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Optimal Control of Boolean Control Networks with Discounted Cost: An

Efficient Approach based on Deterministic Markov Decision Process

Shuhua Gao, Cheng Xiang, and Tong Heng Lee

Abstract— This paper deals with the infinite-horizon optimal
control problem for Boolean control networks (BCNs) with a
discounted-cost criterion. This problem has been investigated
in existing studies with algorithms characterized by high
computational complexity. We thus attempt to develop more
efficient approaches for this problem from a deterministic
Markov decision process (DMDP) perspective. First, we show
the eligibility of a DMDP to model the control process of a BCN
and the existence of an optimal solution. Next, two approaches
are developed to handle the optimal control problem in a
DMDP. One approach adopts the well-known value iteration
algorithm, and the other resorts to the Madani’s algorithm
specifically designed for DMDPs. The latter approach can find
an exact optimal solution and outperform existing methods
in terms of time efficiency, while the former value iteration
based approach usually obtains a near-optimal solution much
faster than all others. The 9-state-4-input ara operon network
of the bacteria E. coli is used to verify the effectiveness
and performance of our approaches. Results show that both
approaches can reduce the running time dramatically by several
orders of magnitude compared with existing work.

I. INTRODUCTION

An effective and widely used model of gene regulatory

networks [1] is the Boolean network (BN) model, first

proposed by Kauffman in 1969 [2], that describes gene

expression state with binary values. Since then, BNs have

drawn a lot of research interest and been applied to various

fields beyond biomolecular networks, such as information

mining in consumer community networks [3] and analysis

of social consensus impacted by peer interactions [4]. We

can further incorporate binary control inputs into a BN to

manipulate its states and get a control system commonly

referred to as a Boolean control network (BCN) [5].

A considerable number of studies on BCNs emerged in

the last decade thanks to the development of a novel math-

ematical tool called the semi-tensor product (STP) [5], [6].

An equivalent algebraic state-space representation (ASSR)

can be built using STP, which makes it possible to adapt

established techniques in traditional control theory for similar

investigations of BCNs. Based on the STP and the ASSR of

BCNs, quite a few control-theoretical problems have been

tackled in the recent literature, for example, controllability

and observability [5], [7], [8], stabilization [9], pinning con-

trol [10], and output tracking [11], to name a few. Following

this mainstream, we also initiate our study on infinite-horizon

optimal control of BCNs with the ASSR here.
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Optimal control is a classic topic that deals with the

design of an optimal control law according to a given

performance index. Specifically, optimal control of BCNs

can be used to develop medical intervention strategies for

an underlying GRN to treat diseases like cancers while

minimizing expenses or maximizing the therapeutic effect

[12]. A variety of optimal control problems regarding BCNs

have been studied in recent years, which are divided into

two broad categories depending on the optimization horizon

length. In the first class, the horizon length is finite, and the

performance criterion is the summation of stage costs at a

countable number of time steps as well as one terminal cost.

An early study was conducted in [13] towards the Mayer-

type optimal control (i.e., only considering the terminal

cost) of single-input BCNs by a maximum principle. Two

common objectives in optimal control, minimum energy,

and minimum time, have been attempted in [14] and [15],

respectively. E. Fornasini et al. investigate more general

cases of such finite-horizon problems in [16] and present

recursive algorithms that are analogous to the discrete-time

Riccati equation. The second class of problems, i.e., infinite-

horizon optimal control, are generally more challenging, of

which the objective function takes either an average-cost

form or a discounted-cost form to ensure the convergence

of the total cost [12]. The first attempt for infinite-horizon

optimal control with an average-cost criterion was presented

in [17] by enumerating all cycles in the input-state space with

prohibitively high time complexity. Several improvements

were proposed later, including a Floyd-like algorithm [18], a

value iteration algorithm [16], and a policy iteration approach

[19]. By contrast, the discounted-cost counterpart has got less

attention, which was first addressed in [20] using a Floyd-

like algorithm similar to that in [18]. The algorithm [18] has

been modified in a recent study [21] to operate in the state

space instead of the input-state space of a BCN for further

speedup.

A major issue of the STP-based algebraic methods dis-

cussed above is their prohibitively high computational cost

once the size of the BCN is large. It has been proved in

[22] that, in general, control problems on BCNs are NP-

hard. Consequently, it is hopeless to seek polynomial-time

algorithms since P 6= NP is a widely believed conjecture.

This is indeed an intuitive fact because all algorithms above

run in a polynomial time of N , where N := 2n and n
is the number of state variables in a BCN. Nevertheless,

even faced with the NP-hardness, we can still pursue shorter

running time in practice by designing algorithms whose time

complexity is a lower-order polynomial in N . For example,
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by resorting to the Warshall algorithm, Liang et al. [23]

proposed an improved controllability criterion for BCNs with

time complexity reduced from O(N4) to O(N3). Our latest

work [24] (preprint) investigates infinite-horizon optimal

control of BCNs with average cost using Karp’s minimum

mean cycle (MMC) algorithm and achieves the lowest time

complexity so far. Notably, regarding the discounted-cost

optimal control problem considered in this paper, the existing

two studies [20] and [21] both attempt to locate the overall

optimal cycle by examining individual optimal cycles of

length ranging from 1 to N iteratively, which consequently

leaves ample space for further efficiency improvement.

The primary goal of this study is to develop more ef-

ficient algorithms for discounted-cost infinite-horizon op-

timal control of BCNs. As a natural choice, the Markov

decision process (MDP) theory has been extensively used

in optimal control of probabilistic and stochastic Boolean

networks, e.g., see [12] and [25]. Though a deterministic

BCN considered here can undoubtedly be treated as a special

stochastic BCN, more complexity will be introduced that

causes unnecessary deterioration of computational efficiency.

To the best of our knowledge, there is currently no work

on optimal control of BCNs that views the control process

as a deterministic Markov decision process (DMDP). The

interesting point is that, by adopting the equivalent DMDP

description, we can resort to established algorithms, like

Madani’s algorithm [26], to solve the discounted-cost optimal

control problem for BCNs with reduced time complexity.

The development of such efficient, DMDP-based algorithms

forms the main contribution of this paper.

The rest of this paper is organized as follows. First,

in Section II, we introduce the algebraic representation of

BCNs. We then formulate the optimal control problem in

Section III. The main results of our study are presented in

Section IV, which detail the development of two efficient

approaches. We compare the performance of the proposed

approaches and existing ones on a biological network in Sec-

tion V. Finally, Section VI concludes this study. The Python

implementation of all algorithms in this paper is available at

https://github.com/ShuhuaGao/bcn_opt_dc.

II. PRELIMINARIES

A. Notations

• R, N, and N
+ denote the sets of real numbers, nonneg-

ative integers, and positive integers, respectively. Given

k, n ∈ N with k ≤ n, [k, n] := {k, k + 1, · · · , n}.
• Ap×q denotes the set of all p×q matrices. Given A ∈ A,

Aij is its (i, j)-th entry, and Rowi(A), Colj(A) denote

its i-th row and j-th column respectively.

• δin := Coli(In), where In is the n-dimensional identity

matrix. ∆n := {δin|i = 1, 2, · · · , n}, and ∆ := ∆2. The

shorthand of {δi1n , δ
i2
n , · · · , δ

ik
n } is δn{i1, i2, · · · , ik}.

• A matrix L ∈ An×q with Coli(L) ∈ ∆n, ∀i ∈ [1, q], is

called a logical matrix. Let Ln×q denote the set of all

n× q logical matrices.

• D := {0, 1}. Logical operators [6]: ∧, conjunction; ∨,

disjunction; ¬, negation; and ⊕, exclusive or.

B. Algebraic Representation of BCNs

Definition 1. [17] The semi-tensor product (STP) of two

matrices A ∈ Mm×n and B ∈ Mp×q is defined by

A⋉B = (A⊗ I s
n
)(B ⊗ I s

p
),

where ⊗ denotes the Kronecker product, and s is the least

common multiple of n and p. ⋉n
i=1Ai := A1⋉A2⋉· · ·⋉An.

Remark 1. The STP generalizes the traditional matrix

product while preseving most fundamental properties [6]. For

notational simplicity, the symbol ⋉ is omitted hereafter.

Identify Boolean values in D by 0 ∼ δ12 and 1 ∼ δ22 .

Lemma 1. [6] Any Boolean function f(x1, x2, · · · , xn) :
∆n → ∆ can be expressed uniquely in a multi-linear form

as

f(x1, x2, · · · , xn) =Mfx1x2 · · ·xn, (1)

where Mf ∈ L2×2n is the unique structure matrix of f .

Consider a BCN with n nodes and m control inputs:














x1(t+ 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...

xn(t+ 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),
(2)

where xi(t) ∈ ∆, uj(t) ∈ ∆, denote states and control inputs

respectively, and fi : ∆
m+n → ∆ is the Boolean function

associated with the state variable xi, i ∈ [1, n], j ∈ [1,m].
Using the STP, the ASSR of the BCN (2) is

x(t + 1) = Lu(t)x(t), (3)

where x(t) := x1(t)⋉· · ·⋉xn(t) ∈ ∆2n and u(t) := u1(t)⋉
· · ·⋉ um(t) ∈ ∆2m are canonical vectors. Let N := 2n and

M := 2m. We have the logical matrix L ∈ LN×MN . Ref. [6]

details the computation of (3). Note that the two notations

N and M defined here are used throughout this paper.

III. PROBLEM FORMULATION

Given the BCN (3), let the cost of applying control u ∈
∆M at state x ∈ ∆N be g(x, u). The bounded function g :
∆N ×∆M → R is called the stage cost function. We seek a

control sequence that minimizes the discounted cost for BCN

(3) accumulated in an infinite horizon. Note that we consider

a more general and challenging scenario here beyond that in

[20] and [21], which involves various constraints on both

states and inputs. The problem is formalized as follows.

Problem 1. Consider BCN (3). Solve the following con-

strained optimization problem for optimal control:

min
u

J(u) = lim
T→∞

T−1
∑

t=0

λtg(x(t), u(t)),

s.t.



















x(t+ 1) = Lu(t)x(t)

x(t) ∈ Cx

u(t) ∈ Cu(x(t))

x(0) = x0

, (4)

https://github.com/ShuhuaGao/bcn_opt_dc


where u =
(

u(t) ∈ ∆M

)T−1

t=0
denotes a control sequence;

λ ∈ (0, 1) is the discount factor; Cx ⊆ ∆N and Cu(x(t)) ⊆
∆M denote the state constraints and the state-dependent

control input constraints respectively; and x0 ∈ Cx is the

initial state of the BCN.

Remark 2. No constraints are considered in [20], and only

the avoidance of undesirable states is handled in [21]. By

contrast, the above problem formulation emerges as the most

generic one, which can incorporate state constraints, control

constraints, and transition constraints [27]. We assume that

Problem 1 is feasible, that is, at least one control sequence

exists that allows the indefinite evolution of the BCN.

IV. MAIN RESULTS

In this section, we first show that the control of a BCN

can be handled elegantly in an MDP framework. Then, we

propose two methods to solve Problem 1: a general value

iteration approach commonly used in MDP optimization and

a more efficient approach specialized for a DMDP.

A. Deterministic Markov Decision Process (DMDP)

An MDP is a widely used mathematical model in se-

quential decision making under uncertaintis, that is, choosing

differente actions in different situations [28]. Specificially, in

our application with BCNs, the action at time point t refers to

the control input u(t), and the situation is represented by the

network state x(t). In the MDP framework, each decision is

associated with a reward. The essential property of an MDP

is that the next state and the reward depend only on the

current state and the current action, known as the Markov

property [28]. Obviously, we see from (3) that the control

process of a BCN is indeed an MDP, because x(t + 1) is

completed determined by x(t) and u(t).
In an MDP, the goal of the controller is to maximize the

cumulative reward from any initial state in the long run [28],

[29]. A policy is a decision rule that specifies which action

should be chosen for each state. In our BCN application, the

reward is replaced by the cost in Problem 1. Accordingly, we

aim to find a policy that minimizes the aggregated discounted

cost over the infinite horizon for optimal control of BCNs.

Unlike general MDPs considered in reinforcement learn-

ing, a useful property of the BCN control process is that its

state transition and rewarding are both deterministic. That

is, given the current state x ∈ ∆N and the control action

u ∈ ∆M , the next state is definitely Lux by (3), and the cost

is fixed to g(x, u) in Problem 1. Formally, the control process

of a BCN is called a deterministic Markov decision process

(DMDP). As we will show later, such determinism allows

the development of time-bounded optimization algorithms

compared with those for general MDPs.

B. Existence of Optimal Solutions

In control of BCNs, a policy π refers to a mapping from

states to control inputs, i.e., π : ∆N → ∆M . A feasible

policy must respect the constraints of Problem 1: for any

x ∈ Cx, it must satisfy

π(x) ∈ Cu(x), Lπ(x)x ∈ Cx. (5)

Now we can restate Problem 1 using the MDP terminology

as follows: find an optimal policy π∗, which conforms to all

constraints, such that the performance index function J is

minimized. The first question coming to our mind is whether

an optimal policy exists for Problem 1. In the following

illustration, we mainly borrow the notations and terminology

from the monograph [28]. Note that we are dealing with a

DMDP, and all probabilistic expectations in the general MDP

framework can thereby be omitted.

The quality of a policy can be evaluated by a value

function [29]. Given a policy π, the value function of a state

x, termed vπ(x), is the performance index obtained with the

initial state x and the control sequence u generated by π:

vπ(x) =

∞
∑

t=0

λtg(x(t), π(x(t)))

∣

∣

∣

∣

x(0)=x

, x ∈ Cx. (6)

For simplicity, we set vπ(x) = ∞ for x /∈ Cx. Let the next

state be x′ = Lπ(x)x. From (6), the recursion below holds

vπ(x) = g(x, π(x)) + λvπ(x
′), x ∈ Cx. (7)

Since we aim to minimize the cost, we say a policy π
is better than another policy π′ if and only if vπ(x) ≤
vπ′(x), ∀x ∈ Cx. The optimal value function v∗ and the

optimal policy π∗ are specified by

v∗(x) = min
π
vπ(x), (8)

π∗(x) = argmin
u∈Cu(x)

g(x, u) + λv∗(Lux). (9)

Further, there holds obviously vπ∗
(x) = v∗(x), ∀x ∈ Cx, by

the Bellman optimality equation [28], [29], given below

v∗(x) = min
u∈Cu(x)

g(x, u) + λv∗(Lux), x ∈ Cx, (10)

A fundamental result in the MDP theory is that the infinite

sum in (6) has a finite value as long as the reward sequence

is bounded [28]. As aforementioned in Section III, it is

natural and common to set up a bounded stage cost function

g [17], [19]–[21], which implies a finite value function (3)

for each state. Additionally, recall that the number of states

and the number of control inputs are both finite in BCN

(3), i.e., N and M , respectively. Consequently, the number

of possible policies in our case is also finite, which is at

most MN after constraint-violating ones are eliminated. Note

that we assume Problem 1 is feasible, i.e., at least one

policy exists that violates no constraints (see Remark 2).

By the policy improvement theorem [28], an optimal policy

always exists that minimizes the value function for all states,

from which we can construct the optimal control sequence

for Problem 1 (see Section IV-C). The correctness of the

following proposition is obvious.

Proposition 1. Consider Problem 1. There exists an optimal

control sequence if the stage cost function g is bounded.

Remark 3. The existence of solutions to infinite-horizon

optimal control of BCNs with discounted cost (no constraints

involved) has been shown in [20] and [21] from other aspects

instead of the DMDP here. Note that the optimal control

strategies for Problem 1 may not be unique.



C. Value Iteration based Approach

A widely used method in searching optimal policies for

finite MDPs is value iteration, a dynamic programming

based algorithm, which attempts to estimate the optimal

value function (6) of each state via iterative update [28], [29].

It is intuitive to derive the update rule in value iteration from

the Bellman optimality equation. Recall that the BCN control

process is essentially a DMDP, and its optimality equation

has been presented in (10).

Given an initial guess of the value function, termed

V (·), value iteration works by updating the value function

following a rule similar to the optimality equation (10):

V (x) = min
u∈Cu(x)

g(x, u) + λV (Lux), x ∈ Cx. (11)

Such update is repeated iteratively until the value func-

tion converges for all states, i.e., the change between two

iterations gets small enough below a threshold θ ≥ 0.

After the update loop is terminated, we can determine an

(approximate) optimal policy from the value function by

π∗(x) = argmin
u∈Cu(x)

g(x, u) + λV (Lux), x ∈ Cx. (12)

Next, a state feedback control law for optimal control can

be directly constructed from the optimal policy (12) with the

following proposition.

Proposition 2. Consider Problem 1. If π∗ is an optimal pol-

icy for the associated discounted-cost DMDP, then infinite-

horizon optimal control can be achieved by stationary state

feedback u = Kx, where nontrivial columns of the matrix

K ∈ LM×N are specified by

Coli(K) = π∗(δ
i
N ), if δiN ∈ Cx, (13)

with the other columns arbitrarily set.

Proof. Note that states and control inputs of BCN (3) are

both logical vectors filled with all zeros except a single entry

of value 1. We thus have KδiN = Coli(K) = π∗(δ
i
N ) for any

δiN ∈ Cx. That is, we are exactly taking the optimal policy

by applying the state feedback law (13). By the definitions in

(8) and (9), the optimal policy minimizes the value function

for each state x ∈ Cx, and v∗(x0) is therefore the minimum

of the performance index J(·).

The value iteration routine for Problem 1 is listed in

Algorithm 1. In practice, a small positive threshold θ > 0 is

used to acquire a sub-optimal solution with an affordable

computational cost, since this algorithm generally cannot

converge to the exact optimimum in a finite number of iter-

ations [28], [29]. Supposing there are P iterations required

for a specific θ, the computational cost of the loop (Line 2

- 8 ) is O(PMN). The computation of (12) and (13) runs

in O(MN) and O(N) respectively. In summary, the time

complexity of Algorithm 1 is O(PMN). Finally, we note

that the state feedback controller (13) is independent of the

initial state x0. Given an initial state x0, the optimal control

sequence can be computed readily from (13) by evolving the

BCN from state x0 with the control law (13).

Algorithm 1 Optimal control based on value iteration

Input: Problem 1: L,Cu(·), Cx, λ. Threshold θ ≥ 0.

Output: Optimal state feedback matrix K
1: Initialize the value function V (x) arbitrarily for x ∈ Cx

2: repeat

3: ψ ← 0
4: for all x ∈ Cx do

5: v ← V (x)
6: Update V (x) by (11)

7: ψ ← max(ψ, |v − V (x)|)

8: until ψ < θ
9: Resolve the optimal policy π∗ by (12)

10: Construct the matrix K by Proposition 2

D. Madani’s Algorithm based Approach

The primary drawback of the basic value iteration ap-

proach in Algorithm 1 is that the number of iterations

to get the exact optimal control strategy is not bounded

[28], [29]. Consequently, only a sub-optimal solution can

be acquired in practice. On the other hand, recall that

value iteration is a general algorithm for MDPs, especially

stochastic ones, while our BCN control is more precisely

a DMDP. In [26], exploiting the determinism of a DMDP,

Madani et al. develops a specialized and more efficient

algorithm for solving discounted-cost DMDP problems. A

more desirable advantage of this algorithm is its guarantee

that exact solutions can be obtained in finite steps. In this

section, we develop a more efficient and effective method to

solve Problem 1 by resorting to Madani’s algorithm [26].

Madani’s algorithm handles discounted-cost DMDPs from

a graphical perspective and can be viewed as an adaptation

of Karp’s algorithm for average-cost DMDPs [24]. In the

context of optimal BCN control, the DMDP is described by

the state transition graph (STG) of the BCN, termed G =
(V,E), where each vertex represents a state, i.e., V := Cx,

and each edge denotes a state transition, i.e.,

E = {(x, x′) ∈ Cx × Cx|∃u ∈ Cu(x), x
′ = Lux}. (14)

The weight of each edge is the minimal cost of the

corresponding state transition, since a transition may be

attained by more than one control input at different costs.

Consider two connected states (vertices) in G, say (x, x′) ∈
E. The set of admissible control inputs for this transition

(edge) is

Uxx′ = {u ∈ Cu(x)|x
′ = Lux}, (15)

and the weight of this edge is

w(x, x′) = min
u∈Uxx′

g(x, u), (16)

along with the best control input enabling this transition

u∗(x, x′) = argmin
u∈Uxx′

g(x, u). (17)

Note that the best control input in (17) may not be unique,

and we can choose an arbitrary one in that case. Besides, the



technique by (16) and (17) can also be adapted to the above

value iteration approach to first filter out unlikely actions for

specific states to improve computational efficiency.

Given BCN (3) with constraints in Problem 1, it is easy to

construct the STG G following a breadth-first search (BFS)

routine, whose details can be found in our previous work

[24]. After the STG is available, Madani’s algorithm works

in three stages, like follows.

1) Compute the minimal discounted cost of a k-edge path

starting from each vertex x ∈ Cx, termed dk(x), for

each k ∈ [1, |Cx|] with d0(x) = 0.

2) Compute the quantity below for each vertex x ∈ Cx:

y0(x) = max
0≤k<|Cx|

d|Cx|(x)− λ
|Cx|−kdk(x)

1− λ|Cx|−k
. (18)

3) Recompute the the minimal discounted cost of a k-

edge path from each vertex x ∈ Cx, termed yk(x), but

with the initial value y0(x) in (18), for 1 ≤ k < |Cx|.
4) The optimal value function of each state (vertex) x ∈

Cx is obtained by

v∗(x) = min
0≤k<|Cx|

yk(x). (19)

Interested readers can refer to [26] for detailed proof of the

correctness of this algorithm. In practical implementation,

the above tasks 1) and 3) can be done efficiently via

dynamic programming in a form like Bellman optimality

equation (10). The corresponding pseudocode is presented in

Algorithm 2. Once the optimal value function v∗ is obtained,

we can again, just like Algorithm 1, get the optimal policy

by (12) and the optimal state feedback law by Proposition 2.

Algorithm 2 Optimal control based on Madani’s algorithm

Input: Problem 1: L,Cu(·), Cx, λ.

Output: Optimal state feedback matrix K
1: Build the STG G = (V,E) (see [24] for details)

2: d0(x)← 0 for each x ∈ V
3: for all k ∈ [1, |V |] do

4: for all x ∈ V do

5: dk(x)← min(x,x′)∈E w(x, x
′) + λdk−1(x

′)

6: for all x ∈ V do

7: Compute y0(x) by (18)

8: for all k ∈ [1, |V | − 1] do

9: for all x ∈ V do

10: yk(x)← min(x,x′)∈E w(x, x
′) + λyk−1(x

′)

11: for all x ∈ V do

12: Compute v∗(x) by (19)

13: Get the optimal policy π∗ by (12)

14: Construct the matrix K by Proposition 2

As we have analyzed in [24], the time complexity to build

the STG G = (V,E) subject to constraints in Problem 1 is

O(MN). The running time of Madani’s algorithm in the

graph G is O(|V ||E|) [26]. Note that there are at most N
vertices in the STG, i.e., |V | ≤ N , and each vertex has at

most M outgoing edges, which means |E| ≤M |V | ≤MN .

TABLE I

BCN MODEL OF THE ara OPERON NETWORK

Node Function Node Function

A Ae ∧ T D ¬Ara+
∧ Ara−

Am (Aem ∧ T ) ∨ Ae MS Ara+
∧ C ∧ ¬D

Ara+
(Am ∨A) ∧ Ara−

MT Ara+
∧ C

C ¬GeB T MT

E MS

Therefore, the running time of Algorithm 2 is dominated by

the Madani’s part, which is consequently O(MN2).

V. A BIOLOGICAL EXAMPLE: Ara OPERON NETWORK

In this section, we apply the two approaches proposed

above to the ara operon network in the bacteria E.coli and

compare its performance with that of existing methods. The

ara operon network is a well studied GRN that plays a key

role in metablism of the sugar L-arabinose in the absence

of glucose. The GRN’s BCN model has 9 state variables

(nodes), listed in Table I, and 4 control inputs, Ae, Aem,

Ara , and Ge. The Boolean functions associated with each

node are also listed in Table I. More biological knowledge of

this network is available in [30]. Its ASSR (3) has a structure

matrix L ∈ L512×8192 with M = 16 and N = 512, which

is presented in the online material.

Wu et al. have investigated the infinite-horizon optimal

control of the ara operon network with average cost in [19].

We reuse their stage cost function in this study as follows:

g(x, u) = AX +BU (20)

with the column vectors X = [x1, x2, · · · , x9]
⊤, U =

[u1, u2, u3, u4]
⊤ and the two weight vectors as

A = [−28,−12, 12, 16, 0, 0, 0, 20, 16], B = [−8, 40, 20, 40].

We assume an initial state x0 = δ10512 and a discount factor

λ = 0.5. No constraints are applied here for comparison

purpose, since existing methods are not designed to handle

constraints. In the value iteraton approach, the ǫ-suboptimal

solutions are obtained. We implement all algorithms in

Python 3.7 and measure their running time for Problem 1

on a laptop PC with a 1.8 GHz Core i7-8550U CPU, 8 GB

RAM, and 64-bit Windows 10. All methods obtain the same

optimal value, J∗ = 5.232, except that the value iteration

approach gets an approximate one.

We gather the theoretical time complexity and the mea-

sured running time of each method in Table II. As we see, the

huge difference in running time between different methods

accords well with previous time complexity analysis. Clearly,

the two DMDP based approaches proposed in this paper

can significantly reduce the running time. Note that, though

Algorithm 1 has no upper bound on the number of iterations

to get an exact optimum, it usually converges very fast in

practice if only a suboptimal solution is desired. For example,

only 9, 13, and 18 iterations are needed in this case for the

three thresholds in Table II. Overall, the take-home message

is that one can first try Algorithm 1 based on value iteration



TABLE II

COMPARION OF TIME COMPLEXITY AND MEASURED RUNNING TIME IN

OPTIMAL CONTROL OF THE Ara OPERON NETWORK

Method [20] [21] Algorithm 1 Algorithm 2

Time complexity O(N4) O(N4) O(PMN)1 O(MN2)

Running time (s) 116736 57078
0.21 (θ = 0.1)

7.640.28 (θ = 0.01)
0.36 (θ = 0.001)

1 P refers to the number of iterations and is not bounded for an exact optimium.

and then resorts to Algorithm 2 that depends on Madani’s

algorithm if the former cannot work properly.

Remark 4. The time complexity is stated to be O(MN+N4)
in [21]. We note that, in general, there exists M < N or

even M ≪ N in practice, i.e., fewer control inputs than

state variables, especially for large networks [10]. Besides,

we can always assume M ≤ N , since a state can transit

to at most N succeeding states regardless of the number of

control inputs, and it is useless to have more inputs than

state variables. Thus, the time complexity of Algorithm 2

is equivalently O(N3). Though the running time listed in

Table II may partly depend on implementation details, the

difference in orders of magnitude demonstrates obviously the

superiority of our approaches in terms of time efficiency.

VI. CONCLUSIONS

We tackled the infinite-horizon optimal control of BCNs

with discounted cost in this paper. Unlike the existing

methods, we solved this problem from the perspective of

a deterministic Makov decision process (DMDP). We first

showed that the control of a BCN could be well described

by a DMDP and then proposed two approaches for the

optimization of this DMDP, one based on value iteration and

the other based on Madani’s algorithm, while the latter can

obtain the exact optimum with lower time complexity than

existing work. Besides, the value iteration based approach

can potentially get a near-optimal solution with much less

running time than all other methods. A benchmark example

using the ara operon network has demonstrated the superior

time efficiency of both proposed approaches. The DMDP

view of BCN control may be promising for other problems

as well and deserves more investigations.
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