
This is a repository copy of A revisit to gradient-descent bearing-only formation control.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136689/

Version: Accepted Version

Proceedings Paper:
Zhao, S. orcid.org/0000-0003-3098-8059, Li, Z. and Ding, Z. (2018) A revisit to 
gradient-descent bearing-only formation control. In: 2018 IEEE 14th International 
Conference on Control and Automation (ICCA). 2018 IEEE 14th International Conference 
on Control and Automation (ICCA) , 12-15 Jun 2018, Anchorage, AK, USA . IEEE , pp. 
710-715. ISBN 9781538660898 

https://doi.org/10.1109/ICCA.2018.8444304

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A Revisit to Gradient-Descent Bearing-Only Formation Control

Shiyu Zhao, Zhenhong Li, and Zhengtao Ding

Abstract— This paper addresses the problem of bearing-only
formation control of multi-agent systems, where each agent
can merely obtain the relative bearing measurements of their
neighbor neighbors whereas relative distance or position mea-
surements are unavailable. In particular, we revisit a bearing-
only formation control law proposed in [1]. Unlike many other
existing ones, this control law is gradient-descent, which is
favorable from the stability analysis point of view. It has the
potential to be extended to handle more complex agent models
and moving target formations. Up to now, this control law has
not attracted sufficient attention probably because its stability
analysis is based on optimization techniques and challenging
to generalize. The contribution of this paper is to present
a new stability analysis of this formation control law based
on Lyapunov approaches. The new stability analysis reveals
some new properties of the control law such as exponential
convergence rate and lays a foundation for deriving new
bearing-only control laws in the future.

I. INTRODUCTION

This paper studies multi-agent formation control that aims

to steer a group of agents to form a desired geometric pattern

in a distributed manner. We particularly focus on the case

where each agent is only able to measure the relative bearings

to their nearest neighboring agents while relative distance or

position information is unavailable. Compared to the existing

formation control approaches that rely on relative position

measurements, the bearing-only formation control approach

is appealing since it poses minimal requirements on the sens-

ing ability of each agent. In practice, bearing measurements

can be obtained by, for example, visual sensing [2] or sensor

arrays [3], [4].

Despite the recent advances on bearing-only formation

control, many problems in this area are still unsolved. In

particular, the existing bearing-only control laws are merely

applicable to single-integrator agent models and stationary

target formations [1], [5]–[11]. From the practical point

of view, it is necessary to study more realistic models

and how to track moving target formations. However, it is

nontrivial to generalize the existing bearing-only control laws

to handle these problems. One reason is that most of the

existing bearing-only control laws are not gradient descent.

For example, a bearing-only formation control law proposed

in [10] is proved to be almost globally stable. This control

law is not gradient-descent and the stability is proved by

showing that the error between the current formation and

the desired target formation converges to zero. A relevant
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control law proposed in [12] is gradient-descent. This control

law can stabilize a target formation that is constrained by

desired bearings. However, this control law is not bearing-

only because it requires both relative bearing and distance

measurements.

In this paper, we revisit a bearing-only formation control

law proposed in [1]. Unlike many other existing bearing-

only formation control laws, this one is a gradient-descent

control law, which is favorable from the stability analysis

point of view. It has the potential to generalize to handle

more realistic agent models and moving target formations.

However, this control law has not attracted sufficient atten-

tion up to now probably because its stability analysis is based

on optimization techniques and challenging to generalize.

The contribution of our work is to present a new stability

analysis of this formation control law using standard Lya-

punov approaches. Such a new stability analysis is nontrivial

since it relies on many new techniques developed based on

our recent work of bearing localizability [13]. Our analysis

also reveals some new properties of the control law such as

exponential convergence rate and nonincreasing formation

scale. New control laws could be proposed by generalizing

this gradient-descent control law and will be studied in our

future work.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations of formations

Consider a group of n mobile agents in R
d (n ≥ 2 and

d ≥ 2). Let pi ∈ R
d be the position of agent i ∈ {1, . . . , n},

and p = [pT1 , . . . , p
T
n ]

T ∈ R
dn be the configuration of the

agents. The interaction among the agents is described by

a fixed graph G = (V, E) which consists of a vertex set

V = {1, . . . , n} and an edge set E ⊆ V × V . The edge

(i, j) ∈ E indicates that agent i can measure the relative

bearing of agent j, and hence agent j is a neighbor of i.
The set of neighbors of agent i is denoted as Ni = {j ∈
V : (i, j) ∈ E}. This paper only consider undirected graphs

where (i, j) ∈ E ⇔ (j, i) ∈ E . A formation, denoted as

(G, p), is G with its vertex i mapped to pi for all i ∈ V .

Define the edge vector and bearing vector for edge (i, j),
respectively, as

eij := pj − pi, gij :=
eij

‖eij‖
,

where ‖ · ‖ denotes the Euclidean norm of a vector or the

spectral norm of a matrix. The unit vector gij represents the

relative bearing of pj with respect to pi. Note eij = −eji
and gij = −gji. Assume that all agents are able to sense

a global reference frame. All the bearings in this paper are

expressed in this global reference frame. In practice, such



a global reference frame can be measured by using sensors

such as GPS and a compass.

For gij , define Pgij := Id − gijg
T
ij , where Id ∈ R

d×d

is the identity matrix. Note that Pgij is an orthogonal

projection matrix that geometrically projects any vector onto

the orthogonal compliment of gij . It can be verified that Pgij

is positive semi-definite and Null(Pgij ) = span{gij}. This

orthogonal projection matrix is widely used in bearing-based

control and estimation problems because it is able to describe

parallel bearing vectors in arbitrary dimensions [10], [13].

When there are leaders, without loss of generality, suppose

the first nℓ agents are leaders and the rest nf = n − nℓ

agents are followers. Let Vℓ = {1, . . . , nℓ} and Vf =
V \Vℓ be the sets of leaders and followers, respectively. The

positions of the leaders and followers are denoted as pℓ =
[pT1 , . . . , p

T
nℓ
]T and pf = [pTnℓ+1, . . . , p

T
n ]

T, respectively.

Then p = [pTℓ , p
T
f ]

T.

Oriented graphs are widely used in this paper. An orienta-

tion of an undirected graph is the assignment of a direction to

each edge. An oriented graph is an undirected graph together

with an orientation. Consider an arbitrary oriented graph of

G. Let m be the number of undirected edges in G. Hence, the

oriented graph has m directed edges. Suppose edge (i, j) in

G corresponds to the kth directed edge in the oriented graph

where k ∈ {1, . . . ,m}. The edge and bearing vectors for the

kth directed edge can be expressed as

ek := eij = pj − pi, gk :=
ek
‖ek‖

.

Denote e = [eT1 , . . . , e
T
m]T and g = [gT1 , . . . , g

T
m]T. The

incidence matrix H ∈ R
m×n of the oriented graph is the

{0,±1}-matrix with rows indexed by edges and columns by

vertices. Specifically, all the entries in the kth row of H are

zero except [H]ki and [H]kj . We have [H]ki = −1 since

vertex i is the tail of edge k, and [H]kj = 1 since vertex j
is the head of edge k. For a connected graph, it holds that

H1n = 0 and rank(H) = n− 1, where 1n = [1, . . . , 1]T ∈
R

n [14]. Note that e = (H ⊗ Id)p := H̄p, where ⊗ denotes

the Kronecker product.

B. Bearing-Only Formation Control Law

Suppose each agent can be modeled as a single integrator:

ṗi = ui, where ui is the control input to be designed. The

problem of bearing-only formation control is formally stated

as below.

Problem 1 (Bearing-Only Formation Tracking Control).

Design ui for agent i ∈ V based merely on the bearing

measurements {gij(t)}j∈Ni
such that gij → g∗ij for all

(i, j) ∈ E as t → ∞.

In this problem, the target formation is specified by

bearing constraints {g∗ij}(i,j)∈E . It has two key properties:

existence and uniqueness. We only consider feasible bearing

constraints so that the target formation defined above exists.

The uniqueness property is important because if the target

formation is not unique, the formation may converge to

undesired formation shapes even if the bearing constraints

are achieved. In this paper, we consider two cases: leaderless

and leader-follower. In the leaderless case, since there are no

leaders, the scale of the target formation is not specified. With

bearing constraints only, the geometric pattern of the target

formation can be uniquely determined if it is bearing rigid

[10]. In the leader-follower case, there are some stationary

leaders. The target formation can be uniquely determined

if it is bearing localizable [13]. Preliminaries to bearing

localizability will be introduced later.

The bearing-only control considered in this paper is

ṗi(t) =
∑

j∈Ni

(
gij(t)− g∗ij

)
, i ∈ V. (1)

This control law was originally proposed in [1, Equa-

tion (13)]. One key property of (1) is that it is a gradient-

descent control law. Specifically, consider the Lyapunov

function

V =
1

4

∑

(i,j)∈E

‖eij‖‖gij − g∗ij‖
2

=
1

2

∑

(i,j)∈E

‖eij‖(1− gTijg
∗
ij). (2)

It can be verified that (1) is a gradient-descent control for V
when there are no leaders. Another property of (1), which is

also a common property for many bearing-only control laws,

is that the control input is always bounded. That is because

‖ṗi‖ ≤
∑

j∈Ni
‖gij(t)− g∗ij‖ ≤ 2|Ni|.

Control law (1) can successfully solve Problem 1. Its

asymptotic stability has been analyzed in [1]. The novelty

of this paper is to present a new stability analysis based on

Lyapunov approaches. This stability analysis reveals some

new properties of control law (1) and lay a foundation to

analyze new bearing-only control laws in the future.

In order to analyze the formation stability, following [1],

we make the following assumption.

Assumption 1 (Collision Avoidance). Assume no neigh-

boring agents collide with each other during the formation

evolvement. Specifically, ‖eij‖ is bounded from below by a

positive constant for all t and all (i, j) ∈ E .

Assumption 1 ensures that the bearing vector between

any pair of neighboring agents is always well defined. This

assumption may be dropped by considering discontinuous

systems where the bearing can be properly defined even

when two agents collocate. This assumption may also be

fulfilled by designing collision avoidance control algorithms.

These problems are nontrivial to solve and will be addressed

in our future work.

III. LEADERLESS FORMATION CONTROL

This section presents a Lyapunov-based stability analysis

of control law (1) in the leaderless case (i.e., there are no

leaders).

Consider an arbitrary oriented graph of G. Then, control

law (1) can be written in a matrix-vector form as

ṗ = −H̄T(g − g∗), (3)



where H , g(t), and g∗ are the incidence matrix, current

bearing vectors, and target bearing vectors, respectively. The

Lyapunov function in (2) becomes

V =
1

2

m∑

k=1

‖ek‖‖gk − g∗k‖
2 =

m∑

k=1

‖ek‖(1− gTk g
∗
k) ≥ 0.

(4)

The matrix-vector form of V is

V =

m∑

k=1

(eTk gk − eTk g
∗
k)

= eT(g − g∗)

= pTH̄T(g − g∗) ≥ 0. (5)

It can be seen from (4) and (5) that V = 0 ⇔ g = g∗ since

‖ek‖ 6= 0 for all k as assumed. As a result, the steady state

of (3) is characterized as below.

Lemma 1 (Steady State Value). Under Assumption 1, ṗ =
−H̄T(g − g∗) = 0 if and only if g = g∗.

Proof. The sufficiency is obvious. To prove the necessity,

note that H̄T(g − g∗) = 0 ⇒ pTH̄T(g − g∗) = 0, which

implies g = g∗ by (5).

Define the centroid and scale of the formation, respective-

ly, as

p̄ =
1

n

n∑

i=1

pi =
1

n
(1n ⊗ Id)

Tp,

s =

n∑

i=1

‖pi − p̄‖2 = ‖p− 1n ⊗ p̄‖2.

The scale s characterizes how far the agents are from

the formation centroid. The centroid and scale satisfy the

following properties.

Lemma 2 (Centroid and Scale of Formation). Under the

action of control law (3), the centroid p̄ is invariant. The

scale s monotonically decreases if and only if g 6= g∗. As a

consequence, ‖p‖ and ‖e‖ are bounded from above for all

t.

Proof. First, since (1n ⊗ Id)
TH̄T = 0, we have (1n ⊗

Id)
Tṗ = 0 and hence ˙̄p = 0. Second, ṡ = 2(p−1n⊗ p̄)Tṗ =

−2(p − 1n ⊗ p̄)TH̄T(g − g∗) = −2pTH̄T(g − g∗) ≤ 0.

According to (5), ṡ = 0 if and only if g = g∗.

We next analyze the boundedness. Since ṡ ≤ 0, it follows

that s(0) ≥ s(t) and hence
√

s(0) ≥ ‖p− 1n ⊗ p̄‖ ≥ ‖p‖−
‖1n ⊗ p̄‖. As a result, ‖p‖ ≤

√

s(0) + ‖1n ⊗ p̄‖ for all t.
Since e = H̄p, we have ‖e‖ ≤ ‖H̄‖‖p‖ ≤ ‖H̄‖(

√

s(0) +
‖1n ⊗ p̄‖).

The property of the formation scale is important because it

shows the boundedness of ‖e‖, which will be critical for the

Lyapunov-based stability analysis shown later. The reason

that the formation scale is nonincreasing is that the Lyapunov

function contains the distance term ‖ek‖. While control law

(3) is the gradient-descent control aiming at minimizing

the Lyapunov function, it reduces either the bearing errors

to zero or the inter-neighbor distances to zero. Numerical

simulation shows that under certain initial conditions the

formation scale may decrease to zero, which means all the

agents converge to the same point. This extreme case is not

of particular interest and it is excluded by Assumption 1.

The global stability of (3) is proved below.

Theorem 1 (Single-Integrator Leaderless Control). Under

Assumption 1, g(t) converges to g∗ globally asymptotically

under the action of control law (3).

Proof. Define the bearing error as δg = g − g∗. Since ‖ek‖
is bounded from below as assumed in Assumption 1 and

bounded from above according to Lemma 2, suppose 0 <
α ≤ ‖ek‖ ≤ β for all k and all t. Then, V in (4) satisfies

α

2
‖δg‖

2 ≤ V ≤
β

2
‖δg‖

2.

Since ġk = Pgk ėk/‖ek‖ and Pgkek = 0, it follows that

eTġ = 0. As a result, the time derivative of V in (5) is

V̇ = eTġ + (g − g∗)Tė

= 0 + (g − g∗)TH̄ṗ

= −(g − g∗)TH̄H̄T(g − g∗)

= −δTg H̄H̄Tδg ≤ 0.

Since H̄Tδg = 0 ⇔ δg = 0 by Lemma 1, we have V̇ = 0 if

and only if δg = 0. As a result, V̇ is negative definite with

respect to δg . According to [15, Theorem 4.2], δg = 0 is

globally asymptotically stable.

As shown in Theorem 1, the convergence of the bearing

errors does not require any conditions of the bearings.

However, in order to get a unique formation shape, g∗ should

be designed such that the target formation is infinitesimally

bearing rigid [10]. In this case, when g converges to g∗,

the formation also converges to a desired geometric shape.

Moreover, in the leaderless case, the scale of the final

formation is determined by the initial configuration. In order

to have a desired final formation scale, leaders must be

introduced.

IV. LEADER-FOLLOWER FORMATION CONTROL

This section presents the stability analysis of control law

(1) in the leader-follower case. In particular, suppose the

leaders are stationary and satisfy pi(t) = p∗i for all t and

i ∈ Vℓ. The target formation in the leader-follower case can

be defined as below.

Definition 1 (Target Formation). In the target formation

(G, p∗), the inter-neighbor bearings {g∗ij}(i,j)∈E are constan-

t, and the positions of the leaders {p∗i }i∈Vℓ
are stationary.

In order to prove the formation stability, we only need to

show that the followers converge to their desired positions

in the target formation, i.e., pi(t) → p∗i for i ∈ Vf .

The target formation is jointly determined by the bearings

and the positions of the leaders. Its uniqueness is described

by bearing localizability as shown in the following subsec-

tion.



A. Preliminaries to Bearing Localizability

Bearing localizability characterizes whether the target for-

mation in Definition 1 is unique. The definition of bearing

localizability is given below.

Definition 2 (Bearing Localizability). The target formation

(G, p∗) is called bearing localizable if the value of p∗

can be uniquely determined by the inter-neighbor bearings

{g∗ij}(i,j)∈E and the positions of the leaders {p∗i }i∈Vℓ
.

By definition, the formation in Figure 1(a) is not bearing

localizable. That is because multiple formations that have

different geometric shapes may have the same bearings and

leader positions, and consequently the bearings and leader

positions are not able to determine a unique formation.

In order to characterize the necessary and sufficient con-

dition of bearing localizability, we introduce a matrix termed

bearing Laplacian [13]. Specifically, for the target formation,

define a matrix B ∈ R
dn×dn with the ijth block of submatrix

as

[B]ij =







0d×d, i 6= j, (i, j) /∈ E ,
−Pg∗

ij
, i 6= j, (i, j) ∈ E ,

∑

k∈Ni
Pg∗

ik
, i = j, i ∈ V.

The matrix B is a matrix-weighted graph Laplacian matrix.

It is called the bearing Laplacian since it characterizes

both the underlying graph and the bearings of the target

formation. The bearing Laplacian matrix plays important

roles in bearing-based control and estimation problems [13],

[16]. According to the partition of leader and follower agents,

partition B as

B =

[
Bℓℓ Bℓf

Bfℓ Bff

]

,

where Bff ∈ R
dnf×dnf . A necessary and sufficient condi-

tion for bearing localizability of the target formation is given

below.

Lemma 3 (Condition for Bearing Localizability [13]). The

target formation (G, p∗) is bearing localizable, i.e., p∗ can

be uniquely determined by {g∗ij}(i,j)∈E and {p∗i }i∈Vℓ
, if and

only if Bff is nonsingular.

In the leader-follower case, we only consider bearing

localizable target formations.

Assumption 2 (Bearing Localizability). Assume that the

target formation (G, p∗) is bearing localizable, i.e., Bff of

the target formation is positive definite.

An example of bearing localizable formations is given in

Figure 1. More examples and other conditions for bearing

localizability can be found in [13, Section 4]. In order to

ensure bearing localizability, there must exist sufficient and

appropriate leader agents. Details of the leader selection

problem can be found in [13] and are omitted here. It is

worth noting that at least two leaders are required to ensure

bearing localizability.

(a) (b)

Fig. 1: The target formation in (a) is not bearing localizable. The one in (b)
is bearing localizable. Solid dots represent leaders and hollow dots represent
followers.

B. Exponential Stability Analysis

Since the leaders are stationary, control law (1) can be

written as

ṗ = −

[
0 0
0 Idnf

]

H̄T(g − g∗). (6)

The initial value is p(0) = [(p∗ℓ )
T, pTf (0)]

T, where pf (0) can

be arbitrarily chosen. To analyze the formation stability, we

first introduce two useful results.

Lemma 4. For any p satisfying pi 6= pj for all (i, j) ∈ E ,

it holds that

(p∗)TH̄T(g − g∗) ≤ 0, (7)

(p− p∗)TH̄T(g − g∗) ≥ 0, (8)

where the equalities hold if and only if g = g∗.

Proof. Inequality (7) holds because (p∗)TH̄T(g − g∗) =
(e∗)T(g − g∗) =

∑m
k=1 ‖e

∗
k‖((g

∗
k)

Tgk − 1) ≤ 0. Since

‖e∗k‖ 6= 0, the equality holds when gk = g∗k for all k.

Inequality (8) can be obtained by combining (7) and (5).

Lemma 5. For any p satisfying pi 6= pj for all (i, j) ∈ E ,

it holds that

pTH̄T(g − g∗) ≥
1

2maxk ‖ek‖
pTBp, (9)

where B is the bearing Laplacian of the target formation

(G, p∗). When g − g∗ is sufficiently small so that gTk g
∗
k ≥ 0

for all k, it holds that

pTH̄T(g − g∗) ≤
1

mink ‖ek‖
pTBp. (10)

Proof. Note that B can be expressed as B = H̄Tdiag(Pg∗

k
)H̄

where diag(Pg∗

k
) = blkdiag(Pg∗

1
, . . . , Pg∗

m
) [13, Lemma 2].

It follows that

pTBp = pTH̄Tdiag(Pg∗

k
)H̄p = eTdiag(Pg∗

k
)e

=

m∑

k=1

eTk (Id − g∗k(g
∗
k)

T)ek =

m∑

k=1

‖ek‖
2(1− (gTk g

∗
k)

2)

=

m∑

k=1

‖ek‖
2(1− gTk g

∗
k)(1 + gTk g

∗
k). (11)

Since 1 + gTk g
∗
k ≤ 2, it is implied by (11) that

pTBp ≤ 2max
k

‖ek‖
m∑

k=1

‖ek‖(1− gTk g
∗
k)

= 2max
k

‖ek‖p
TH̄T(g − g∗).



Inequality (9) follows immediately.

Suppose that g− g∗ is sufficiently small so that gTk g
∗
k ≥ 0

for all k (i.e., the angle between gk and g∗k is less than π/2).

Since 1 + gTk g
∗
k ≥ 1, it is implied by (11) that

pTBp ≥ min
k

‖ek‖
m∑

k=1

‖ek‖(1− gTk g
∗
k)

= min
k

‖ek‖p
TH̄T(g − g∗).

Inequality (10) follows immediately.

Lemma 5 establishes the equivalence between pTH̄T(g−
g∗) and pTBp. Since the bearing Laplacian is the key to

characterize bearing localizability, Lemma 5 bridges the

quantity pTH̄T(g−g∗) with bearing localizability. This result

especially (9) is widely used in this paper.

The global exponential stability of (6) is analyzed as

below.

Theorem 2 (Single-Integrator Leader-Follower Control).

Under Assumptions 1 and 2, p(t) converges to p∗ globally

and exponentially fast under the action of control law (6).

Proof. Define the position error as δp = p − p∗. Note that

δp = [0, δTpf
]T since pℓ = p∗ℓ . As a result,

δTp

[
0 0
0 Inf

]

= δTp .

Consider the Lyapunov function V = ‖δp‖
2/2. The time

derivative of V is

V̇ = δTp δ̇p = δTp ṗ = −δTp

[
0 0
0 Inf

]

H̄T(g − g∗)

= −δTp H̄
T(g − g∗).

According to Lemma 4, V̇ ≤ 0 and V̇ = 0 if and only if

g = g∗. Since the target formation is bearing localizable as

assumed, g = g∗ implies p = p∗. As a result, V̇ = 0 ⇔
δp = 0 and hence V̇ is negative definite in δp. It follows that

δp = 0 is globally asymptotically stable.

In order to prove exponential stability, note that

V̇ = −δTp H̄
T(g − g∗)

= −(p− p∗)TH̄T(g − g∗)

= −pTH̄T(g − g∗) + (p∗)TH̄T(g − g∗)

≤ −pTH̄T(g − g∗). (12)

Substituting (9) into (12) gives

V̇ ≤ −
1

2maxk ‖ek‖
pTBp. (13)

Since Bp∗ = 0, we have pTBp = (p − p∗)TB(p − p∗) =
δTp Bδp. Furthermore, since δp = [0, δTpf

]T, we have δTp Bδp =

δTpf
Bffδpf

≥ λmin(Bff )‖δpf
‖2 = λmin(Bff )‖δp‖

2. Substi-

tuting into (13) gives

V̇ ≤ −
λmin(Bff )

2maxk ‖ek‖
‖δp‖

2. (14)

Note that

max
k

‖ek‖ ≤ ‖e‖ = ‖H̄p‖ = ‖H̄(p− p∗ + p∗)‖

≤ ‖H̄δp‖+ ‖H̄p∗‖

≤ ‖H̄‖(‖δp‖+ ‖p∗‖). (15)

Since V̇ ≤ 0, we have ‖δp(t)‖ ≤ ‖δp(0)‖. Substituting (15)

into (14) yields

V̇ ≤ −
λmin(Bff )

‖H̄‖(‖δp(0)‖+ ‖p∗‖)
︸ ︷︷ ︸

γ

‖δp‖
2

2
= −γV,

which indicates exponential convergence rate.

V. SIMULATION

Figure 2 shows simulation results in the leaderless case.

The target formation is a square with four agents and five

edges as shown in Fig. 2(b). As can be seen, the bearing

error converges to zero. The formation scale also decreases,

which is consistent with Lemma 2.

Figure 3 shows a simulation example which demonstrates

that the formation scale may decrease to zero under certain

initial conditions. In this example, the initial configuration

has exactly the opposite values as the desired bearings.

In order to avoid such extreme case, leaders should be

introduced to specify the final formation scale.

Figure 4 shows a simulation example in the leader-

follower case. As can be seen, the bearing error converges to

zero. The formation scale is determined by the two leaders.

VI. CONCLUSIONS

This paper presented a new stability analysis of the

bearing-only formation control law proposed in [1]. The new

stability analysis is based on standard Lyapunov approaches

and reveals some new properties of the control law. The

results presented in this paper lay a foundation for studying

new bearing-only formation control laws that can handle

more complex agent models and moving target formations

in the future.
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Fig. 3: Simulation results for a leaderless case where the formation scale decreases to zero.
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