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Abstract— In this paper, we investigate the distributed
convex optimization problem over a multi-agent system with
Markovian switching communication networks. The objective
function is the sum of each agent’s local objective function,
which cannot be known by other agents. The communication
network is assumed to switch over a set of weight-balanced
directed graphs with a Markovian property. We propose a
consensus sub-gradient algorithm with two time-scale step-
sizes to handle the uncertainty due to the Markovian switching
topologies and the absence of global gradient information.
With a proper selection of step-sizes, we prove the almost sure
convergence of all agents’ local estimates to the same optimal
solution when the union graph of the Markovian network’
states is strongly connected and the Markovian network is
irreducible. Simulations are given for illustration of the results.

I. INTRODUCTION

There is an increasing research interest in distributed
optimization over multiagent systems due to its broad
applications in engineering networks, such as distributed
parameters estimation in sensor networks [1], [2], resource
allocation in communication networks, [3], [4], and optimal
power flow in power grids, [5], [6]. Due to the privacy
of each agent’s local data and the burden of data cen-
tralization, in distributed optimization problems each agent
can only manipulate its local objective function without
knowing other agents’ objective functions, while the global
objective function to be optimized is usually taken as the
sum of agents’ local objective functions. Many significant
distributed optimization algorithms have been proposed and
analyzed, including (sub)gradient algorithms [4], [7], [8],
dual averaging algorithms [9], primal-dual methods [2],
[6], [10], gradient tracking methods [11], [12]. Please refer
to [13]–[17] for the survey of recent developments in
distributed optimization.

In distributed optimization, the agents must cooperatively
find a consensual optimal solution by sharing informa-
tion locally with network neighbors, hence, communication
plays a vital role in the design and analysis of distributed
optimization algorithm. Different communication models
and graph connectivity assumptions, either deterministic
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or stochastic, have been discussed for different algorithms
including uniformly joint strongly connected graphs [7],
[9], quantized communication [18], random graphs [10],
[19], broadcasting [20] and gossip communication [21]. In
fact, the practical communication networks are essentially
random and stochastic due to link failure, uncertain quanti-
zation, packet dropout or node recreation. Random commu-
nication networks with temporal independence assumptions
have been investigated in distributed optimization. [20]
established the almost sure convergence of the consensus
subgradient algorithm to an optimal point when the agents
share information through independent broadcast communi-
cations. [8] provided the almost sure convergence results for
distributed subgradient algorithm when the communication
link failures are independent and identically distributed
over time. [19] investigated the asynchronous distributed
gradient method with a linear convergence rate for strongly
convex functions when the graph weights are independently
and identically drawn from the same probability space.
[22] proved the optimal convergence rate of distributed
stochastic gradient methods for strongly convex functions
over temporally independent identically distributed random
networks. [10] investigated the asymptotic normality and
efficiency of distributed primal-dual gradient algorithm for
independent and identically random communication net-
works. [23] gave a primal-dual algorithm for distributed
resource allocation, also with independent and identically
random communication networks.

Nevertheless, the practical communications over multia-
gent systems are usually random but with temporal corre-
lation. Markovian switching graphs have been adopted for
modelling the random communication with one-step tempo-
ral dependence. For example, [24]–[26] have investigated
the performance of averaging consensus algorithm with
Markovian switching communication networks, [1] have
considered the distributed parameter estimation problem
over Markovian switching topologies, and [27] investigated
the Kalman filter with Markovian packet losses when trans-
mitting the measurements to the filter. However, to the best
of our knowledge, how to achieve distributed optimization
with Markovian switching graphs is not fully investigated,
because distributed optimization is a fundamentally different
task from consensus or parameter estimations, except that
[28] have studied distributed optimization over a switching
state-dependent graphs. We also note that [29] investigated
the distributed optimization through the fixed points itera-
tion of random operators derived from a general class of
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random graphs.
Motivated by the above, we investigate the consensus

subgradient algorithm to achieve optimal consensus with
Markovian switching topologies. The communication graph
among the agents switches within a finite graph set fol-
lowing a Markovian chain. Note that [28] assumed that the
random link failure is dependent on the node state rather
than the previous step communication, hence, it considered
a different Markovain model from the Markovain random
graph considered here. We propose to select two different
step-sizes for the consensus term and the gradient term to
balance the speed of consensus and innovation. We find a
sufficient choice of step-sizes to ensure that the consensus
term is slightly “faster” than the innovation gradient term,
and then we can give a mean consensus error bounds under
the Markovian assumption. With these error bounds, we
prove that all the agents converge to the same optimal
solution with probability 1.

The paper is organized as follows. We give the formula-
tion of the distributed optimization problem and Markovian
switching communication model in Section II. We give the
algorithm and sketch the main results in Section III. We give
the proofs of main theorems with an illustrative numerical
example in Section IV, and present the conclusions in
section VI. The proof of a key lemma is given in the
Appendix.

Notations: Denote 1m = (1, ..., 1)T ∈ Rm and 0m =
(0, ..., 0)T ∈ Rm. For a column vector x ∈ Rm, xT

denotes its transpose. In denotes the identity matrix in
Rn×n. For a matrix A = [aij ] ∈ RN×N , aij stands
for the (i, j)th entry in A. A matrix A is nonnegative if
aij ≥ 0,∀i, j = 1, · · · , N . A nonnegative matrix A is
called row stochastic iff A1N = 1N , and column stochastic
matrix iff 1TNA = 1TN , while A is doubly stochastic iff A
is both row and column stochastic matrix. ⊗ stands for the
Kronecker product of two matrixes. For a probability space
(Ξ,F ,P), Ξ is the sample space, F is the σ-algebra and P is
the probability measure. For k = 0, 1, 2, · · · , (vk,Fk) is an
adapted sequences if σ(vk) ∈ Fk for all k. The expectation
of a random variable is denoted as E[·].

A directed graph G = {V, EG , AG} is defined with node
set V = {1, ..., N}, edge set EG ⊂ V × V , and adjacency
matrix AG = [aij ] ∈ RN×N . (j, i) ∈ EG if and only if
agent i can get information from agent j. AG = [aij ] is
nonnegative and row stochastic, and 0 < aij ≤ 1 if (j, i) ∈
EG , and aij = 0, otherwise. Denote by Ni = {j|(j, i) ∈ EG}
the neighbor set of agent i. A path of graph G is a sequence
of distinct agents in V such that any consecutive agents
in the sequence corresponding to an edge of the graph G.
Agent j is said to be connected to agent i if there is a
path from j to i. Graph G is strongly connected if any two
agents are connected. Graph G is called weighted-balanced
if adjacency matrix A is doubly stochastic , i.e., 1TNAG =

1TNA
T
G . Denote by DG = diag{

∑N
j=1 a1j , ...,

∑N
j=1 aNj},

called the in-degree matrix of G. Then, the (weighted)
Laplacian matrix of G is LG := DG − AG . When graph G
is strongly connected, 0 is a simple eigenvalue of Laplacian
LG with the eigenspace {α1N |α ∈ R}.

II. PROBLEM FORMULATION

In this section, we formulate the distributed optimization
problem.

Consider a multi-agent network with agent (node) set
V = {1, ..., N}, where agent i has its own objective function
fi(x) unknown to any other agents. The task is to find
the optimal solution of the sum of all the local objective
functions, that is,

min
x∈Rn

f(x), f(x) =

N∑
i=1

fi(x), (1)

where fi(·) : Rn → R, as a lower semicontinuous ( possible
nonsmooth) convex function, is the local objective function
of agent i, and f(·) is the global objective function. We give
the following assumption on the objective functions.

Assumption 1: 1) The optimization problem in (1) is
solvable, i.e., there exists a finite x∗ ∈ Rn such that

x∗ ∈ X∗ , arg min f(x), f(x) =

N∑
i=1

fi(x)

2) The sub-gradient sets of fi(x), are uniformly bounded
for all i ∈ V , i.e., there exists a constant l such that
∀g(x) ∈ ∂fi(x), ‖ g(x) ‖≤ l, ∀x ∈ dom(fi), ∀i ∈ V .

We assume the agents exchange information locally
through a Markovian switching random communication
network. All the possible communication topologies form a
set of a finite number of graphs: {G1, · · · ,Gm} with each
graph endowed with an adjacency matrix AGi . The time
is slotted as k = 1, 2, · · · ,. And then, we use a random
process θ(k), which is a Markovian chain on a finite index
set I = {1, ...,m} with a stationary transition matrix P =
[pij ] ∈ Rm×m, to indicate the communication graph at time
k, i.e., G(k) = Gi when θ(k) = i. The markovian property
of θ(k) implies that given the graph at time k being Gi, the
probability of the communication graph at time k+1 being
Gj is pij . The works about average consensus in [1], [24],
[25] have provided detailed descriptions and motivations
for using Markovian switching communication networks in
distributed computation over multi-agent systems, including
wireless sensor networks and UAV swarms.

Here is the assumption on the Markovian communication
graphs:

Assumption 2: 1) The adjacency matrixes AGi of each
graph in the set {G1, · · · ,Gm} is a doubly stochastic
matrix, and the union graph

Gc ,
m⋃
i=1

Gi = {V,
m⋃
i=1

EGi ,
1

m

m∑
i=1

AGi}



is strongly connected.
2) The Markovian chain θ(k) is irreducible.

III. DISTRIBUTED ALGORITHM AND MAIN RESULTS

In this section, we provide the algorithm with the main
results.

Denote by xi(k) ∈ Rn the estimate of agent i for the
optimal solution x∗ at time k. The random variable θ(k)
evolves as a markovian chain. The communication graph
takes G(k) , Gθ(k) = (V, EGθ(k) , AGθ(k)) at time k. Agent
i can get the estimates of its neighboring agents Ni(k) =
{j|(j, i) ∈ EGθ(k)} with Gθ(k). And then, each agent updates
its estimate with the following algorithm

Algorithm 1 Consensus subgradient algorithm
Initialize: Agent i ∈ V picks an initial state xi(0) ∈ Rn.
Iterate until convergence
At time k, each agent i ∈ V gets its neighbour states{
xj(k)

}
j∈Ni(k)

through the random graph G(k), and up-
dates its local state as follows

xi(k + 1) = xi(k) + αk

N∑
j=1

aij(k)(xj(k)− xi(k))

− βkdi(k),

(2)

where αk > 0 and βk > 0 are the step-sizes, aij(k)
is (i, j)th entry of AGθ(k) , and di(k) ∈ ∂fi(xi(k)) is a
(sub)gradient vector of fi(x) at xi(k).

Algorithm 1 is an extension of the distributed subgradient
algorithm in [7], [8] by adding an additional step-size. In
equation (2), the first consensus term drives each agent’s
state towards the averaging of all agents’ states, while the
second term provides the innovative gradient information to
search for the optimal solution x∗.

To guarantee the algorithm convergence even with a
randomly switching network, we have two different step-
sizes αk and βk to control the speed of consensus and
innovation. In fact, we require that “consensus” speed is
a bit of faster than “innovation” term as specified by the
following assumption.

Assumption 3: We take the step-sizes in (2) as

αk =
a1

(k + 1)δ1
, βk =

a2

(k + 1)δ2
, (3)

where a1 > 0, a2 > 0, 0 < δ1 < δ2 ≤ 1, and δ2 − δ1 ≥ 1
2 .

Now we are ready to present the main analysis results
for Algorithm 1.

Theorem 1 (Almost sure consensus): Suppose Assump-
tions 1, 2 and 3 hold. Let xi(k), i ∈ V be generated by (2),
and y(k) = 1

N

∑N
i=1 xi(k). Then the following statements

hold.
1) The agents’ states reach consensus and track the

averaging of all the agents’ states asymptotically with

probability 1, i.e.,

lim
k→∞

‖ xi(k)− y(k) ‖= 0, ∀i ∈ V, a.s. (4)

2) The accumulation of the norm of track error y(k) −
xi(k) weighted by the step-sizes βk is bounded for each
agent, i.e.,

∞∑
k=1

βk ‖ y(k)− xi(k) ‖<∞, ∀i ∈ V, a.s. (5)

Remark 1: Theorem 1 shows that all the agents almost
surely reach consensus asymptotically. In fact, we can
also show the convergence rate for reaching consensus is
dominated by the difference between δ1, δ2. Specifically, ,
we can find a τ < δ2 − 1

2 such that

lim
k→∞

(k + 1)τ ‖ y(k)− xi(k) ‖= 0 a.s.,∀i ∈ V

Theorem 2 (Almost sure converge to a consensual solution):
Suppose Assumptions 1,2 and 3 hold. Then with Algorithm
1, all the agents’ states almost surely converge to the same
optimal solution of (1), i.e.,

lim
k→∞

xi(k) = x∗,∀i ∈ V, a.s.

IV. THE PROOF OF MAIN RESULTS

In this section, we give the proofs of the main results.

Denote X(k) = (xT1 (k), · · · , xTN (k))T ∈ RnN and
d(k) = (dT1 (k), · · · , dTN (k))T ∈ RnN , and we can rewrite
the overall updating equations in Algorithm 1 in a compact
form as

X(k + 1) = X(k)− αk(LGθ(k) ⊗ In)X(k)− βkd(k), (6)

where LGθ(k) is the Laplacian of Gθ(k). With abuse of
notation, we also use A(k) to denote the random matrix
AGθ(k) for simplicity. Since A(k) is doubly stochastic, (6)
can also be written as:

X(k+ 1) = X(k) +αk((A(k)− IN )⊗ In)X(k)−βkd(k).
(7)

To investigate the consensus of all agents’ states, we
define

Q =

(
Q1
1TN√
N

)
,

with Q11N = 0 and Q1Q
T
1 = IN−1. Then we have QQT =

IN , i.e. Q is an orthogonal matrix. Denote

Γ = IN −
1N1TN
N

as the disagreement matrix. Since A(k) is a doubly stochas-
tic matrix,

QA(k)QT =

(
Q1A(k)QT1 0N−1

0N−1 1

)
, QΓ =

(
Q1

0

)
,



and therefore,

QΓA(k) =

(
Q1

0

)
QT

(
Q1A(k)QT1 0

0 1

)(
Q1
1TN√
N

)

=

(
Q1A(k)QT1 Q1

0

)
.

Therefore, by multiplying both sides of (7) with QΓ⊗In,(
Q1

0

)
⊗ InX(k + 1) =

(
Q1

0

)
⊗ InX(k)

+ αk

(
(Q1A(k)QT1 − IN−1)Q1

0

)
⊗ InX(k)

− βk
(
Q1

0

)
⊗ Ind(k).

(8)

Denote ξ(k) = (Q1 ⊗ In)X(k) and H(k) = Q1A(k)QT1 −
IN−1, and we have the reduced recursion of (8) as

ξ(k+ 1) = ξ(k) +αk(H(k)⊗ In)ξ(k)−βk(Q1⊗ In)d(k).
(9)

Define a state transfer matrix Φ(k, s) for k ≥ s as

Φ(k, s) = (IN−1 + αkH(k)) · · · (IN−1 + αsH(s)), (10)

and Φ(k, k + 1) = IN−1.
The state transfer matrix Φ(k, s) is a random matrix that

plays a key role in the convergence analysis, and we have
the following Lemma 1.

Lemma 1: Suppose Assumptions 1, 2 and 3 hold. For the
state transfer matrix Φ(k, s) defined in (10), we have:

(i) There exist positive constants c0, c1 such that

E[‖ Φ(k, s) ‖] ≤ c0 exp[−c1
k+1∑
i=s

αi],∀k ≥ s.

(ii)
∑k
s=0 βsE[‖ Φ(k, s+ 1) ‖]→ 0 as k →∞.

(iii)
∑∞
k=0 βk+1E[‖ Φ(k, 0) ‖] <∞.

(iv)
∑∞
k=0 βk+1

∑k
s=0 βsE[‖ Φ(k, s+ 1) ‖] <∞.

The proof of Lemma 1 is given in the Appendix, which
could have an independent interest since it is not related
to the gradient part of the algorithm. Next we give a
martingale convergence result from [30], and a lemma for
the convergence analysis.

Proposition 1: Let (vk,Fk), (αk,Fk) be two nonnega-
tive adapted sequences.

(i) If E[vk+1|Fk] ≤ vk + αk and E[
∑∞
i=1 αi] <∞, then

vk converges a.s. to a finite limit.
(ii) If E[vk+1|Fk] ≤ vk−αk, then

∑∞
i=1 αi <∞, a.s..

Lemma 2: Let (vk,Fk), (dk,Fk), and (αk,Fk) be three
nonnegative adapted sequences. If E[vk+1|Fk] ≤ vk+αk−
dk and E[

∑∞
i=1 αi] < ∞, then

∑∞
i=1 di < ∞ a.s., and

vk converges a.s. to a finite limit.
Proof: Since E[vk+1|Fk] ≤ vk+αk, and E[

∑∞
i=1 αi] <∞,

from (i) of Proposition 1, we know that vk converges a.s.
to a finite limit.

Set uk+1 = vk+1 + E[
∑∞
i=k+1 αi|Fk+1]. Then

E[uk+1|Fk] ≤ vk + αk − dk

+ E(

∞∑
i=k+1

αi|Fk) = uk − dk,

and hence, we have
∑∞
i=1 di < ∞ a.s. from (ii) of

Proposition 1. 2

Proof of Theorem 1:
1) It follows from (9) that

ξ(k + 1) = (Φ(k, 0)⊗ In)ξ(0)

−
k∑
s=0

βs(Φ(k, s+ 1)⊗ In)(Q1 ⊗ In)d(s).
(11)

Thus,
∞∑
k=0

βk+1E[‖ ξ(k + 1) ‖] ≤
∞∑
k=0

βk+1E[‖ Φ(k, 0) ‖] ‖ ξ(0) ‖

+

∞∑
k=0

βk+1

k∑
s=0

βsE[‖ Φ(k, s+ 1) ‖] ‖ Q1 ‖‖ d(s) ‖

≤‖ ξ(0) ‖
∞∑
k=0

βk+1E[‖ Φ(k, 0) ‖]

+
√
Nl ‖ Q1 ‖

∞∑
k=0

βk+1

k∑
s=0

βsE[‖ Φ(k, s+ 1) ‖]

(12)

Hence, with the results in Lemma 1 and ‖ Q1 ‖= 1,
∞∑
k=0

βk+1E[‖ ξ(k + 1) ‖] <∞.

Therefore, by the monotone convergence theorem ( [31]),

E[

∞∑
k=0

βk+1 ‖ ξ(k + 1) ‖] <∞. (13)

Since (QΓ ⊗ In)X(k) = (ξ(k)T ,0)T and Q is an
orthogonal matrix, we get ‖ (Γ ⊗ In)X(k) ‖=‖ ξ(k) ‖.
With (13),

∞∑
k=1

βk ‖ (Γ⊗ In)X(k) ‖<∞ a.s. (14)

Note that

(Γ⊗ In)X(k) =

 y(k)− x1(k)
...

y(k)− xN (k)

 ,

and with (14), we have
∞∑
k=1

βk ‖ y(k)− xi(k) ‖<∞ ∀i ∈ V, a.s. (15)



2) By (2) and y(k) = 1
N

∑n
i=1 xi(k),

y(k + 1) = y(k)− βk
1

N

N∑
j=1

dj(k). (16)

Therefore, for any i ∈ V ,

y(k + 1)− xi(k + 1)

= y(k)− xi(k) + αk

N∑
j=1

aij(k)(xj(k)− xi(k)))

− βk(
1

N

N∑
j=1

dj(k)− di(k))

= y(k)−
N∑
j=1

ãij(k)xj(k)− βk(
1

N

N∑
j=1

dj(k)− di(k)),

where ãij(k) = αkaij(k), i 6= j and ãii(k) = 1 − αk.
Note that we have

∑N
j=1 ãij(k) = 1, and therefore, with

the Jensen’s inequality,

‖ y(k+1)−xi(k+1) ‖≤
N∑
j=1

ãij(k) ‖ y(k)−xj(k) ‖ +2βkl.

Denote by ei(k) =‖ y(k) − xi(k) ‖, and e(k) =∑N
i=1 ei(k). Then taking square of above equations and by

the convexity of ‖ · ‖2,

ei(k+1)2 ≤
N∑
j=1

ãij(k)ej(k)2+4l2β2
k+4lβk

N∑
j=1

ãij(k)ej(k).

Hence,
N∑
i=1

ei(k + 1)2 ≤
N∑
j=1

ej(k)2 + 4Nl2β2
k + 4lβk

N∑
i=1

ei(k),

and
∞∑
k=1

N∑
i=1

e2
i (k) ≤

N∑
i=1

ei(0)2 + 4Nl2
∞∑
k=1

β2
k

+ 4l

∞∑
k=1

βk

N∑
i=1

ei(k).

(17)

Because
∑∞
k=1 β

2
k < ∞,

∑N
i=1 ei(k)2 converges with

probability 1 as k →∞ following from (15) and (17).
Meanwhile, with (15) and

∑∞
k=1 β(k) = ∞, we have

lim infk→∞ e(k) = 0. Since e(k) is a.s. bounded, there
exists a subsequence nk, such that e(nk) −−−−→

k→∞
0. Take

any ε > 0, and then there exists a r such that e(nr) < ε,∑∞
k=nr

βke(k) < ε,
∑∞
k=nr

β2
k < ε. Therefore,

N∑
i=1

ei(nm)2 ≤
N∑
i=1

ei(nr)
2 + 4Nl2

∞∑
k=nr

β2
k + 4l

∞∑
k=nr

βke(k)

≤ Nε2 + 4l(N2 + 1)ε nm = nl + 1, nl + 2 · · ·
(18)

Therefore, we conclude

lim
k→∞

ei(k) = 0, a.s. ∀i ∈ V. (19)

2

Next, we prove that all the agents almost surely converge
to the same optimal solution.

Proof of Theorem 2: From (16) it follows that, for any
x ∈ X∗,

‖ y(k + 1)− x ‖2=‖ y(k)− x− βk
1

N

N∑
j=1

dj(k) ‖2

=‖ y(k)− x ‖2 −2βk
N

N∑
j=1

dj(k)T (y(k)− x) (20)

+
β(k)2

N2
‖

N∑
j=1

dj(k) ‖2 .

Note that

dj(k)T (y(k)− x) ≥ fj(xj(k))− fj(x) + dj(k)T (y(k)− xj(k))

= fj(xj(k))− fj(y(k)) + fj(y(k))− fj(x)

+ dj(k)T (y(k)− xj(k))

≥ −2l ‖ y(k)− xj(k) ‖ +fj(y(k))− fj(x).

From (20), we have

‖ y(k + 1)− x ‖2≤‖ y(k)− x ‖2 −βk
2

N
[f(y(k))− f(x)]

+ βk
4l

N

N∑
j=1

‖ y(k)− xj(k) ‖ +β(k)2l2.

By the result 1) in Theorem 1, E[
∑∞
k=1 βk ‖ y(k) −

xi(k) ‖] < ∞. Since
∑∞
k=0 β

2
k < ∞ and f(y(k)) ≥ f∗,

the condition in Lemma 2 is satisfied. Thus, ||y(k) − x||
converges a.s., and

∞∑
k=0

βk[f(y(k))− f(x)] <∞ a.s. (21)

It follows from
∑∞
k=0 β(k) =∞ and (21) that

lim inf
k→∞

f(y(k))− f(x) = 0. a.s.

With a similar argument of (18), we obtain

lim
k→∞

y(k) = x∗, x∗ ∈ X∗, a.s.

Therefore, all the agents almost surely converge to the same
optimal solution of problem (1). 2



A. Simulation

Example 1: We give an example to illustrate the algo-
rithm. Consider five agents with the local objective func-
tions as follows:

f1(x) = ln(e0.1x1 + e0.2x2) + 5 minz∈Ω ||x− z||;
f2(x) = 3(x1)2 ln((x1)2 + 1) + 2(x2)2;
f3(x) = 3(x1 − 10)2 + 0.2(x2 − 8)2 + 2|x1|+ 2|x2|;
f4(x) = 4(x1)2√

2(x1)2+1
+ 0.1(x1 + x2)2;

f5(x) = (x1 + 5x2 − 10)2;
+4 max{x1 + x2, (x1 + x2)2},

with a decision variable as x = (x1, x2) ∈ R2 and a set Ω
as Ω = {x ∈ R2|x2

1 + x2
2 ≤ 1}.

The five agents share information with three graphs
{G1,G2,G3}, whose weighted adjacency matrices are
A1, A2, A3 ∈ R5×5, respectively. The transition matrix of
the stationary Markovian chain θ(k) is P ∈ R3×3. We let
P,A1, A2, A3 to be the following matrices:

 0.5 0.5 0
0 0.6 0.4

0.2 0 0.8

 ,


0 0 0 0.5 0.5
1 0 0 0 0
0 0.5 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5

 ,


0 0 0 0.5 0.5
0 1 0 0 0
1 0 0 0 0
0 0 0.5 0.5 0
0 0 0.5 0 0.5

 ,


0.5 0 0 0 0.5
0 0.5 0 0 0.5

0.5 0.5 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

We choose the step-sizes as αk = 1
(k+1)0.3 and βk =

1
(k+1)0.9 . The (sub)gradients are normalized to 1. We per-
form the simulation for 100 times, and the estimations of
the five agents always reach the same optimal solution. (The
optimal solution is unique in this case.) The simulation
results are shown in Figure 1 and 2.

V. CONCLUSIONS

In this paper, we proposed a consensus subgradient
algorithm to solve a distributed optimization problem with
Markovian switching random communication networks. The
algorithm was given with two time-scale step-sizes, different
from most existing ones. We showed the almost sure conver-
gence with a proper connectivity assumption and step-size
choices. In the future, we will work on the mean-square
convergence rate analysis.

APPENDIX: PROOF OF KEY LEMMAS

Proof of Lemma 1
(i): Denote Fk = σ{θ(t), 0 ≤ t ≤ k}.
Take h = (m− 1)2 + 1 where m is number of states in

I. We first prove that ∀t, θ(k) will visit all the states in I
with a positive probability during [t, t+ h− 1].

Fig. 1: The trajectories of the five agents’ states

Fig. 2: The figure shows the trajectories of
three performance index: the consensus error,∑5
i=1 ||xi(k) − 1

5

∑5
j=1 xj(k)||, the distance to optimal

solution, || 15
∑5
i=1 xi(k)− x∗|| and the optimal value gap,

|f( 1
5

∑5
i=1 xi(k))− f∗|.



With the transition matrix P ∈ Rm×m being a stochastic
matrix, there exists a ζ > 0 such that pij ≥ ζ when pij > 0.
Assume θ(t) = i1, and then ∀i ∈ I \ i1 we conclude that

P(θ(k) visits i during [t, t+m− 1]) ≥ ζm−1

because θ(k) is irreducible. Hence,

P(θ(k) visits all states in I during [t, t+ h− 1]) ≥ ζh.

Secondly, with the union graph of {G1, ...,Gm} being
strongly connected, we prove that there exists a constant
γ0 > 0 such that

E[(

t+h−1∑
k=t

H(k)T +H(k)|Ft)] ≤ −γ0IN−1,∀t. (22)

Since A(k) is a doubly stochastic matrix, we get

2IN −A(k)−A(k)T = LGθ(k) + LTGθ(k) = 2LĜθ(k) ,

where Ĝθ(k) is the undirected mirror graph of Gθ(k). As a
Laplician matrix of an undirected graph, LĜθ(k) is positive
semi-definite, i.e., xTLĜθ(k)x ≥ 0,∀x ∈ RN .

Taking x = QT1 u, u 6= 0, we have

uTQ1(2IN −A(k)−A(k)T )QT1 u

= −uT (H(k) +H(k)T )u ≥ 0,
(23)

and thereby, H(k) +H(k)T is negative semi-definite.
Similarly,

E[uTQ1(2hIN −
t+h−1∑
k=t

[A(k) +A(k)T ])QT1 u|Ft]

= −E[uT (

t+h−1∑
k=t

[H(k) +H(k)T ])u|Ft] ≥ 0.

Therefore, E[
∑t+h−1
k=t [H(k) + H(k)T ]|Ft] is also

negative semi-definite. With Assumption 2, we have
E[xT (2hIN−

∑t+h−1
k=t [A(k)+A(k)T ])x|Ft] = 0 if and only

if x = c1N , c 6= 0. We conclude QT1 u 6= c1N ,∀c 6= 0 since
otherwise c = 0 can also be concluded from 1TNQ

T
1 u =

c1TN1N = 0. Therefore,

E[uTQ1(2hIN−
t+h−1∑
k=t

[A(k)+A(k)T ])QT1 u|Ft] > 0 (24)

i.e., E[
∑t+h−1
k=t [H(k)T + H(k)]|Ft] is negative definite.

Hence, there exists a constant γ0 > 0 to make (22) hold.
As a result,

Φ(h+ t− 1, t)TΦ(h+ t− 1, t) = (IN−1 + αtH(t)T ) · · ·
(IN−1 + αt+h−1H(t+ h− 1)T )

(IN−1 + αt+h−1H(t+ h− 1)) · · · (IN−1 + αtH(t))

≤ IN−1 +

t+h−1∑
k=t

αk(H(k)T +H(k)) + c2α
2
t IN−1,

with c2 > 0 as a constant. Combined with (22),

E[Φ(h+ t− 1, t)TΦ(h+ t− 1, t)|Ft]
≤ (1− γ1hαt+h−1 + c3hα

2
t )IN−1,

(25)

where γ1 = γ0
h > 0, c3 = c2

h > 0.
In fact, ∀k : t ≤ k ≤ t+ h− 1,

(
k + 1

t+ h
)δ1 = (1 +

k + 1− t− h
t+ h

)δ1

= 1 + δ1
k + 1− t− h

t+ h
+O(

h

t+ h
)2.

(26)

Therefore, when t is large enough

αk − αt+h−1 =
a1

(k + 1)δ1
− a1

(t+ h)δ1

=
a1

(k + 1)δ1
(1− (

k + 1

t+ h
)δ1)

≤ a1

(k + 1)δ1
(
h

t+ h
+O(

h

t+ h
)2) ≤ a1

4(k + 1)δ1

=
α(k)

4

(27)

We also have:

α2
t

αk
= [

k + 1

(t+ 1)2
]δ1 −−−→

t→∞
0. (28)

Thereby, with (27) and (28), we conclude that ∃k2 when
t ≥ k2,

1− γ1hαt+h−1 + c3hα
2
t

= 1− γ1

t+h−1∑
k=t

αk + γ1

t+h−1∑
k=t

(αk − αt+h−1)

+ c3

t+h−1∑
k=t

αk
α2
t

αk

≤ 1− γ1

t+h−1∑
k=t

αk +
γ1

4

t+h−1∑
k=t

αk +
γ1

4

t+h−1∑
k=t

αk

= (1− 2c4

t+h−1∑
k=t

αk)

with a constant c4 = γ1
4 > 0.

By (25), when t ≥ k2,

E[Φ(h+t−1, t)TΦ(h+t−1, t)|Ft] ≤ (1−2c4

t+h−1∑
k=t

αk)IN−1.

Now given another integer s ≥ 1, we have the following



estimation by recursions,

E[Φ(sh− 1 + t, t)TΦ(sh− 1 + t, t)]

= E
[
Φ((s− 1)h− 1 + t, t)TE[Φ(sh+ t− 1, (s− 1)h+ t)T

Φ(sh+ t− 1, (s− 1)h+ t)|F(s−1)h+t]Φ((s− 1)h− 1 + t, t)
]

≤ (1− 2c4

sh+t−1∑
k=(s−1)h+t

α(k))

E[Φ((s− 1)h− 1 + t, t)TΦ((s− 1)h− 1 + t, t)]

≤ exp[−2c4

sh+t−1∑
k=t

αk)]IN−1, t ≥ k2,

(29)

based on the inequality 1− x ≤ e−x, ∀x ≥ 0.
Therefore,

E[‖ Φ(sh− 1 + t, t) ‖] ≤ c6 exp[−c5
sh+t−1∑
k=t

αk)] (30)

with c6 = 1 and c5 = 2c4 as positive constants.
Since H(k) = Q1LGθ(k)Q

T
1 and Gθ(k) switches among a

finite set of graphs, there exists a constant Cmax > 0, such
that ‖ H(k) ‖≤ Cmax,∀k ≥ 1. Therefore, ∀k, s ≥ k2, we
have ∃ς ≥ 0, 0 ≤ r ≤ h− 1 such that k− s = ςh+ r. Then

E[‖ Φ(k, s) ‖] ≤ E[‖ Φ(k, k − ςh+ 1) ‖] ‖ Φ(r + s, s) ‖

≤
r+s∏
i=s

(1 + αiCmax)c6 exp[−c5
k∑

i=s+r+1

αi]

≤
r+s∏
i=s

(1 + αiCmax)c6 exp[c5

r+s∑
i=s

αi] exp[−c5
k∑
i=s

αi]

≤ c̃0 exp[−c5
k+1∑
i=s

αi],

(31)

with c̃0 = c6
∏k2+h
i=k2

(1 + αiCmax) exp[c5
∑k2+h
i=k2

αi] and
c1 = c5 as positive constants.

When s ≤ k2, without loss generality we assume k ≥ k2,
and then

E[‖ Φ(k, s) ‖] ≤ E[‖ Φ(k, k2) ‖] ‖ Φ(k2, s) ‖

≤
k2∏
i=s

(1 + αiCmax)c̃0 exp[−c5
k∑

i=k2

αi]

≤
k2∏
i=s

(1 + αiCmax)c̃0 exp[c5

k2∑
i=s

αi] exp[−c5
k∑
i=s

αi]

≤ ĉ0 exp[−c1
k+1∑
i=s

αi],

(32)

With ĉ0 = c̃0
∏k2
i=0(1+αiCmax) exp[c5

∑k2
i=0 αi] and c1 =

c5 as constants. Taking c0 > max{c̃0, ĉ0}, Lemma 1 (i)
holds from (31) and (32).

(ii) Because

k+1∑
i=s

αi =

k+1∑
i=s

a1

(i+ 1)δ1
≥
∫ k+1

x=s

a1

(x+ 1)δ1
dx

≥ a1

1− δ1
(x+ 1)1−δ1 | k + 1

s

≥ a1

1− δ1
[(k + 2)1−δ1 − (s+ 1)1−δ1 ],

(33)

we have
k∑
s=0

βsE[‖ Φ(k, s+ 1) ‖]

≤
k∑
s=0

a2

(s+ 1)δ2
c0 exp[

a1c1
1− δ1

(s+ 2)1−δ1

− a1c1
1− δ1

(k + 2)1−δ1 ]

≤ a2c0
1

q(k)

k∑
s=0

1

(s+ 1)δ2
exp[

a1c1
1− δ1

(s+ 2)1−δ1 ],

(34)

with q(k) = exp[ a1c11−δ1 (k + 2)1−δ1 ].
It is easy to verify that there exists a k1 > 0, such that

∀x ≥ k1, 1
xδ2

exp[ a1c11−δ1x
1−δ1 ] is a monotonically increasing

function. Then we obtain
k∑
s=0

1

(s+ 1)δ2
exp[

a1c1
1− δ1

(s+ 2)1−δ1 ]

≤
k1−1∑
s=0

1

(s+ 1)δ2
exp[

a1c1
1− δ1

(s+ 2)1−δ1 ]

+

k∑
s=k1

1

(s/2 + 1)δ2
exp[

a1c1
1− δ1

(s+ 2)1−δ1 ]

= τ + 2δ2
k+2∑

s=k1+2

1

sδ2
exp[

a1c1
1− δ1

s1−δ1 ]

≤ τ + 2δ2
∫ k+3

x=k1+2

1

xδ2
exp[

a1c1
1− δ1

x1−δ1 ],

(35)

with τ =
∑k1−1
s=0

1
(s+1)δ2

exp[ a1c11−δ1 (s + 2)1−δ1 ]. It follows
from equation (34) that

k∑
s=0

βsE[‖ Φ(k, s+ 1) ‖] ≤ a2c0(2δ2
p(k)

q(k)
+

τ

q(k)
), (36)

with p(k) =
∫ k+3

x=k1+2
1
xδ2

exp[ a1c11−δ1x
1−δ1 ].

Even though both p(k) and q(k) tend to infinity as k →
∞, they are not increasing at the same order. In fact, we
can the derivative of them as

p(x)′ =
1

(x+ 3)δ2
exp[

a1c1
1− δ1

(x+ 3)1−δ1 ],

q(x)′ =
a1c1

(x+ 2)δ1
exp[

a1c1
1− δ1

(x+ 2)1−δ1 ].



According to δ2 > δ1, limx→∞
p(x)′

q(x)′ = 0, and hence, by

the well-known L’Hôpital’s rule, we get limx→∞
p(x)
q(x) = 0.

Therefore, it follows from (36) that

k∑
s=0

βkE[‖ Φ(k, s+ 1) ‖]→ 0, k →∞.

(iii) Note that x−δ1 exp[−c3x1−δ2 ] is a monotonically
decreasing function when c3 is positive, and then with
equations (32) and (33), we have
∞∑
k=0

βk+1E[‖ Φ(k, 0) ‖]

≤
∞∑
k=0

a2

(k + 2)δ2
c0 exp[

a1c1
1− δ1

− a1c1
1− δ1

(k + 2)1−δ1 ]

≤ c7
∞∑
k=1

1

(k + 1)δ1
exp[−c8(k + 1)1−δ1 ]

≤ c7
∫ ∞
x=1

1

xδ1
exp[−c8x1−δ1 ]

= − c2
c8(1− δ1)

exp[−c8x1−δ1 ] |∞x=1

=
c7
c8

exp[−c3],

(37)

with c7 = a2c0 exp[ a1c11−δ1 ], c8 = a1c1
1−δ1 as positive constants.

(iv) Since (x + 2)−ηq(x) tends to infinity as x → ∞,
with L’Hôpital’s rule,

lim
x→∞

p(x)

(x+ 2)−ηq(x)

= lim
x→∞

p(x)′

(x+ 2)−ηq(x)′ − η(x+ 2)−η−1q(x)

= lim
x→∞

(x+ 2)−δ2

a1c1(x+ 2)−η−δ1 − a1c1η(x+ 2)−1−η

=
1

a1c1
.

Hence,
p(x)

q(x)
= O((x+ 2)−η)

with η = δ2 − δ1.
Therefore, by (36),

k∑
s=0

βsE[‖ Φ(k, s+ 1) ‖]

≤ a2c0(2δ2O((k + 2)−η) +
τ

q(k)
).

From δ2 > δ1, we have 1
kδ2

< 1
kδ1

, and hence, by a similar
argument in (37) we get

∞∑
k=0

1

(k + 2)δ2
exp[−c3(k + 2)1−δ1 ] <∞.

Finally, we conclude that

∞∑
k=0

βk+1

k∑
s=0

βsE[‖ Φ(k, s+ 1) ‖]

≤ a2
2c02δ2

∞∑
k=0

O((k + 2)−η)

(k + 2)δ2
+ a2

2c0τ

∞∑
k=0

1

(k + 2)δ2q(k)

≤ c9
∞∑
k=0

1

(k + 2)δ2
exp[−c3(k + 2)1−δ1 ]

+ c10

∞∑
k=0

1

(k + 2)2δ2−δ1
<∞,

with c9, c10 as positive constants. 2
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