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Abstract— In this paper, we present a Symbolic Reinforce-
ment Learning (SRL) based architecture for safety control of
Radio Access Network (RAN) applications. In particular, we
provide a purely automated procedure in which a user can
specify high-level logical safety specifications for a given cellular
network topology in order for the latter to execute optimal
safe performance which is measured through certain Key
Performance Indicators (KPIs). The network consists of a set
of fixed Base Stations (BS) which are equipped with antennas,
which one can control by adjusting their vertical tilt angles.
The aforementioned process is called Remote Electrical Tilt
(RET) optimization. Recent research has focused on performing
this RET optimization by employing Reinforcement Learning
(RL) strategies due to the fact that they have self-learning
capabilities to adapt in uncertain environments. The term safety
refers to particular constraints bounds of the network KPIs
in order to guarantee that when the algorithms are deployed
in a live network, the performance is maintained. In our
proposed architecture the safety is ensured through model-
checking techniques over combined discrete system models
(automata) that are abstracted through the learning process.
We introduce a user interface (UI) developed to help a user set
intent specifications to the system, and inspect the difference in
agent proposed actions, and those that are allowed and blocked
according to the safety specification.

Keywords: Reinforcement Learning (SRL), Formal methods,
Remote Electrical Tilt (RET), RAN control.

I. INTRODUCTION

There exists a push for future generations of mobile
networks, such as 6G, to leverage AI in their operations.
Simultaneously, future cellular networks are expected to be
exceedingly complex, and demand real-time and dynamic
network optimization and control. This constitutes one of
the key challenges for network operators. It is desirable
that network configuration is optimized automatically and
dynamically in order to:
• satisfy consumer demand, with User Equipment (UEs)

highly distributed in both spatial and temporal domains,
• account for the complex interactions between multiple

cells that shape the KPIs of a region in the network,
and finally,

• ensure acceptable Quality of Experience (QoE) to each
UE in the network

In such a scenario, the objective is to optimize a set of
network KPIs such as coverage, quality and capacity and to
guarantee that certain bounds of these KPIs are not violated
(safety specifications). The optimization can be performed by
adjusting the vertical electrical tilt of each of the antennas
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of the given network, known in the literature as the RET
optimization problem (see [1]–[6]). For example, an increase
in antenna downtilt correlates with a stronger signal in
a more concentrated area as well as higher capacity and
reduced interference radiation towards other cells in the
network. However, excessive downtilting could also lead
to insufficient coverage in a given area, with some UEs
unable to receive a minimum Reference Signal Received
Power (RSRP). Existing solutions to downtilt adjustment
in the industry use rule-based algorithms to optimise the
tilt angle based on historical network performance. These
rules are usually created by domain experts, and thus lack
the scalability and adaptability required for modern cellular
networks.

Reinforcement learning (RL) [7]–[10] has become a pow-
erful solution for dealing with the problem of optimal de-
cision making for agents interacting with uncertain environ-
ments. It is widely known that RL performs well on deriving
optimal policies for optimizing a given criterion encoded via
a reward function, and can be applied in many use cases
such as robotics, autonomous driving, network optimization,
etc. [11], [12]. However, it is also known that the large-scale
exploration performed by RL algorithms can sometimes take
the system to unsafe states [13].

Considering the problem of RET optimization, RL has
been proven to be an efficient framework of KPI optimization
due to its self-learning capabilities and adaptivity to potential
environment changes [14], [15]. For addressing the safety
problem (i.e., to guarantee that the desired KPIs remain in
certain specified bounds) authors in [14]–[16] have proposed
a statistical approach to empirically evaluate the RET opti-
mization in different baseline policies and in different worst-
case scenarios. With this approach, safety is defined with
respect to a minimum performance level compared to one or
more safety baselines that must be ensured at any time.

The aforementioned statistical approach focuses on en-
suring the reward value remains above a desired baseline
and do not provide a mechanism of blocking actions that
violate undesired system behavior. In particular, a more
powerful notion of safety can be expressed in terms of
safe states or regions, defined according to a (formal) intent
specification [17]. Such an approach decouples the notion of
safety from that of reward. Intuitively, safety intents define
the boundaries within which the RL agent may be free to
explore. Motivated by the abovementioned, in this work, we
propose a novel approach for guaranteeing safety in the RET
optimization problem by using model-checking techniques
and in parallel, we seek to generalize the problem in order to
facilitate richer specifications than safety. In order to express
desired specifications to the network into consideration, Lin-
ear Temporal Logic (LTL) (see [18]–[21]) is used, due to the
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ANN Artificial Neural Network
BA Büchi Automaton

CMDP Companion Markov Decision Process
DQN Deep Q - Network
KPIs Key Performance Indicator
LTL Linear Temporal Logic
MDP Markov Decision Process
QoS Quality of Service
RET Remote Electrical Tilt
RBS Radio Base Station
RAN Radio Access Network
RRC Radio Recourse Control
RSRP Reference Signal Received Power
SGD Stochastic Gradient Descent
TA Timing Advance

SRL Symbolic Reinforcement Learning
UI User Interface
UE User Equipment

TABLE I: List of acronyms

fact that it provides a rich mathematical formalism for such
purpose. Our proposed framework exhibits the following
attributes:

• a general automatic framework from LTL specification
user input to the derivation of the policy that fulfills
it; at the same time, blocking the control actions that
violate the specification;

• novel system dynamics abstraction to Markov Decision
Process (MDP) which is computational efficient;

• UI development that allows a user to graphically access,
understand and trust the steps of the proposed approach.

Related work. A framework that handles high-level speci-
fications to RL agents is proposed in [22]. However, such
approach requires the development of reward machines,
which requires significant engineering that requires effort and
knowledge, and it cannot be handled in an automated way in
the sense that if the environment or the use case changes, new
reward function development is required. Authors in [23]
propose a safe RL approach through shielding. However, the
authors assume that the system dynamics abstraction into
an MDP is given, which in the network applications that
this manuscript refers to is challenging. For a comprehensive
survey of safe RL we refer to [13]. As mentioned previously,
authors in [14] address the safe RET optimization problem,
but rely on statistical approaches that cannot handle general
LTL specifications that we treat with this manuscript. A
preliminary short version of this paper without deep technical
details is shown in a demo track in [24].

This manuscript is structured as follows. Section II gives
some notation and background material. In Section III, a
detailed description of the proposed solution is given. Section
IV develops a concrete solution using the proposed approach
in the RET optimization problem, through a video and UI,
and experimental results. Finally, Section V is devoted to
conclusions and future research directions.

II. NOTATION AND BACKGROUND

Throughout this manuscript, the abbreviations listed in Ta-
ble I will be used. In the sequel, we review some background
material from model checking theory and RL based RAN
control.

Fig. 1: A multi-cell wireless mobile network environment [14].

Fig. 2: Representation of the downtilt θt,c at time t for cell c.

A. Linear Temporal Logic (LTL)

In this paper we focus on task specifications ϕ given in
LTL. The syntax of LTL (see [18]) over a set of atomic
propositions Π is defined by the grammar:

ϕ := > | $ | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2,

where $ ∈ Π and ©, U stand for the next and until opera-
tors, respectively; ¬ and ∧ are the negation and conjunction
operator respectively. The always (�) and eventually (♦)
operators can be defined by � := ¬♦¬ϕ, ♦ := >Uϕ,
respectively. LTL can be used to express any type of temporal
tasks for dynamical systems [21].

Definition 1. A Büchi Automaton (BA) is a tuple
(Q,Q0, 2

Π, δ, F ) where
• Q is a finite set of states;
• Q0 ⊆ Q is a set of initial states;
• 2Π is the alphabet;
• δ : Q× 2Π → 2Q is a transition relation;
• F ⊆ Q is a set of accepting states.

It has been proven that every LTL formula can be trans-
lated to a BA that models all the system runs satisfying the
formula (see [25] for fast LTL to BA translation tools).

B. Reinforcement Learning based RAN control

Consider an area covered byR Radio Base Stations (RBS)
with C cells that serve a set of U UEs uniformly distributed
in the area (see Fig. 1). Denote by θt,c the antenna tilt
of the cell c ∈ C at time t ≥ 0, as depicted in Fig.
2. The RET optimization problem has a goal to maximize
network capacity and coverage while minimizing inter-cell
interference. Such interference is modeled by the quality
KPI. The RET control strategy handles the antenna tilt of
each of the cells, and is executed independently for each
cell. In particular,
• the coverage KPI measures the degree to which a region

of interest is adequately covered by the signal, and is



Fig. 3: A graphical illustration of the sequence of steps of the proposed architecture.

computed using measurements of the Reference Signal
Received Power (RSRP).

• the capacity KPI is an indicator of degree of congestion
in the cell. This is calculated from the Radio Recource
Control (RRC) congestion rate.

• the effect of negative cell interference from neighboring
cells is modeled by the quality KPI. The quality is cal-
culated using the cell overshooting and cell overlapping
indicators, which in turn depend on measurements of the
RSRP level differences between a cell and its neighbors.

The RL agent observes a state of the environment, applies
an action, receives a reward, and transitions to the next
state [7]. The goal is to learn a policy that maximizes the
cumulative reward over a time horizon. The environment of
the RL agent is a simulated mobile network, and the system
model is captured via a Markov Decision Process (MDP)
(S,A,P,R, γ) that consists of:
• S ⊆ [0, 1]m discrete states that consist of normalized

values for downtilt, and KPIs such as the (RRC) conges-
tion rate, Timing Advance (TA) overshooting, coverage,
capacity and quality, i.e., st,c = [θt,c,KPIt,c] ∈ S, with
state vector dimension m, where KPIt,c is a vector of
state observations returned by the environment (in our
use case the dimension of KPIt,c is between 15 and 45,
depending on the features from the simulator selected
to be part of the state). For example,

KPIt,c = [COVt,c,CAPt,c,QUALt,c, ...,KPI
k
t,c, ...

SINRt,c,TA OSt,c,RRC CONG RATEt,c].

• discrete actions A = {−α, 0, α} where α denotes the
magnitude of the downtilt; At cell c and at time t the
agent selects at,c ∈ A;

• transition probability matrix P which describes the state
evolution given the current and the executed by the
action state;

• scalar rewards R that are the log squared sum of the

coverage, capacity and quality, i.e.:

rt,c = − log
(
1 + COV2

t,c + CAP2
t,c + QUAL2

t,c

)
∈ R.

• discount factor γ ∈ [0, 1].
The policy of the RL agent π : S → A is a function that

maps the states to actions that define the agent’s strategy.
At each discrete time instant t the RL agent receives a
state of the environment, selects an action, receives a reward
and transits to a new state. The goal is to maximize the
cumulative reward over a period of time.

C. Q learning and Deep Q Network

Q learning [7] is an RL learning algorithm that aims at
estimating the state-value function:

Qπ(s, a) := E

[ ∞∑
t=0

γtrt+1|st = s, at = a

]
,

under a policy π, where E stands for the expected value.
When an Artificial Neural Network (ANN) parameterization
is chosen to estimate the Q function, we refer to the proce-
dure as a Deep Q - Network (DQN); DQN uses experience
replay memory D = {(si, ai, ri, s′i)}Ni=1, which is a means
to store experience trajectories in datasets and use them for
training purposes; the trajectories are enumerated for i ∈
{1, . . . , N}, where N is the number of samples; DQN uses
Stochastic Gradient Descent (SGD) methods with update
w ← w−η·∇ [yt −Q(st, at)]

2, where η, yt,∇ stands for the
learning rate, the target function at step t, and the gradient
operator, respectively, in order to minimize the error between
the target and parameterized Q function.

III. PROPOSED SOLUTION

Our solution relies on a sequence of steps taken in order
to match the LTL specification with the RL agent as it is
depicted in Fig. 3, and block the actions that could lead the
RL agent to unsafe states.



Algorithm 1
1: Input: LTL formula ϕ given by the user
2:
3: Step 1: Gather the experience replay data D =
{(si, ai, ri, s′i)}Ni=1 from simulation. Select subset of
states as per intent;

4: Step 2: Discretize selected states into Nb bins, creating
discretized states S. The size of state space is |S|Nb ;

5: Step 3: Construct the CMDP (S,A,P,R, γ);
6: Step 4: Pass the LTL specification ϕ to model checking

Algorithm 2;
7: Step 5: Model checking returns traces that violate ϕ;
8: Step 6: At each step in RL agent Function Shield(MDP,

T) blocks unsafe actions.

Initially, the provided specification is converted to a BA
as explained in Section II. Then, by gathering experience
data tuples from the RL agent, which is trained within a
simulation environment with state-of-the-art model-free RL
algorithms (DQN, Q-learning, SARSA [1]–[4]) we construct
the system dynamics modelled as an MDP. In this solution,
we develop a novel structure known as Companion MDPs
(CMDPs); CMDPs do not encode the state transitions in
terms of the full set of state features. E.g. consider that a
state vector has features s = [x1, x2, . . . , xn]. We select only
a subset of features, e.g., scmdp,1 = [x2, x4, x5]. Similarly
the next state vector would be s′cmdp,1 = [x′2, x

′
4, x
′
5].

There could be several other companion MDPs with
various subsets of state features e.g. scmdp,2 = [x1, x3, x5],
scmdp,3 = [x3, x5, x6] etc. However, only the abstractions
relevant to the specification is chosen, by matching the
features in the specification to those in the companion MDP.
Such an approach reduces the state space complexity, and
retains only the relevant features depending on the intent.
An MDP Matching component matches the intent to the
relevant CMDP (depending on the features mentioned in
the intent). In future work we would like to assess any
loss of accuracy in predicting safety due to such an approach.

The experience data tuples generated over training are
in the form (s, a, r, s′) where s indicates the current state,
a indicates the executed action, r the received reward that
the agent receives after applying action a at state s; and s′

stands for the state the agent is transitioned to after executing
action a at state s. In order to match the BA from the given
LTL specification and the MDP, the states of the MDP are
labelled according to the atomic propositions Π from the
LTL specification through a labeling function L : S → 2Π.
The atomic propositions set Π consists of combination of
KPIs in terms of low and high values. Then, by computing
the product of the MDP with the specification, we construct
an automaton T = MDP⊗Aϕ that models all the possible
behaviours of the system over the given specification. At the
same time, by negating the given formula, the automaton
T = MDP ⊗ A¬ϕ is computed in order to compute any
possible unsafe traces, which is done by applying graph
techniques (such as Depth First Search algorithm see [26])
on this automaton. In this way, we are able to compute

Algorithm 2 Model checking

1: Input: LTL formula ϕ
2: Output: Unsafe traces that violate ϕ
3:
4: Step 1: Translate the LTL formula to a BA Aϕ; Compute

also the automaton A¬ϕ.
5: Step 2: Compute the product automaton T = MDP⊗Aϕ

which essentially encodes all the possible behavior of the
system;

6: Step 3: Apply graph techniques to the product T =
MDP⊗A¬ϕ for the calculation of any possible unsafe
traces.

Fig. 4: The BA for the formula ϕ3 = �(♦covHigh) ∧ (♦qualHigh) with
atomic propositions Π = {covHigh, qualHigh}. The state 2 should be
visited with actions covHigh and qualHigh over all futures.

Fig. 5: A simulated mobile network with 21 cells.

the system traces that satisfy the intent; using these the
actions that lead to violation of the intent can be blocked.
The abovementioned process is depicted more formally in
Algorithm 1 and Algorithm 2.

Due to expressiveness of LTL, it may be possible that
the user can choose an input intent that results in no safe
traces for a given system. In such situations, the proposed
technique cannot arrive at any solution, since any proposed
action to the RL agent would lead to the violation of the
given intent. For avoiding such configuration, i.e., in cases
that there the executed algorithms results to no safe trace,
we modify the given input to a new intent that results to
some safe traces (see Fig. 5, inner loop). This procedure is
currently performed by trial and error, and we are currently
investigating how this re-configuration process can be per-
formed in an automatic way.



Fig. 6: Plot showing the comparison of cumulative reward values with and
without the safety shield, for the LTL specification ϕ2.

Remark 1. It should be mentioned that our proposed ar-
chitecture is general, and can be applied to any framework
in which the dynamical system under consideration is ab-
stracted into an MDP (see Section II), for which LTL speci-
fications need to be fulfilled. For example, in robot planning
applications, the states are locations of the environment that
the robot can move, and atomic propositions are the goal
state and the obstacles. The potential LTL formula in such a
scenario would include reachability and safety tasks.

IV. DEMONSTRATION

We now detail a UI we have developed for demonstration
purposes. The UI is designed to be used by a network
operations engineer who can specify safety intents, monitor
tilts and their impact, and supervise the RL agent’s operation.
The initial screen of the UI depicts a geographic area with
the available radio sites and cells. By selecting one of the
cells, a new screen appears with the KPI values depicted on
the left. On the right part of the page, one can see:

1) the MDP system model;
2) a list of available LTL intents;
3) BAs representing each of the intents;
4) the button “Run safe RL” to run the simulation;
5) the switch “with/without shield” for enabling the safety

shield.
The chosen actions on the MDP are depicted in blue, while
the blocked actions by the shield are depicted in red. The
user can view the training process and the optimal choice
of actions that guarantee the satisfaction of given input as
well as the block of unsafe actions. The current high level
of detail in the UI is meant to illustrate the technology,
and develop trust in the solution (which is crucial for AI
systems which can sometimes appear inscrutable). It can
be imagined that a production UI would instead show a
summary of selected and blocked actions instead of large
MDP models. The impact of the shield may also be viewed,
and it is seen that the shield successfully blocks a proportion
of unsafe states.

The simulation is executed on an urban environment with
parameters as presented on Table II. The UEs are randomly
positioned in the environment. Once the user positions and
networks parameters are provided, the simulator computes

Number of BSs |R| = 7
Number of cells |C| = 21
Number of UEs |U| = 2000
Antenna height 32 meters

Minimum dowtilt angle θmin = 1◦

Maximum downtilt angle θmax = 16◦

Discount factor γ = 0.9
Learning rate η = 0.1

Batch size 50

TABLE II: The numerical values used for the training of the RL agent.

the path loss in the urban environment using the Okomura-
Hata propagation model [27]. Examples of LTL tasks that
can be given as input to the UI and the user can chose from
the list, are given as follows:

1) ϕ1 = �(¬sinrLow∧ quaHigh∧ covHigh), i.e., “SINR,
coverage and quality are never degradated together”.

2) ϕ2 = (♦covHigh) ∧ (♦quaHigh) ∧ (♦¬osHigh), i.e.,
“antenna never overshoots and will eventually achieve
high coverage and high quality”.

3) ϕ3 = �(♦covHigh)∧(♦qualHigh), i.e., “high coverage
and high quality over all futures”. The BA automaton
of this formula is depicted in Fig. 4.

We now touch upon the efficacy of the safety shield. When
we consider the specification ϕ1, the number of safe states
improves from 76% safe states without the shield to 81.6%
safe states with the shield. In addition the cumulative reward
value improves from 24,704 without the shield to 41,622.5
with the shield, an improvement of 68.5%. This may be
attributed to the quality and coverage values remaining in
desirable regions due to presence of the safety shield. We also
show the reward plot for specification ϕ2 in Fig. 6. Notice
that the cumulative reward is significantly improved with the
shield as compared to without. This may be attributed to the
coverage and quality KPI values being forced to better values
by the safety shield. Further, there is an improvement in
safety, with introduction of the shield leading to 639 unsafe
states instead of 994 without the shield. These values can be
further improved by making the shield more conservative.
In this paper, the shield blocks an action if there is a 10%
probability its action leading to a violating trace. This may
be reduced for example in the extreme case to any non-zero
probability of leading to an unsafe trace. A demonstration
video accompanying this paper can be found in:

https://youtu.be/cCDzaFd7D3k

V. CONCLUSIONS

In this paper, we present an architecture for network KPIs
optimization guided by user-defined specifications expressed
in the rich LTL formalism. Our solution consists of MDP
system dynamics abstraction, automata construction, cross
product and model-checking techniques to block undesired
actions that violate the specification with a given probability.
Simulation results show that the approach is promising for
network automation and control through deploying optimal
strategies. In addition to this, a UI has been developed in
order for a user to have interaction with all the steps of
the proposed procedure for developing trust in the safe RL
solution.



Fig. 7: The developed UI for the demonstration of the proposed approach. The user can specify an LTL formula, and can choose to view the resulting BA,
and then inspect the evolution of the RL agent training, and the actions blocked by the safety shield.

Future research directions will be devoted towards apply-
ing the proposed framework in other telecom use cases as
well as in robotics (motion planning). In addition, future
work will focus on challenges in real-time model checking as
the RL agent evolves, and on deriving guarantees for safety
based on confidence measures for the MDP model.
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