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Optimal Tracking Strategies for Uncertain
Ensembles of Thermostatically Controlled Loads

Sribalaji Coimbatore Anand and Simone Baldi

Abstract—Demand side energy management (DSEM) promises
to regulate ensembles of loads to track desired power levels, in
response to grid events (demand peaks, emergencies, variable
renewable power generation, etc). A large fraction of such loads
are Thermostatically Controlled Loads (TCLs) such as refrig-
erators, electric water heaters, and air conditioners. Such loads
exhibit parametric uncertainty and heterogeneity which make
power tracking difficult. Adaptive control strategies are explored
in this work as a way to achieve power tracking. Effectiveness
of such strategies are studied via numerical simulations.

Index Terms—Thermostatically Controlled Loads, Demand
side energy management, Adaptive optimal control

I. INTRODUCTION

Traditional power plants have limited ability to adapt to the
varying power demands caused by the increasing deployment
of renewable energy sources. Researches have put forward the
idea of DSEM as a viable way to manage the power grid [1]–
[5]. In DSEM a population (ensemble) is required to track a
desired power level, in response to grid events such as demand
peaks, emergencies, or variable renewable power generation.
TCLs have a slack term on their system dynamics which makes
it possible to control [6]. Such control algorithms has been
studied in the literature. A few of these modeling and control
approaches of TCLs are summarized below.

The authors in [7] propose a state-space model relating the
offset applied to the temperature set-point of the homogeneous
population of TCL (input) to the power consumed by the
population (output). An observer based LQR controller is
adopted to achieve power tracking. The model in [8] is a
bi-linear state-space model relating the offset applied to the
temperature set-point of the homogeneous population of TCL
(input) to the power consumed by the population (output) and
develops a non linear controller. The modeling approach in
[9] is similar to [8] except for the fact that the bi-linearity is
removed and included as a separate block as a part of a model
predictive control algorithm. A 2 dimensional state bin model
is proposed in [10] instead of 1-dimensional model as used in
the previous works. A heterogeneous group of TCL consisting
of smaller groups of homogeneous TCL is considered in [11]
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where the control is based on a hybrid partial differential
equation with numerical stability analysis.

As it can bee seen from this overview, the controllers used
in the literature for TCL are model-based. In general a system
model can be hard to obtain [12]. This leads to an opportunity
to study how model-free adaptive optimal control algorithms
apply to TCL. The recent advances in literature in the field of
model-free adaptive optimal algorithm is recalled hereafter.

Adaptive optimal control originates from reinforcement
learning [13]. The work [14] develops a Policy Iteration (PI)
algorithm for an LTI systems. It solves the regulation problem
but only using partial knowledge of the system dynamics, and
it requires only the knowledge of input matrix; [15] uses the
same idea to solve a tracking problem instead of a regulation
problem; [16] develops a PI algorithm for a bi-linear system.
The work [17] develops a Value Iteration (VI) algorithm for
LTI systems; the main advantage is that the algorithm gets rid
of the assumption on the partial knowledge of the system; [18]
works on the same regulation problem as of [17], but is based
on stochastic approximation to develops a VI algorithm. Other
related works are [19], [20] and [21].

In this work we look into the application of the above-
mentioned adaptive model-free optimal control strategies for
TCL. The main contribution is to highlights advantages and
disadvantages of the models in literature, and which algorithms
can actually be implemented for this relevant problem. The rest
of the work is organized as follows: models for homogeneous
and heterogeneous populations of TCLs are explained in Sect.
III. The control problem is formulated in Sect. II; an output
feedback algorithm for the homogeneous model is studied and
applied in Sect/ IV, whereas a non-linear adaptive optimal
controller is applied Sect. V. Conclusions and discussions are
provided in Sect. VI.

Notation: Throughout this article, R denotes the sets of
real numbers. Vertical bars |.| represent the euclidean norm
for vectors, or the induced matrix norm for matrices. ⊗
indicate Kronecker product. In stands an identity matrix of
size n. ∇f(x) represents the gradient of the function f(x). a
represents a column vector with individual elements equal to
a and σ(A) represents the spectral radius of matrix A.

II. TCL POPULATION MODEL

In this section, two models are recalled, one for homo-
geneous population and one for heterogeneous population
of TCLs, respectively. Advantages and limitations are also
discussed in the context of adaptive optimal control. For
simplicity, we will focus on a cooling scenario.
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A. Homogeneous Population of TCLs

The thermostatic behaviour of temperature θ(t) can be
described

θ̇ =

{
− 1
CR (θ − θamb + PR), ON State.
− 1
CR (θ − θamb), OFF State.

where TCL switches from OFF to ON State if θ > θs + ∆/2
and TCL switches from ON to OFF State if θ < θs − ∆/2.
Here C is the thermal capacitance - kWh/°C, R is the thermal
resistance - °C/kW, θamb is the ambient temperature - °C, θs
is the temperature set-point - °C, ∆ is the temperature dead-
band - °C, P is the power drawn - kW, δ is the step change
applied to the input - °C.

For a homogeneous ensemble of N TCLs, the TCLs have
the same parameters (C, R, . . .). Let Nc and Nh represent the
loads in the ON and OFF states respectively. The probability
density functions can be approximated respectively as

f1(θ) =
CR

(Tc + Th)(PR+ θamb − θ)
(1)

f0(θ) =
CR

(Tc + Th)(θamb − θ)
(2)

When a step change is made in the set-point of the TCL, the
dead-band changes. The change in average power consumption
caused by the set-point step change is calculated by integrating
the product of the probability density functions (1) and (2).
Assumption 1: [7]

∆ << (θs − θamb + PR)

∆ << (θamb − θs), δ << ∆,

Under Assumption 1, the linear transfer function relating the
step change in set point δ and the average power consumption
Ptot can be approximated as

T (s) =
Ptot(s)

δ/s
= − N

ηR
+

A∆ωs

s2 + ω2
. (3)

where

A∆ =
5
√

15C(θamb − θ+)(PR− θamb + θ+)

η(P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2)3/2

(3PR− θamb + θ+)N

Tc0 + Th0
,

ω =
2
√

15C(θamb − θ+)(PR− θamb + θ+)

CR∆
√

(P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2)
,

The corresponding state space representation of the transfer
function (3) is

ẋ =

[
−2σ −ω
σ2+ω2

ω 0

]
︸ ︷︷ ︸

A

x+

[
ωA∆

0

]
︸ ︷︷ ︸

B

u (4)

y =
[
−1 0

]︸ ︷︷ ︸
C

x+− N

ηR︸ ︷︷ ︸
D

u (5)

An open problem in literature is that a physical interpre-
tation of the states for the system (4)-(5) cannot be found.
Hence, we conclude that state-feedback approaches are not
appropriate for (4)-(5), and alternative can be proposed in
the following ways. (i) Adopt an OutPut FeedBack (OPFB)
algorithm since the output y(t) for the system is measurable.
(ii) Adopt a different system representation where the states
are measurable, like the one presented below.

B. Heterogeneous Population of TCLs

Consider a heterogeneous population of N TCLs. The prob-
ability of TCLs going from θstart to θend is P (θend|θstart) =
P (ai) where ai =

θa−θend−mtθg
θa−θstart−mtθg

. Similarly, the probability
of the TCL going from θm < θstart < θm+1 to θn < θend <
θn+1 is

P (θn < θend < θn+1|θm < θstart < θm+1)

=

∫ θm+1

θm

∫ a2

a1

p(a) da dθstart (6)

where a1 =
θa−θ1−mtθg

θa−θstart−mtθg
a2 =

θa−θ2−mtθg
θa−θstart−mtθg

. Here,
θ1 = θn/n+1 and θ2 = θn+1/n when the TCL is traversing
from low/high to high/low temperature, θg = RP is the ON
temperate gain of the TCL and m is a boolean variable 1/0
defining the ON/OFF state of the TCL respectively.

Since this probability depends on the temperature gains, the
parameter heterogeneity is inbuilt in the parameters R and C.
Let us divide the temperature dead band of the TCL into N2

state bins When (6) is evaluated for every starting and ending
bins, the system matrix A ∈ R2N2×2N2 can be analytically
derived (not reported for lack of space, cf. [22] for details),
or identified from data. Hence in this model,
• The state x ∈ R2N2 is measurable and represents the

number of TCL in each temperature bins. Therefore,
state-feedback approaches can be adopted for this model.

• The control input u ∈ RN2 represents the number of
TCLs to be switched in a specific bin from ON/OFF
to OFF/ON respectively. The matrix B can be hence
constructed as in (7).

• The output y represents the aggregate power of TCLs.
The matrix C can be hence constructed as in (7).

B =



−1 . . . 0
... . . .

...
... . . . −1
0 . . . 1
... . . .

...
1 . . . 0


CT = P



0
...
0
1
...
1


(7)

III. PROBLEM FORMULATION

In view of the previously presented models, let the system
dynamics of a population of TCLs be represented by the
following LTI state-space form

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (8)



where x ∈ Rn, u ∈ Rm.
Assumption 2: The system (8) is controllable and observable.
Let yd represent a constant reference trajectory. The objective
is to find a stabilizing control input u(t) such that

lim
t→∞

y(t)− yd → 0

and minimizing the cost/value function

V (t) =

∫ ∞
t

e−γ(τ−t)
(
x(t)TQx(t) + u(t)TRu(t)

)
dt. (9)

In case of output feedback, the first term of (9) becomes
y(t)TQy(t). Without loss of generality, the cost function
can be taken of the form V (t) , x(t)TPx(t). The next
section aims at solving the above mentioned problem for a
homogeneous population of TCL.

IV. OUTPUT FEEDBACK FOR HOMOGENEOUS POPULATION
OF TCLS

To keep the presentation self-contained, in the following
section, we will recall the OPFB algorithm from [20]. Let us
assume that a state feedback control of the form u = Kx(t)
is applied to the system (4)-(5). The solution x(t) becomes

x(t) = e(t−t0)(A+BK)x(t0) (10)

The solution y(t) in terms of x(t) can be written as

y(t− i∆t) = Ce−i∆t(A+BK)x(t)

Suppose that there are N1 output measurements available,
using the above representation, a stacked fictious state ȳt can
be constructed as

y(t)
y(t−∆t)

...
y(t− (N1 − 1)∆t)


︸ ︷︷ ︸

ȳt

=


C

Ce−∆t(A+BK)

...
Ce−(N−1)∆t(A+BK)


︸ ︷︷ ︸

G

x(t)

=⇒ ȳt = Gx(t). (11)

The idea here is to learn the value function V (t) in term of
the output measurements ȳt. Using (11), the quadratic value
function V (t) whose solution is to be found can be rewritten
as

V (t) = x(t)TPx(t) = ȳTt G
T
N1
PGN1

ȳt (12)

where GN1 = (GTG)−1GT . Define P̄ = GTN1
PGN1 . Using

(10)-(12), the bellman equation equivalent of (9) becomes

e−γ∆tȳTt+∆tP̄ ȳt+∆t−ȳTt P̄ ȳt = −
∫ t+∆t

t

e−γ(τ−t)ȳTt Q̄iȳtdτ

− 2

∫ t+∆t

t

e−γ(τ−t)wTRK̄i+1ȳtdτ (13)

where Q̄ =
[
1 0 0 0

]T
Q
[
1 0 0 0

]
and w is the

probing noise. This equation does not require the system state
measurements and results in Algorithm 1.

Algorithm 1: VI algorithm for OPFB

Result: Riccati solution P̄ , K̄
1 Input: An initial stabilizing control policy u0

2 Initialization: Set i← 0 and t← 0
3 Online data collection: Apply the control policy

u = u0 + e (where e is a probing/exploration noise) and
collect the system output and input information.

4 Policy evaluation: Solve for P̄i and K̄i from (13)
5 Stopping criterion: Update i← i+ 1 and t← t+ ∆t,

and go to Step 3, until

||P̄i − P̄i−1|| ≤ ε

where ε > 0 is sufficiently small predefined threshold.
6 Actual control policy improvement: Terminate the

exploration noise e and u = u0 as the control input.
Apply the control policy u = K̄iȳt.

N1 5 6 7

KT


0.6902
0.1111
−0.4557
0.0644
−0.4114




0.4406
0.2315
−0.0301
−0.2762
0.0416
−0.4091





0.3066
0.2163
0.0963
−0.0538
−0.1907
0.0297
−0.4066


Computation

time [s] 113 111 111

Table I: Performance comparison for varying N

A. Results and discussion

Consider a homogeneous population of TCLs described in
(4) - (5). The system matrices are obtained from [23]. As
stated before, since the states of this system are immeasurable,
Algorithm 1 is applied with γ = 0.1, Q = 0.1 and ∆t = 0.1.
The TCLs are required to track as step change from 15.5 to
20 kW. The number of stored data in the history is 3 i.e:
ȳt = [y(t) y(t−∆t) y(t− 2∆t) r(t)]. A probing noise of the
form

∑100
ω=1 sin(ωt) is applied. Since σ(A) < 0, the algorithm

is initialized with K̄0 = 0. The tracking performance with
different input costs (R) is shown in Fig. 1. As the input
cost increases, the input magnitude decreases, but the settling
time increases as well. The figure highlights that the results
corresponding to R = 1 and R = 3 are quite realistic.
We then fix R = 1 and Q = 0.1, and further study the
effect of increasing the memory variables N1: the results are
reported in Table I: the table reports that increasing N1 may
not necessarily lead to higher computational time. In the next
section, we study the model free adaptive control strategies
for the heterogenous model described in (II-B).

V. NONLINEAR STATE FEEDBACK FOR HETEROGENEOUS
POPULATION OF TCLS

Although the heterogeneous model (II-B) is linear, state-
feedback control algorithms cannot be applied, since the
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Figure 1: Output and input trajectories with varying costs

system is not controllable (
∑
i xi is constant). This issue can

be solved by defining a desired state xset corresponding to
the desired output. In other words, the set-point power is
represented in terms of distribution of TCL across state bins.
Because some heterogeneous TCLs models in literature are
bilinear, let us address a nonlinear controller.

Consider a non-linear system of the form

ẋ = f(x) + g(x)u, x(0) = x0 (14)

J(x, u) =

∫ ∞
0

q(x(t)) + u(t)TR(x)u(t)︸ ︷︷ ︸
r(x(t),u(t))

dt, (15)

where f(·) and g(·) are Lipschitz continuous functions. The
objective is to find a control input u(·) that minimizes the
cost function. The system (14) can be related to the model
developed in Section II-B as f(x) representing A(x − xset)
and g(x) representing B. The system (14) can be rewritten in
the form

ẋ = f(x) + g(x)ui(x) + g(x)vi

where vi = u0− ui + e, u0 is the initial control input e is the
exploration noise.
Assumption 3: The system (14) is Input to State Stable (ISS)
when e is considered as input.

The solution of the value function (15), under Assumption
3, along the trajectory of (V) and integrating on the interval
[t, t+ ∆t] yields

∇V (x(·)) = −
∫ t+∆t

t

[q(x) + uTi R(x)ui + 2uTi+1R(x)vi]dτ

(16)
By approximation theory, V (·) and u(·) can be approximated
by basis function

V̂i(x) =

N1∑
j=1

ĉi,jφj(x) ûi+1(x) =

N2∑
j=1

ŵi,jψj(x)

where ĉ and ŵ are weights to be determined. Hence (16)
becomes [24]

N1∑
j=1

ĉi,j [φj(x(tk+1))− φj(x(tk))]

= −
∫ tk+1

tk

[q(x) + ûTi R(x)ûidt

−
∫ tk+1

tk

2

N2∑
j=1

ŵi,jψ
T
j (x)R(x)v̂idt+ ei,k (17)

The solution ĉ and ŵ can be found by minimizing ei.k in a
least squares sense. The equation (17) does not depend on
the system dynamics but only on the state and input measure-
ments. This brings us to the online adaptive Algorithm-2.

Algorithm 2: VI for non-linear non-affine systems
Result: Weights of the basis functions ŵ, ĉ

1 Input: A initial stabilizing control policy u0

2 Initialization: Determine the set Ω ∈ Rn for
approximating the states x(t). Set i← 0

3 Online data collection: Apply the control policy
u = u0 + e and collect the system state and input
information.

4 Policy evaluation and improvement: Solve for ŵ and ĉ
from (17).

5 Stopping criterion: Let i← i+ 1, and go to Step 3,
until

N1∑
j=1

|ĉi,j − ĉi−1,j |2 ≤ ε

where ε > 0 is sufficiently small predefined threshold.
6 Actual control policy improvement: Terminate the

exploration noise e and u = u0 as the control input.
Once x(t) ∈ Ω̂i, apply the control policy u = ûi+1.

A. Results and Discussion

With the TCl parameters from [23], a linear model as
described in Section-II-B is developed. Algorithm 2 is applied
to this system. The number of state bins considered is 4,
number of TCLs considered is 40 and a probing noise of
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Figure 2: Output and input trajectories with varying costs

Number of state bins N2 4 6 8 10
Computational

time [ms] 8.50 33.78 43.28 80.07

Table II: Computational complexity for varying state bins

the form
∑100
ω=1 sin(ωt) is applied. Since the system has the

property σ(A) < 0, the algorithm is initialized with u0 = 0.
The tracking performance with increasing input cost (R) is
shown in Fig. 2.

In general, the accuracy of the system representation in-
creases with increasing number of state bins. Hence a study is
made with increasing state bins, and the resulting convergence
time is reported in Table II. As expected, the computational
time increases with the number of state bins.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of the adaptive optimal control
problem for TCLs. Both homogeneous and heterogeneous
populations of TCLs have been considered and an appropriate
problem statement is formulated. The interest in adaptive
optimal control was motivated by the difficulty in getting
accurate system parameters. Overall this works proves the
feasibility of adaptive optimal control for TCLs, although
some open problems are still open for future research: a) obtain
a physical interpretation for the state of the homogeneous
population of TLCs; b) reduce the requirements for persistency
of excitation in the learning phase [25], [26]; c) address

the inevitable presence of external disturbances and explicit
constraints on input.

Another open problem in literature is the following: in case
of TCL systems, the input matrix B is easy to be known (upon
prefiltering of the control input as explained in [27]), which
means that PI algorithms can be sought, since PI converges
faster than VI. Hence a PI algorithm for a partially unknown
system can sought for OPFB control. Let us consider the state
space representation (8). The conventional solution for (9),
with complete system knowledge, can be found by solving

(A− 0.5γI)TP +P (A− 0.5γI)−PBR−1BTP = −CTQC
(18)

The solution P can be found for a partially unknown system
(only matrix B is known) using the state measurements online
by solving recursively [15]:

x(t)TP ix(t)− e−γ∆tx(t+ ∆t)TP ix(t+ ∆t)

=
1

2

∫ t+∆t

t

e−γ(τ−t)
[
x(t)TCTQCx(t) + uTi Rui

]
dτ.

Using (10) and (12) in the above equation results in

ȳTt P̄iȳt − e−γ∆tȳTt+∆tP̄iȳt+∆t

=
1

2

∫ t+∆t

t

e−γ(τ−t)
[
ȳTt Qȳt + uTi Rui

]
dτ (19)

which is independent of the states and the system matrices.
Hence, (19) can be used to propose Algorithm 3.

Algorithm 3: PI algorithm for OPFB

Result: Riccati solution P̄
1 Input: A initial stabilizing control policy
2 Initialization: Set i← 0 and t← 0
3 Online data collection: Apply the control policy

u = ui + e (where e is a probing/exploration noise and
collect the system output and input information.

4 Policy evaluation: Solve for P̄i from (19)
5 Policy improvement: Apply the control policy

ui = −R−1BTG2P̄iȳt
6 Stopping criterion: Let i← i+ 1 and t← t+ ∆t, and

go to Step 3, until

||P̄i − P̄i−1|| ≤ ε

where ε > 0 is sufficiently small predefined threshold.

Lemma VI.1. The equation (19) converge to a sub-optimal
positive definite solution of (18).

Proof. Dividing (19) by ∆t and taling a limit results in

lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t

= lim
∆t→0

∫ t+∆t

t
e−γ(τ−t)

[
ȳTt Qȳt + uTRu

]
dτ

∆t



lim
∆t→0

∫ t+∆t

t
e−γ(τ−t)

[
ȳTt Qȳt + uTRu

]
dτ

∆t

= ȳTt Qȳt + uTRu = x(t)TCTQCx(t) + uTRu

lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t

= lim
∆t→0

(
− γe−γ∆tȳTt+∆tP̄ ȳt+∆t

+ e−γ∆t ˙̄yTt+∆tP̄ ȳt+∆t + e−γ∆tȳTt+∆tP̄ ˙̄yt+∆t

)
= −γȳTt P̄ ȳt + ˙̄yTt P̄ ȳt + ȳTt P̄ ˙̄yt

Differentiating (11) results in

˙̄yt = Gẋ(t) = GAx(t) +GBu(t)

Using this in the previous equation gives

lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t

= x(t)T (ATP + PA− γP )x(t)

lim
∆t→0

∫ t+∆t

t
e−γ(τ−t)

[
ȳTt Qȳt + uTRu

]
dτ

∆t

+ lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t

= x(t)T (ATP+PA−γP+CTQC)x(t)+x̂PBR−1BTPx̂

Now, let G2 be a filter with the same dimension of G, then
x̂→ x as G2 → G.

Although the main advantage of this idea is to work in a
PI setting, it has the drawback of requiring the convergence
G2 → G. This can be in principle guaranteed by the prob-
ing/exploration noise. Nevertheless an open problem is how
to avoid such an extra filter.
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