

which can also be given in a state-dependent space form as

ẋ(t) = A(x)x(t) + B(x)u(t) (2.4.3)

y(t) = C(x)x(t) (2.4.4)

where f(x) = A(x)x(t), B(x) = g(x), and h(x) = C(x)x(t).

12



The cost function given by [21]

J(x,u) =
1

2
x′(tf )Fx(tf ) +

1

2

∫ tf

t0

[x′(t)Q(x)x(t) + u′(x)R(x)u(x)] dt (2.4.5)

where the matrices Q(x) and F are symmetric positive semi-definite matrices, and

R(x) is a symmetric positive definite matrix.

2.4.2 Solution for Finite-Horizon Regulator Problem Using

Differential (SDRE)

In optimal control problems we aim to eliminate the closed-loop error by minimizing

the cost function. This goal can be achieved by obtaining a state closed-loop optimal

control law as the following

u(x) = −Kx(t) = −R−1(x)B′(x)P(x)x(t) (2.4.6)

where P(x, t) is a symmetric, positive-definite solution of the Dependent Differential

Riccati Equation (SDDRE).

−Ṗ(x) = P(x)A(x) + A′(x)P(x)−P(x)B(x)R−1(x)B′(x)P(x) + Q(x) (2.4.7)

the final condition

P(x, tf ) = F (2.4.8)

then the closed-loop optimal state can be obtained as

ẋ(t) = [A(x)−B(x)R−1(x)B′(x)P(x)]x(t) (2.4.9)

The state-dependent coefficients can not be obtained by integrating the differen-

tial Riccati equation (DRE) (2.4.7) backward in time from its final condition (2.4.8)

due to the fact that the differential Riccati equation (DRE) is a function of (x, t).

Therefore, and in order to overcome this problem in nonlinear closed-loop optimal

13



control systems, an approximate analytical solution was developed [13, 23, 25] based

on the algebraic Riccati equation (ARE). We start with computing the steady state

value and then convert a nonlinear differential Riccati equation to a linear differ-

ential Lyapunov equation, which can be solved in closed form at every time interval.

The following procedure [18] presents the steps of the solution for the finite-

horizon differential (SDRE) regulator problem:

1. Calculate the steady state value Pss(x) from algebraic Riccati equation (ARE)

Pss(x)A(x) + A′(x)Pss(x)−Pss(x)B(x)R−1(x)B′(x)Pss(x) + Q(x) = 0

(2.4.10)

2. Apply a changing-of-variables procedure and assume

K(x, t) = [P(x, t)−Pss(x)]−1 (2.4.11)

3. Calculate the closed-loop matrix Acl(x) as

Acl(x) = A(x)−B(x)R−1B′(x)Pss(x) (2.4.12)

4. Calculate D by solving the algebraic Lyapunov equation [12]

AclD + DA′cl −BR
−1

B′ =0 (2.4.13)

5. Solve the differential Lyapunov equation

K̇(x, t) = K(x, t)A′cl(x) + Acl(x)K(x,t)−B(x)R−1B′(x) (2.4.14)

The solution of (2.4.14), as shown by [1], is given by

K(x, t) = eAcl(t−tf )(K(x,tf )−D)eAcl
′(t−tf ) + D (2.4.15)
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6. Apply a change-of-variables procedure and obtain P(x, t) as

P(x, t) = K−1(x, t) + Pss(t) (2.4.16)

7. Finally, obtain the optimal control u(x, t) as

u(x, t) = −R−1B′(x)P(x, t)x(t) (2.4.17)

The previous steps lead us to the conclusion that this technique has a significant

advantage, whereas it can be implemented online for real-time applications and

solved forward in time instead of backward. Also, we should note that, differential

Lyapunov equation (DLE) is obtained by solving the algebraic Riccati equation for

the steady state value Pss(x) and the algebraic Lyapunov equation (ALE).

The SDRE technique can be applied to finite-horizon linear systems but then

K(x, t) = [P(x, t)−Pss(x)]−1 becomes singular. In order to overcome this issue,

we solve (ARE) for the negative definite value instead of the positive definite. In

this case, we can assure that [P(x, t) − Pss(x)] is positive definite and the inverse

is existed. In order to obtain the the positive definite solution of the ARE, we need

to multiply the matrix A(x) with (-1) and calculate the negative definite value of

Pss(x) [25].

Note : This procedure for finite-time linear systems can be applied to finite-time

nonlinear systems also.

2.5 Finite-Horizon Tracking for Deterministic Non-

linear Systems

2.5.1 Problem Formulation

Consider the given nonlinear state-dependent system (2.4.4) and (2.4.3) and z(t) is

the desired output or trajectory.
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The goal is to eliminate the closed-loop error by minimizing the given cost func-

tion

J(x,u) =
1

2
e′(tf )Fe(tf ) +

1

2

∫ tf

t0

[e′(t)Q(x)e(t) + u′(x)R(x)u(x)] dt (2.5.1)

where the closed-loop error e(t) = z(t)− y(t).

2.5.2 Solution for Finite-Horizon Tracking problem using

Differential (SDRE) and (VDE)

The optimal closed-loop control input is given as

u(x) = −R−1B′(x)[P(x)x− g(x)] (2.5.2)

where P(x), symmetric and positive-definite, is the solution of the differential

(SDRE) that is given by

−Ṗ(x) = P(x)A(x) + A′(x)P(x)−P(x)B(x)R−1B′(x)P(x) + C′(x)Q(x)C(x)(2.5.3)

the final condition

P(x, tf ) = C′(tf )FC(tf ) (2.5.4)

and g(x) is a solution of the state-dependent non-homogeneous vector differential

equation (VDE) which has the form

ġ(x) = −[A(x)−B(x)R−1(x)B′(x)P(x)]′g(x)−C′(x)Q(x)z(x) (2.5.5)

with the final condition

g(x, tf ) = C′(tf )Fz(tf ) (2.5.6)

The optimal state law of the nonlinear closed-loop optimal tracking state-dependent

16



system can be obtained as

ẋ(t) = [A(x)−B(x)R−1(x)B′(x)P(x)]x(t) + B(x)R−1(x)B′(x)g(x) (2.5.7)

Similarly, an approximate analytical solution was developed based on the al-

gebraic Riccati equation (ARE) to solve the differential Riccati equation (SDRE).

The following procedure [18] presents the steps of the solution for the finite-horizon

differential (SDRE) tracking problem:

1. Follow the steps (1-6) to Solve for P(x, t) similar to the differential (SDRE)

regulator problem

2. Calculate the steady state value gss(x) from the equation

gss(x) = [A(x)−B(x)R−1(x)B′(x)Pss(x)]′−1C′(x)Q(x)z(x) (2.5.8)

3. Apply a change-of-variables procedure and assume

Kg(x, t) = [g(x, t)− gss(x)] (2.5.9)

4. Solve the differential equation

Kg(x, t) = e−(A−BR−1B′P)′(t−tf )[g(x, tf )− gss(x)] (2.5.10)

5. Apply a changing-of-variables procedure and obtain g(x, t)

g(x, t) = Kg(x, t) + gss(x) (2.5.11)

6. Finally, obtain the optimal control input u(x, t) as

u(x, t) = −R−1(x)B′(x)[P(x, t)x(t)− g(x, t)] (2.5.12)
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Chapter 3

Modeling and Dynamics of The

Robotic Hand

3.1 Introduction

The most important requirement of designing a control system is to obtain the

mathematical model that describes the dynamic of that system. Moreover, for the

purpose of designing an optimal control system, the dynamic has to be rewritten

in state space model. In this chapter, nonlinear state space equations of two-link

and three-link fingers are derived based on the dynamic of hand motion via the

Lagrangian approach considering the forward kinematics equations of a serial n-

link manipulator using kinetic energy and potential energy [15, 17, 28, 27, 8, 22].

3.2 Nonlinear State Space Model

3.2.1 Two-Link Finger (Thumb)

From forward kinematics [15, 17, 28], the thumb fingertip coordinates (X t,Y t) (t)

are obtained as

X t = Lt
1cos(q

t
1) + Lt

2cos(q
t
1 + qt2) (3.2.1)

Y t = Lt
1sin(qt1) + Lt

2sin(qt1 + qt2) (3.2.2)

18



The corresponding linear velocities (Ẋ t,Ẏ t) of the thumb fingertip are given by[
Ẋ t

Ẏ t

]
=

[
−Lt

1sin(qt1)− Lt
2sin(qt1 + qt2) −Lt

2sin(qt1 + qt2)

Lt
1cos(q

t
1) + Lt

2cos(q
t
1 + qt2) Lt

2cos(q
t
1 + qt2)

][
q̇t1

q̇t2

]

or the matrix form

Ṗt = Jtq̇t (3.2.3)

where the matrices Ṗt, q̇t, and Jt are

Ṗt =

[
Ẋ t

Ẏ t

]
; q̇t =

[
q̇t1

q̇t2

]
; (3.2.4)

Jt =

[
−Lt

1sin(qt1)− Lt
2sin(qt1 + qt2) −Lt

2sin(qt1 + qt2)

Lt
1cos(q

t
1) + Lt

2cos(q
t
1 + qt2) Lt

2cos(q
t
1 + qt2)

]
(3.2.5)

where Jt is Jacobian matrix of the thumb. The angular velocities q̇t1 and q̇t2 can be

obtained from (3.2.51) as

q̇t = Jt−1Ṗt (3.2.6)

The angular accelerations q̈t1 and q̈t2 are obtained as

q̈t = Jt−1
(

P̈t − dJt

dt
q̇t

)
(3.2.7)

where the linear acceleration vector P̈t of the thumb fingertip, q̈t and dJt/dt are

denoted as

P̈t =

[
Ẍ t

Ÿ t

]
, q̈t =

[
q̈t1

q̈t2

]
, (3.2.8)

dJt

dt
=

[
−Lt

1cos(q
t
1)q̇

t
1 − Lt

2cos(q
t
1 + qt2) (q̇t1 + q̇t2) −Lt

2cos(q
t
1 + qt2) (q̇t1 + q̇t2)

−Lt
1sin(qt1)q̇

t
1 − Lt

2sin(qt1 + qt2) (q̇t1 + q̇t2) −Lt
2sin(qt1 + qt2) (q̇t1 + q̇t2)

]
(3.2.9)
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By neglecting viscous friction of the motor and loaded joints, the hand motion

equation via Lagrangian becomes

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (3.2.10)

whereas L Lagrangian is:

L = T − V (3.2.11)

where T and V represent kinetic and potential energies, respectively. q is the

angular position vector, q̇ the angular velocity vector, and τ is the provided torque

vector.

The Lagrangian Lt of two-link finger can be given as [8, 22]

Lt = T t − V t (3.2.12)

where T t and V t are:

T t =
n∑

k=1

T t
k =

n∑
k=1

(T t,lin
k + T t,rot

k )

=
n∑

k=1

(
1

2
mt

kv
t
ck

T
vt
ck +

1

2
ωt

ck
T
Itkω

t
ck)

=
n∑

k=1

(
1

2
mt

k

d

dt
pt
ck

T d

dt
pt
ck +

1

2
ωt

ck
T
Itkω

t
ck) (3.2.13)

V t =
n∑

k=1

V t
k (3.2.14)

where T t,lin
k and T t,rot

k are the linear and rotational parts of kinetic energy, respec-

tively; mt
k is the mass of the link k; vtck is the velocity vector of the center of the

mass of the number link k; ptck is the position vector of the center of the mass of

the link number k; ωt
ck is the angular velocity vector of the center of the mass of

the link number k; I tk is the moment of inertia vector of the joint numberk; V t
k is

potential energy vector of the joint number k, and n is the number of joints or links.

The parameters pt
ck, vt

ck, ωt
ck, Itk, and V t

k are given as
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Figure 3.1: Illustration of Two-Link Manipulator (Thumb Finger) [8]

pt
c1 =

 lt1cos(q
t
1)

lt1sin(qt1)

0

 ,pt
c2 =

 Lt
1cos(q

t
1) + lt2cos(q

t
1 + qt2)

Lt
1sin(qt1) + lt2sin(qt1 + qt2)

0

 (3.2.15)

vt
c1 =

d

dt
pt
c1 =

d

dt

 lt1cos(q
t
1)

lt1sin(qt1)

0

 ,

vt
c2 =

d

dt
pt
c2 =

d

dt

 Lt
1cos(q

t
1) + lt2cos(q

t
1 + qt2)

Lt
1sin(qt1) + lt2sin(qt1 + qt2)

0

 (3.2.16)

ωt
c1 =

d

dt

 0

0

qt1

 =

 0

0

q̇t1

 ,ωt
c2 =

d

dt

 0

0

qt1 + qt2

 =

 0

0

q̇t1 + q̇t2


(3.2.17)
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It1 =

 I txx1 −I txy1 −I txz1
−I tyx1 I tyy1 −I tyz1
−I tzx1 −I tzy1 I tzz1

 , It2 =

 I txx2 −I txy2 −I txz2
−I tyx2 I tyy2 −I tyz2
−I tzx2 −I tzy2 I tzz2


(3.2.18)

V t
1 = mt

1gl
t
1sin(qt1), V

t
2 = mt

2gL
t
1sin(qt1) +mt

2gl
t
2sin(qt1 + qt2) (3.2.19)

where Lt
k is the length of the link k, ltk is the distance between the end of previous

link and the center of mass of the link k, qtk is the angle of the joint number k,

I tmnk(m,n = x, y, z; k = 1, 2) is the inertia of the link k in x, y, and z coordinates;

and g is the gravity acceleration.

The dynamic equations of the thumb can be obtained as

M(q)q̈ + C(q, q̇) + G(q) = τ (3.2.20)

or [
M t

11 M t
12

M t
21 M t

22

][
q̈t1

q̈t2

]
+

[
Ct

1

Ct
2

]
+

[
Gt

1

Gt
2

]
=

[
τ t1

τ t2

]
(3.2.21)

where,

M t
11 = 2mt

2L
t
1l

t
2cos(q

t
2) +mt

1l
t
1
2

+mt
2L

t
1
2

+mt
2l

t
2
2

+ I tzz1 + I tzz2 (3.2.22)

M t
12 = mt

2L
t
1l

t
2cos(q

t
2) +mt

2l
t
2
2

+ I tzz2 (3.2.23)

M t
21 = M t

12 (3.2.24)

M t
22 = mt

2l
t
2
2

+ I tzz2 (3.2.25)

Ct
1 = −2mt

2L
t
1l

t
2sin(qt2)q̇

t
1q̇

t
2 −mt

2L
t
1l

t
2sin(qt2)q̇

t
2q̇

t
2 (3.2.26)

Ct
2 = mt

2L
t
1l

t
2sin(qt2)q̇

t
1q̇

t
1 −mt

2L
t
1l

t
2sin(qt2)q̇

t
1q̇

t
2 (3.2.27)

Gt
1 = g(mt

1l
t
1cos(q

t
1) +mt

2L
t
1cos(q

t
1) +mt

2l
t
2cos(q

t
1 + qt2)) (3.2.28)

Gt
2 = gmt

2l
t
2cos(q

t
1 + qt2) (3.2.29)
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τ is the given torque matrix at the joints, M(q) is the inertia matrix; C(q, q̇) is the

Coriolis/centripetal vector and G(q) is the gravity vector.

The equation (3.2.21) can be also rewritten as:[
M11q̈1 +M12q̈2

M21q̈1 +M22q̈2

]
+

[
C1 +G1

C2 +G2

]
=

[
τ1

τ2

]
(3.2.30)

Expanding the matrices in (3.2.30) we obtain

M11q̈1 +M12q̈2 + C1 +G1 = τ1 (3.2.31)

M21q̈1 +M22q̈2 + C2 +G2 = τ2 (3.2.32)

Now, we can derive the dynamic model of two-link finger (thumb) in state space

model. From (3.2.31) we can write q̈1 in terms of q̈2:

q̈1 = −M12

M11

q̈2 −
1

M11

C1 −
1

M11

G1 +
1

M11

τ1 (3.2.33)

Substituting q̈1 in (3.2.32) we obtain

M21(−
M12

M11

q̈2 −
1

M11

C1 −
1

M11

G1 +
1

M11

τ1) +M22q̈2 + C2 +G2 = τ2 (3.2.34)

−M
2
12

M11

q̈2 −
M12

M11

C1 −
M12

M11

G1 +
M12

M11

τ1 +M22q̈2 + C2 +G2 = τ2 (3.2.35)

(M22 −
M2

12

M11

)q̈2 −
M12

M11

C1 −
M12

M11

G1 + C2 +G2 = −M12

M11

τ1 + τ2 (3.2.36)

q̈2 =
M12

M11M22 −M2
12

C1 +
M12

M11M22 −M2
12

G1

− M11

M11M22 −M2
12

C2 −
M11

M11M22 −M2
12

G2

− M12

M11M22 −M2
12

τ1 +
M11

M11M22 −M2
12

τ2 (3.2.37)
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q̈2 =
M12

M11M22 −M2
12

q̇2C
′
1 +

M12

M11M22 −M2
12

G1

− M11

M11M22 −M2
12

q̇1C
′
2 −

M11

M11M22 −M2
12

G2

− M12

M11M22 −M2
12

τ1 +
M11

M11M22 −M2
12

τ2 (3.2.38)

C ′1 = −2mt
2L

t
1l

t
2sin(qt2)q̇

t
1 −mt

2L
t
1l

t
2sin(qt2)q̇

t
2 (3.2.39)

C ′2 = mt
2L

t
1l

t
2sin(qt2)q̇

t
1 −mt

2L
t
1l

t
2sin(qt2)q̇

t
2 (3.2.40)

We can obtain q̈1 by substituting q̈2 from (3.2.37) to (3.2.33):

q̈1 = −M12

M11

(
M12

M11M22 −M2
12

C1 +
M12

M11M22 −M2
12

G1

− M11

M11M22 −M2
12

C2 −
M11

M11M22 −M2
12

G2

− M12

M11M22 −M2
12

τ1 +
M12

M11M22 −M2
12

τ2 )

− 1

M11

C1 −
1

M11

G1 +
1

M11

τ1 (3.2.41)

q̈1 = − M2
12

M11(M11M22 −M2
12)
C1 −

M2
12

M11(M11M22 −M2
12)
G1

+
M12

M11M22 −M2
12

C2 +
M12

M11M22 −M2
12

G2

+
M2

12

M11(M11M22 −M2
12)
τ1 +

M12

M11M22 −M2
12

τ2

− 1

M11

C1 −
1

M11

G1 +
1

M11

τ1 (3.2.42)
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q̈1 = − 1

M11

(
M2

12 +M11M22 −M2
12

M11M22 −M2
12

)C1

− 1

M11

(
M2

12 +M11M22 −M2
12

M11M22 −M2
12

)G1

+
M12

M11M22 −M2
12

C2 +
M12

M11M22 −M2
12

G2

− 1

M11

(
M2

12 +M11M22 −M2
12

M11M22 −M2
12

)τ1

− M12

M11M22 −M2
12

τ2 (3.2.43)

q̈1 = − M22

M11M22 −M2
12

C1 −
M22

M11M22 −M2
12

G1

− M12

M11M22 −M2
12

C2 −
M12

M11M22 −M2
12

G2

+
M22

M11M22 −M2
12

τ1 −
M12

M12M22 −M2
12

τ2 (3.2.44)

q̈1 = − M22

M11M22 −M2
12

q̇2C
′
1 −

M22

M11M22 −M2
12

G1

M12

M11M22 −M2
12

q̇1C
′
2 +

M12

M11M22 −M2
12

G2

+
M22

M11M22 −M2
12

τ1 −
M12

M12M22 −M2
12

τ2 (3.2.45)

The accelerations of two-link finger are given in terms the velocities as:

q̈1 = M3C
′
2q̇1 −M2C

′
1q̇2 −M2G1 +M3G2 +M2τ1 −M3τ2 (3.2.46)

q̈2 = M3C
′
1q̇2 −M1C

′
2q̇1 +M3G1 −M1G2 −M3τ1 +M1τ2 (3.2.47)

where,

M1 =
M11

M11M22 −M2
12

,M2 =
M22

M11M22 −M2
12

,M3 =
M12

M11M22 −M2
12
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Now, taking a closer look at the inertia matrix in (3.2.21), we can clearly rec-

ognize that the dominator (M11M22 −M2
12) is the determiner of the inertia matrix.

Therefore, the length and mass values of the two-link finger (thumb) should be se-

lected carefully in order to satisfy the condition (M11M22 −M2
12 6= 0) so, we can

guarantee that the inertia matrix is positive definite and its inverse is exists.

The state space model of the two-link finger (thumb) of the robotic/prosthetic

hand is given by:
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

0 M3C
′
2 0 −M2C

′
1

0 0 0 1

0 −M1C
′
2 0 M3C

′
1



x1

x2

x3

x4

+


0 0

M2 −M3

0 0

−M3 M1


[
u1

u2

]
(3.2.48)

where,

u1 = τ1 −G1, u2 = τ2 −G2

x1, x3 are the angular positions q1, q2, and ẋ1 = x2, ẋ3 = x4 are the angular velocities

q̇1, q̇2, and ẍ2, ẍ4 are the angular accelerations q̈1, q̈2, respectively.

3.2.2 Three-Link Finger (Index)

Similarly, from forward kinematics [16, 20, 31], the index fingertip coordinates

(X t,Y t) are obtained as

X i = d+ Li
1cos(q

i
1) + Li

2cos(q
i
1 + qi2) + Li

3cos(q
i
1 + qi2 + qi3) (3.2.49)

Y i = Li
1sin(qi1) + Li

2sin(qi1 + qi2) + Li
3sin(qi1 + qi2 + qi3) (3.2.50)

The corresponding linear velocities (Ẋ t,Ẏ t) of the index fingertip are given by

Ṗt = Jtq̇t. (3.2.51)

where Ṗt the linear velocity vector, and q̇t the angular velocity vector, and Jt is
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Jacobian matrix. The angular velocities q̇t1, q̇
t
2 and q̇t3 are obtained as

q̇t = Jt−1Ṗt. (3.2.52)

The angular accelerations q̇t1, q̇
t
2 and q̇t3 are obtained as

q̈t = Jt−1
(

P̈t − dJt

dt
q̇t

)
, (3.2.53)

The dynamic equations of three-link finger (index) [8] can be obtained (by soft-

ware Maple c©) in the same form (3.2.20) as

Figure 3.2: Illustration of Three-Link Manipulator (Index Finger) [8]

 M i
11 M i

12 M i
13

M i
21 M i

22 M i
23

M i
31 M i

32 M i
33


 q̈i1

q̈i2

q̈i3

+

 Ci
1

Ci
2

Ci
3

+

 Gi
1

Gi
2

Gi
3

 =

 τ i1

τ i2

τ i3

 . (3.2.54)
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where,

M i
11 = 2mi

2L
i
1l

i
2sin(qi1)sin(qi1 + qi2) + 2mi

2L
i
1l

i
2cos(q

i
1)cos(q

i
1 + qi2)

+2mi
3L

i
1L

i
2sin(qi1)sin(qi1 + qi2)

+2mi
3L

i
1L

i
2cos(q

i
1)cos(q

i
1 + qi2)

+2mi
3L

i
1l

i
3sin(qi1)sin(qi1 + qi2 + qi3)

+2mi
3L

i
1l

i
3cos(q

i
1)cos(q

i
1 + qi2 + qi3)

+2mi
3L

i
2l

i
3sin(qi1 + qi2)sin(qi1 + qi2 + qi3)

+2mi
3L

i
2l

i
3cos(q

i
1 + qi2)cos(q

i
1 + qi2 + qi3)

+mi
1l

i
1

2
+mi

2L
i
1

2
+mi

2l
i
2

2
+mi

3L
i
1

2
+mi

3L
i
2

2
+mi

3l
i
3

2

+I izz1 + I izz2 + I izz3, (3.2.55)

M i
12 = mi

2L
i
1l

i
2sin(qi1)sin(qi1 + qi2)

+mi
2L

i
1l

i
2cos(q

i
1)cos(q

i
1 + qi2)

+2mi
3L

i
2l

i
3sin(qi1 + qi2)sin(qi1 + qi2 + qi3)

+2mi
3L

i
2l

i
3cos(q

i
1 + qi2)cos(q

i
1 + qi2 + qi3)

+mi
3L

i
1L

i
2sin(qi1)sin(qi1 + qi2)

+mi
3L

i
1L

i
2cos(q

i
1)cos(q

i
1 + qi2)

+mi
3L

i
1l

i
3sin(qi1)sin(qi1 + qi2 + qi3)

+mi
3L

i
1l

i
3cos(q

i
1)cos(q

i
1 + qi2 + qi3)

+mi
2l

i
2

2
+mi

3L
i
2

2
+mi

3l
i
3

2
+ I izz2 + I izz3, (3.2.56)

M i
13 = mi

3L
i
1l

i
3sin(qi1)sin(qi1 + qi2 + qi3)

+mi
3L

i
1l

i
3cos(q

i
1)cos(q

i
1 + qi2 + qi3)

+mi
3L

i
2l

i
3sin(qi1 + qi2)sin(qi1 + qi2 + qi3)

+mi
3L

i
2l

i
3cos(q

i
1 + qi2)cos(q

i
1 + qi2 + qi3)

+mi
3l

i
3

2
+ I izz3, (3.2.57)

28



M i
21 = M i

12, (3.2.58)

M i
22 = 2mi

3L
i
2l

i
3sin(qi1 + qi2)sin(qi1 + qi2 + qi3)

+2mi
3L

i
2l

i
3cos(q

i
1 + qi2)cos(q

i
1 + qi2 + qi3)

+mi
2l

i
2

2
+mi

3L
i
2

2
+mi

3l
i
3

2
+ I izz2 + I izz3, (3.2.59)

M i
23 = mi

3L
i
2l

i
3sin(qi1 + qi2)sin(qi1 + qi2 + qi3)

+mi
3L

i
2l

i
3cos(q

i
1 + qi2)cos(q

i
1 + qi2 + qi3)

+mi
3l

i
3

2
+ I izz3, (3.2.60)

M i
31 = M i

13, (3.2.61)

M i
32 = M i

23, (3.2.62)

M i
33 = mi

3l
i
3

2
+ I izz3, (3.2.63)

Gi
1 = g(mi

1l
i
1cos(q

i
1) +mi

2L
i
1cos(q

i
1) +mi

3L
i
1cos(q

i
1)

+mi
1l

i
2cos(q

i
1 + qi2) +mi

3L
i
2cos(q

i
1 + qi2)

+mi
3l

i
3cos(q

i
1 + qi2 + qi3)), (3.2.64)

Gi
2 = g(mi

2l
i
2cos(q

i
1 + qi2) +mi

3L
i
2cos(q

i
1 + qi2)

+mi
3l

i
3cos(q

i
1 + qi2 + qi3)), (3.2.65)

Gi
3 = g(mi

3l
i
3cos(q

i
1 + qi2 + qi3)). (3.2.66)
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Ci
1 = (2mi

2L
i
1l

i
2sin(qi1)cos(q

i
1 + qi2)− 2mi

2L
i
1l

i
2cos(q

i
1)sin(qi1 + qi2)

+2mi
3L

i
1L

i
2sin(qi1)cos(q

i
1 + qi2)− 2mi

3L
i
1L

i
2cos(q

i
1)sin(qi1 + qi2)

+2mi
3L

i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi2
∂t

)
+(2mi

3L
i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3)

+2mi
3L

i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi3
∂t

)
+(2mi

3L
i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3)

+2mi
3L

i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi2
∂t

)(
∂qi3
∂t

)
+(mi

2L
i
1l

i
2sin(qi1)cos(q

i
1 + qi2)−mi

2L
i
1l

i
2cos(q

i
1)sin(qi1 + qi2)

+mi
3L

i
1L

i
2sin(qi1)cos(q

i
1 + qi2)−mi

3L
i
1L

i
2cos(q

i
1)sin(qi1 + qi2)

+mi
3L

i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)−mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3))(

∂qi2
∂t

)(
∂qi2
∂t

)
+(mi

3L
i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)−mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3)

+mi
3L

i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)−mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi3
∂t

)(
∂qi3
∂t

)
(3.2.67)
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Ci
2 = (mi

2L
i
1l

i
2sin(qi1)cos(q

i
1 + qi2)−mi

2L
i
1l

i
2cos(q

i
1)sin(qi1 + qi2)

+mi
3L

i
1L

i
2sin(qi1)cos(q

i
1 + qi2)−mi

3L
i
1L

i
2cos(q

i
1)sin(qi1 + qi2)

+mi
3L

i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)−mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi2
∂t

)
+(2mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi3
∂t

)
+(2mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)− 2mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi2
∂t

)(
∂qi3
∂t

)
+(−mi

2L
i
1l

i
2sin(qi1)cos(q

i
1 + qi2) +mi

2L
i
1l

i
2cos(q

i
1)sin(qi1 + qi2)

−mi
3L

i
1L

i
2sin(qi1)cos(q

i
1 + qi2) +mi

3L
i
1L

i
2cos(q

i
1)sin(qi1 + qi2)

−mi
3L

i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3) +mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi1
∂t

)
+(mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)−mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi3
∂t

)(
∂qi3
∂t

)
(3.2.68)
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Ci
3 = (2mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3)− 2mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi2
∂t

)
+(mi

3L
i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)−mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3)

+(mi
3L

i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)−mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi3
∂t

)
+(mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3)−mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3))(

∂qi2
∂t

)(
∂qi3
∂t

)
+(mi

3L
i
1l

i
3cos(q

i
1)sin(qi1 + qi2 + qi3)−mi

3L
i
1l

i
3sin(qi1)cos(q

i
1 + qi2 + qi3)

+mi
3L

i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3)−mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3))(

∂qi1
∂t

)(
∂qi1
∂t

)
+(mi

3L
i
2l

i
3cos(q

i
1 + qi2)sin(qi1 + qi2 + qi3)−mi

3L
i
2l

i
3sin(qi1 + qi2)cos(q

i
1 + qi2 + qi3))(

∂qi2
∂t

)(
∂qi2
∂t

)
(3.2.69)

The dynamic of three-link finger (index) of the robotic/prosthetic hand is given

by: M11 M12 M13

M21 M22 M23

M31 M32 M33


q̈1q̈2
q̈3

+

C1

C2

C3

+

G1

G2

G3

 =

τ1τ2
τ3

 (3.2.70)

Expanding the above matrices we obtain:

M11q̈1 +M12q̈2 +M13q̈3 + C1 +G1 = τ1 (3.2.71)

M21q̈1 +M22q̈2 +M23q̈3 + C2 +G2 = τ2 (3.2.72)

M31q̈1 +M32q̈2 +M33q̈3 + C3 +G3 = τ3 (3.2.73)

Now, we are ready to derive the state space model of three-link finger. From (3.2.71)
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we can write q̈1 in terms of q̈2 and q̈3:

q̈1 = −M12

M11

q̈2 −
M13

M11

q̈3 −
1

M11

C1 −
1

M11

G1 +
1

M11

τ1 (3.2.74)

Substituting q̈1 from(3.2.74) in (3.2.72), we obtain q̈2 in terms of q̈3

τ2 = M21(−
M12

M11

q̈2 −
M13

M11

q̈3 −
1

M11

C1 −
1

M11

G1 +
1

M11

τ1)

+M22q̈2 +M23q̈3 + C2 +G2 (3.2.75)

τ2 = (
M11M22 −M2

12

M11

)q̈2 + (
M11M23 −M21M13

M11

)q̈3

−M21

M11

C1 −
M21

M11

G1 +
M21

M11

τ1 + C2 +G2 (3.2.76)

q̈2 = −(
M11M23 −M21M13

M11M22 −M2
12

)q̈3

+
M21

M11M22 −M2
12

C1 +
M21

M11M22 −M2
12

G1

− M11

M11M22 −M2
12

C2 −
M11

M11M22 −M2
12

G2

− M21

M11M22 −M2
12

τ1 +
M11

M11M22 −M2
12

τ2 (3.2.77)

Substituting q̈2 from (3.2.77) in (3.2.74), we obtain q̈1 in terms of q̈3

q̈1 =
M12

M11

(
M11M23 −M21M13

M11M22 −M2
12

)q̈3

− M2
12

M11(M11M22 −M2
12)
C1 −

M2
12

M11(M11M22 −M2
12)
G1

+
M11M12

M11(M11M22 −M2
12)
C2 +

M11M12

M11(M11M22 −M2
12)
G2

+
M2

12

M11(M11M22 −M2
12)
τ1 −

M11M12

M11(M11M22 −M2
12)
τ2

−M13

M11

q̈3 −
1

M11

C1 −
1

M11

G1 +
1

M11

τ1 (3.2.78)
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q̈1 = (
M12M23 −M13M22

M11M22 −M2
12

)q̈3

− M22

M11M22 −M2
12

C1 −
M22

M11M22 −M2
12

G1

+
M12

M11M22 −M2
12

C2 +
M12

M11M22 −M2
12

G2

+
M22

M11M22 −M2
12

τ1 −
M12

M11M22 −M2
12

τ2 (3.2.79)

We obtain q̈3 by substituting q̈1 and q̈2 in (3.2.73)

τ3 = M31(
M12M23 −M13M22

M11M22 −M2
12

q̈3

− M22

M11M22 −M2
12

C1 −
M22

M11M22 −M2
12

G1

+
M12

M11M22 −M2
12

C2 +
M12

M11M22 −M2
12

G2

+
M22

M11M22 −M2
12

τ1 −
M12

M11M22 −M2
12

τ2)

+M32(
M21M13 −M11M23

M11M22 −M2
12

q̈3

+
M21

M11M22 −M2
12

C1 +
M21

M11M22 −M2
12

G1

− M11

M11M22 −M2
12

C2 −
M11

M11M22 −M2
12

G2

− M21

M11M22 −M2
12

τ1 +
M11

M11M22 −M2
12

τ2)

+M33q̈3 + C3 +G3 (3.2.80)

τ3 =
M31(M12M23 −M13M22) +M32(M21M13 −M11M23) +M33(M11M22 −M2

12)

M11M22 −M2
12

q̈3

+
M21M32 −M22M31

M11M22 −M2
12

C1 +
M21M32 −M22M31

M11M22 −M2
12

G1

+
M12M13 −M11M32

M11M22 −M2
12

C2 +
M12M13 −M11M32

M11M22 −M2
12

G2

+
M22M31 −M21M32

M11M22 −M2
12

τ1 +
M11M32 −M12M13

M11M22 −M2
12

τ2 + C3 +G3 (3.2.81)
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The acceleration q̈3 becomes:

q̈3 =
M22M31 −M21M32

Md3

C1 +
M22M31 −M21M32

Md3

G1

+
M11M32 −M12M13

Md3

C2 +
M11M32 −M12M13

Md3

G2

−M11M22 −M2
12

Md3

C3 −
M11M22 −M2

12

Md3

G3

−M22M31 −M21M32

Md3

τ1 −
M11M32 −M12M13

Md3

τ2

+
M11M22 −M2

12

Md3

τ3 (3.2.82)

where,

Md3 = M31(M12M23 −M13M22) +M32(M21M13 −M11M23) +M33(M11M22 −M2
12)

We obtain q̈1 and q̈2 by substituting q̈3 in (3.2.77) and (3.2.79), respectively

q̈1 =
M2

23 −M22M33

Md3

C1 +
M2

23 −M22M33

Md3

G1

+
M12M33 −M13M23

Md3

C2 +
M12M33 −M13M23

Md3

G2

+
M13M22 −M12M23

Md3

C3 +
M13M22 −M12M23

Md3

G3

−M
2
23 −M22M33

Md3

τ1 −
M12M33 −M13M23

Md3

τ2

−M13M22 −M12M23

Md3

τ3 (3.2.83)
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q̈2 =
M12M33 −M13M23

Md3

C1 +
M12M33 −M13M23

Md3

G1

+
M2

13 −M11M33

Md3

C2 +
M2

13 −M11M33

Md3

G2

+
M11M23 −M12M13

Md3

C3 +
M11M23 −M12M13

Md3

G3

−M12M33 −M13M23

Md3

τ1 −
M2

13 −M11M33

Md3

τ2

−M11M23 −M12M13

Md3

τ3 (3.2.84)

The third link has a [0◦, 270◦] range of motion, while the first link has only a

[0◦, 90◦] range of motion. That leads us to the conclusion that the angular velocity

is q̇1 < q̇3 and q̇1
2 << q̇3

2. Therefore, the angular velocity q̇1
2 can be omitted in

(3.2.69) and (3.2.69), since we are only interested in tracking the fingertip.

Also, based on the acquired data in [16, 20, 31] and considering the relation

q̇3 = 0.7q̇2 hence, the accelerations q̈1, q̈2 and q̈3 can be given in terms of the

velocities q̇3 as the following

q̈1 = q̇3M1C
′
1 +M1G1 + q̇3M2C

′
2 +M2G2 + q̇3M3C

′
3 +M3G3−M1τ1 −M2τ2 −M3τ3

(3.2.85)

q̈2 = q̇3M2C
′
1 +M2G1 + q̇3M4C

′
2 +M4G2 + q̇3M5C

′
3 +M5G3−M2τ1 −M4τ2 −M5τ3

(3.2.86)

q̈3 = q̇3M3C
′
1 +M3G1 + q̇3M5C

′
2 +M5G2 − q̇3M6C

′
3 −M6G3−M3τ1 −M5τ2 +M6τ3

(3.2.87)

where,

M1 =
M2

23 −M22M33

Md3

,M2 =
M12M33 −M13M23

Md3

,M3 =
M13M22 −M12M23

Md3
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M4 =
M2

13 −M11M33

Md3

,M5 =
M11M23 −M12M13

Md3

,M6 =
M11M22 −M2

12

Md3

The state space equation of three-link finger (index) is presented by

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ


=



0 1 0 0 0 0

0 0 0 0 0 M1C
′
1 +M2C

′
2 +M3C

′
3

0 0 0 1 0 0

0 0 0 0 0 M2C
′
1 +M4C

′
2 +M5C

′
3

0 0 0 0 0 1

0 0 0 0 0 M3C
′
1 +M5C

′
2 −M6C

′
3





x1

x2

x3

x4

x5

x6


+



0 0 0

−M1 −M2 −M3

0 0 0

−M2 −M4 −M5

0 0 0

−M3 −M5 M6



u1u2
u3



(3.2.88)

where:

u1 = τ1 −G1, u2 = τ2 −G2, u2 = τ3 −G3

x1, x3, x5 are the angular positions q1, q2, q3, and ẋ1 = x2, ẋ3 = x4, ẋ5 = x6 are

the angular velocities q̇1, q̇2, q̇3, and ẍ2, ẍ4, ẍ6 are the angular accelerations q̈1, q̈2, q̈3,

respectively.

Also, the state space model can be given in terms of the velocities q̇3 and q̇2 as

q̈1 = q̇3M1C
′
1 +M1G1 + q̇3M2C

′
2 +M2G2 + q̇2M3C

′
3 +M3G3−M1τ1 −M2τ2 −M3τ3

(3.2.89)

q̈2 = q̇3M2C
′
1 +M2G1 + q̇3M4C

′
2 +M4G2 + q̇2M5C

′
3 +M5G3−M2τ1 −M4τ2 −M5τ3

(3.2.90)

q̈3 = q̇3M3C
′
1 +M3G1 + q̇3M5C

′
2 +M5G2 − q̇2M6C

′
3 −M6G3−M3τ1 −M5τ2 +M6τ3

(3.2.91)
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

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ


=



0 1 0 0 0 0

0 0 0 M3C
′
3 0 M1C

′
1 +M2C

′
2

0 0 0 1 0 0

0 0 0 M5C
′
3 0 M2C

′
1 +M4C

′
2 +M5C

′
3

0 0 0 0 0 1

0 0 0 −M6C
′
3 0 M3C

′
1 +M5C

′
2





x1

x2

x3

x4

x5

x6


+



0 0 0

−M1 −M2 −M3

0 0 0

−M2 −M4 −M5

0 0 0

−M3 −M5 M6



u1u2
u3



(3.2.92)

Note: The dominator Md3 is the determiner of the inertia matrix (3.2.70). To

guarantee that the inertia matrix is positive definite and its inverse is exists, the

length and mass values of the three-link finger (index) should be selected carefully

to satisfy the condition (Md3 6= 0).
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Chapter 4

Simulation and Embedded

Real-Time Experiment Results

In this chapter, we illustrate the simulation results of the tracking problem for

two-link (thumb) and three-link (index) fingers. The selected trajectories for the

tracking problem are two different nonlinear functions. Moreover, embedded real-

time experiments are developed and implemented using the SDRE technique to

track the desired trajectories for the two-link (thumb) and three-link (index) fingers

of the robotic hand.

4.1 Simulation Results

4.1.1 Two-link Finger (Thumb) Simulation Results

Consider the state space model of the two-link finger (thumb) (3.2.48) that was

derived in Chapter 3. The matrices A, B and C of the dynamic are given:

A =


0 1 0 0

0 M3C
′
2 0 −M2C

′
1

0 0 0 1

0 −M1C
′
2 0 M3C

′
1

 , B =


0 0

M2 −M3

0 0

−M3 M1

 , C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The selected parameters of the thumb for the simulation are given in Table 4.1
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Table 4.1: Thumb Parameters
Parameters Values

Length (Lt
1, L

t
2) 4, 4 (cm)

Mass (mt
1, m

t
2) 43, 31 (g)

Inertia (I tzz1, I
t
zz2) 60.02, 43.27 (g.cm2)

The error weighted matrix Q(t), the control weighted matrix R(t), and the cost

functional matrix F (t) are selected as the following:

Q =


1015 0 0 0

0 1010 0 0

0 0 1015 0

0 0 0 1010

 , R =

[
104 0

0 104

]
, F =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The desired trajectories parameters are given in Table 4.2

Table 4.2: Desired Trajectories Parameters
Parameters Values

Time (t0, tf ) 0, 10 (sec)
Desired Initial Position of Both Links (qt01 , qt02 ) 0, 0 (rad)

Desired final Position of Second Link(q
tf
2 ) 1 (rad)

The simulation is performed for 10 sec to track the trajectories −0.048t2 +

0.0058t3 and sin(t). The corresponding angels of the thumb fingertip are shown in

Figures 4.1 and 4.2.

Figures 4.1 and 4.2, illustrate the optimal tracking responses of the thumb using

the SDRE technique to track cubic polynomial and sinusoidal trajectories. Fig-

ures 4.3 and 4.4 show the optimal tracking errors and final stage tracking errors of

the thumb fingertip.
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Figure 4.1: Desired and Actual Trajectories of the Thumb fingertip Tracking a
Cubic Polynomial Function

4.1.2 Three-link Finger (Index) Simulation Results

Similarly, from (3.2.88) and (3.2.92), the matrices A, B and C of the index finger

dynamic are given:

A =



0 1 0 0 0 0

0 0 0 0 0 M1C
′
1 +M2C

′
2 +M3C

′
3

0 0 0 1 0 0

0 0 0 0 0 M2C
′
1 +M4C

′
2 +M5C

′
3

0 0 0 0 0 1

0 0 0 0 0 M3C
′
1 +M5C

′
2 −M6C

′
3


=



0 1 0 0 0 0

0 0 0 M3C
′
3 0 M1C

′
1 +M2C

′
2

0 0 0 1 0 0

0 0 0 M5C
′
3 0 M2C

′
1 +M4C

′
2

0 0 0 0 0 1

0 0 0 −M6C
′
3 0 M3C

′
1 +M5C

′
2



B =



0 0 0

−M1 −M2 −M3

0 0 0

−M2 −M4 −M5

0 0 0

−M3 −M5 M6


, C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


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Figure 4.2: Desired and Actual Trajectories of the Thumb fingertip Tracking a
Sinusoidal Function

The selected parameters of the Index for the simulation are given in Table 4.3

Table 4.3: Index Parameters
Parameters Values

Length (Lt
1, L

t
2, L

t
3) 4, 4, 3 (cm)

Mass (mt
1, m

t
2, m

t
3) 45, 25, 17 (g)

Inertia (I tzz1, I
t
zz2, I

t
zz3) 93.75, 33.33, 11.25 (g.cm2)

The error weighted matrix Q(t), the control weighted matrix R(t), and the cost

functional matrix F (t) are selected as the following:

Q =



.7× 108 0 0 0 0 0

0 7.7× 102 0 0 0 0

0 0 .7× 108 0 0 0

0 0 0 7.7× 102 0 0

0 0 0 0 .7× 108 0

0 0 0 0 0 7.7× 102


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R =

.2× 10−2 0 0

0 .2× 10−2 0

0 0 .2× 10−2

 , C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


The desired trajectories parameters are given in Table 4.4

Table 4.4: Desired Trajectories Parameters
Parameters Values

Time (t0, tf ) 0, 10 (sec)
Desired Initial Position of Links (qt01 , qt02 , qt03 ) 0, 0, 0 (rad)

Desired Final Position of the Fingertip (q
tf
3 ) 1 (rad)

Figures 4.5 and 4.6, illustrate the optimal tracking responses of the index finger

using SDRE technique to track cubic polynomial and sinusoidal trajectories. The

tracking errors and final stage tracking errors are shown in Figures 4.7 and 4.8.

4.2 Embedded Real-Time Experiment Results

For the purpose of real-time implementation, a graphical programming code is de-

veloped via LabVIEW c©software to design a finite-time nonlinear closed-loop opti-

mal tracking controller using the SDRE technique for the thumb and index finger.

Moreover, the code is implemented using the MyRio module to track a sinusoidal

trajectory and generate the optimal input signals for the servo motors that is used.

We should note that each finger has only one Futaba micro servo motor (s3114).

4.2.1 Two-link Finger (Thumb) Experiment Results

In this section, we present the real-time experiment results of the SDRE technique

for the thumb. The design of the block diagram and front panel for the SDRE

43



controller for the thumb are shown in Figures 4.9 and 4.10

The block diagram (Figure 4.9) contains a MathScript Node that has the thumb

dynamic, desired trajectory (sinusoidal), and SDRE tracking controller. The PWM

signals are generated by PWM module based on the optimal state values of the

fingertip to drive the servo motor to the desired position. Also, the block diagram

includes a main loop (while-loop) and a sub loop (for-loop) with a wait function.

Moreover, the front panel (Figure 4.9) has two waveform charts to display the actual

and desired trajectories and the tracking error, in addition to a numeric control to

change the frequency of the servo motor.

4.2.2 Three-link Finger (Index) Experiment Results

Here, the block diagram and the front panel designs (Figures 4.11 and 4.12) of

the SDRE tracking controller for the index finger are developed and implemented.

Real-time experiment results are presented in Figure 4.12.

Figure 4.11 shows that the block diagram of the SDRE tracking controller of the

index finger has the similar structure to the thumb controller. The main difference

is the script that is used of the MathScript Node. Also, a display of the actual and

desired trajectories and the tracking error in real-time are provided using waveform

charts in the front panel (Figure 4.12).
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Figure 4.3: Tracking Error of the Thumb Fingertip tracking a Sinusoidal Function
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Figure 4.4: Tracking Error of the Thumb Fingertip tracking a Sinusoidal Function
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Figure 4.5: Desired and Actual Trajectories of the Index Finger Tracking a Sinu-
soidal Function
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Figure 4.6: Desired and Actual Trajectories of the Index Finger Tracking a Cubic
Polynomial Function
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Figure 4.7: Tracking Error of Index fingertip Tracking a Sinusoidal Function
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Figure 4.8: Tracking Error of Index fingertip Tracking a Cubic Polynomial Function
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Figure 4.9: Labview Block Diagram Design for the SDRE Controller of the Thumb

Figure 4.10: Labview Block Diagram Design for the SDRE Controller of the Index
Finger
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Figure 4.11: Labview Front Panel for the Controller of the Thumb
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Figure 4.12: Labview Front Panel for the Index Finger
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Chapter 5

Conclusion and Future Work

5.1 Discussion and Conclusion

In this research, a new mathematical representation of the dynamics of two-link

(thumb) and three-link (index) fingers were presented in state space model. An

online finite-time nonlinear optimal control tracking system using SDRE technique

was applied to track nonlinear trajectories such as cubic polynomial and sinusoidal

functions. Simulation results of two-link and three-link fingers were obtained and

presented via MATLAB c©. Embedded real-time experiments were developed for the

two-link (thumb) and three-link (index) fingers via LabVIEW c©and implemented

using the MyRIO c©module to track sinusoidal trajectories in real-time and generate

the optimal PWM signals to drive the Futaba micro servo motor (s3114).

Simulation results of the thumb (Figures 4.1 and 4.2) show optimal tracking

responses using the state dependent Riccati equation (SDRE) technique, tracking

cubic polynomial and sinusoidal trajectories with minimum tracking error. The

final stage tracking errors are 0.5o and −0.8o, Figures 4.3 and 4.4, respectively.

Also, Figures 4.3 and 4.4 show that the change of the tracking error is nonlinear

(unsteady) due to the difference of the dynamic nature between the robotic hand

and the tracking trajectories; therefore, the variation z(t) − y(t) is not constant.

Also, the approach that is used to solve the differential Riccati equation (DRE) is

an approximate solution that is based on calculating the steady state value Pss(x).
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Similarly, from Figures 4.5 and 4.6, it is obvious that the tracking responses of

the index finger using the SDRE technique to track cubic polynomial and sinusoidal

functions are optimal responses with minimum tracking errors and acceptable final

stage tracking errors −0.8o and 0.7o, Figures 4.7 and 4.8, respectively. Also, Fig-

ures 4.7 and 4.8 show that the tracking errors are nonlinear (unsteady) due to the

same two reasons that we discussed. First, the variation z(t) − y(t) is not con-

stant due to the nonlinearity of the dynamic and desired trajectories. The same

approximate approach is used to solve the differential Riccati equation (DRE) by

computing the steady state value Pss(x).

Embedded real-time experiments were developed via LabVIEW c©and imple-

mented on MyRIO c©to close the gap between simulation results and real-time ap-

plications.

The waveform charts in Figure 4.11 of the SDRE controller for the thumb are

congruent with the simulation results. In other words, we successfully achieved an

identical optimal tracking response and same tracking error in real-time.

Figure 4.12 show that the SDRE tracking controller for the index finger is still

capable of tracking the desired trajectory in real-time but can not maintain the

closed-loop error e(t) closer to zero. That can be explained by the complexity of

the index finger’s dynamic and the approximate solution that is used in this tech-

nique.

In conclusion, the SDRE technique is ultimately effective in real-time experi-

ments and maintains the same responses that is obtained in the simulations for less

complex nonlinear state-dependent systems such as the two-link finger (thumb).

On the other hand, the SDRE technique does not eliminate the closed-loop error

and keep it closer to zero when it is applied to complex nonlinear state-dependent

systems such as three-link finger (index) due to the approximate approach that is

used to solve the differential Riccati equation (DRE).
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5.2 Future Work

Since we successfully obtained the dynamics of the two-link and three-link fingers

in a state space model, this research can be continued to accomplish the following

goals:

1. Apply a nonlinear optimal tracking control techniques, without using lin-

earization techniques, such as the SDRE technique for all other fingers.

2. Electromyography signals (EMGs) can be used to generate the desired trajec-

tories to track the hand motion of a healthy hand instead of using nonlinear

functions such as cubic polynomial and sinusoidal trajectories.

3. Develop a new tracking approach to solve the differential Riccati equation

(DRE) forward in time using the methodology that was developed [21] for

linear quadratic optimal control systems to solve the algebraic Riccati equation

which MATLAB c©does not have.

4. Implementing a nonlinear optimal tracking controller using the FPGA proces-

sor in the MyRIO c©module so that the module does not need to be connected

to LabVIEW c©during real-time operations.

5. Finally, design a robotic/prosthetic hand using a 3D printer.
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