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Adaptive Quantized Control of Offshore Underactuated Cranes with
Uncertainty

Jing Zhou, Siri Marte Schlanbusch
Department of Engineering Sciences, University of Agder, Grimstad, 4898, Norway

Abstract— The anti-swing control of offshore cranes presents
much more challenges. Most existing controllers for offshore
cranes are designed based on linearized dynamics and require
the accurate values of the plant parameters. In this paper,
an adaptive sliding mode control scheme is investigated for
a nonlinear underactuated crane system with unmodeled dy-
namics. The proposed control method can ensure asymptotic
stability and does not need linearization of the complicated
nonlinear dynamic equations during controller design and
stability analysis. To reduce the communication burden in
a network, a uniform quantizer is introduced in the input
communication channel. A quantized adaptive sliding mode
control scheme is further developed for the underactuated
cranes to compensate for the effects of input quantization and
uncertain parameters. The proposed controller together with
the quantizer ensures the asymptotic stability of the closed-loop
system in the sense of signal boundedness and zero stabilization
error. Numerical simulations are conducted to illustrate the
effectiveness of proposed schemes.

I. INTRODUCTION
Cranes are used in various offshore industrial applica-

tions, e.g. load transportation, offshore drilling, and windmill
farms, [1], [2], [3]. Since the number of available actuators
or control inputs is less than the degree of freedom (DOF),
cranes can be modeled as underactuated mechanical sys-
tems.The control task for cranes is to transport the load to the
desired location precisely and quickly, while suppressing the
payload swing simultaneously. It is desirable in industrial
application, since it will increase transportation efficiency
and ensure the safety of operations in various environments
to avoid serious disasters.

Due to the theoretical and practical importance in the study
of crane control systems, there has been a great deal of
interest in the development of control schemes for offshore
crane operations. Many control schemes have been proposed
to control underactuated crane systems in the literature, such
as PID control [4], model predictive control [5], neural
network control [6], robust control in [7], energy-based
nonlinear control [8], [9], [10], [11], [12], adaptive control
in [13], [14], [15], [16], [17], sliding-mode control in [18],
[19], [20], [21], [22], In [13] an adaptive control design
method including path planning and tracking control was
proposed for underactuated crane systems by combining
theoretical analysis with empirical path planning methods.
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[14] studied adaptive control for flexible crane systems with
the boundary output constraint. In [15], adaptive control
of uncertain underactuated cranes was studied with a non-
recursive control scheme. In [16], adaptive control for the
cranes was investigated, where the updating law is designed
to achieve accurate identifications of unknown parameters
and exact compensation of the gravity-related lumped term.
In [17], adaptive backstepping control was proposed for
underactuated cranes with guaranteed transient performance.
In [18], a robust sliding mode control was proposed for
underactuated cranes with mismatched uncertainties. The
sliding mode control for underactuated cranes with known
parameters was proposed in [19], [20]. In [21], an anti-swing
sliding mode control scheme for underactuated gantry cranes
is proposed to keep the error variables staying on the surface.
In [22], adaptive sliding mode control was designed for an
offshore container crane with unknown disturbances.

Quantized control has attracted considerable attention in
recent years, due to its theoretical and practical impor-
tance in practical engineering, where digital processors are
widespread used and signals are required to be quantized
and transmitted via a common network to reduce the com-
munication burden. An important aspect is to use quantiza-
tion schemes that yield sufficient precision, but require low
communication rate for reducing the communication burden
over the network. Control with input quantization has been
studied in [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35].

From the above literature reviews, the position and anti-
swing control of underactuated cranes have been exten-
sively investigated and various control schemes have been
proposed. However, how to apply a quantized control that
the position error and the swing angle converge to the
origin under parametric uncertainties remains unsolved. Most
existing controllers for offshore cranes are designed based
upon linearized dynamics and need the accurate values of
the plant parameters. In this paper, an adaptive sliding mode
control scheme is investigated for a nonlinear underactuated
crane system with unmodeled dynamics. The parameters of
the friction are not required to be known in the control
design. The proposed control method can ensure asymptotic
stability and does not need linearization of the complicated
nonlinear dynamic equations during controller design and
stability analysis. To reduce the communication burden in
a network, a quantizer is introduced in the input communi-
cation channel. A quantized adaptive sliding mode control
scheme is further developed for the underactuated cranes



to compensate for the effects of input quantization and
uncertain parameters. The proposed controller together with
the quantizer ensures the stability of the closed-loop system
in the sense of signal boundedness and stabilization error
within an adjustable bound. Simulation results illustrate the
effectiveness of the proposed schemes.

II. PROBLEM FORMULATION

A. Underactuated Crane Model

An offshore crane system suffering from ship motions in
Figure 1 is complicated. In this paper, the main focus is to
control the payload position and suppress the swing angles
as fast as possible. A 2-D underactauted crane system with
a payload suspended is considered, as illustrated in Figure
2 in [13]. The crane dynamics with constant rope length is
described as follows:

(M +mp)ẍ+mplθ̈ cos θ −mplθ̇
2 sin θ = u+ Fr (1)

mpl
2θ̈ +mpl cos θẍ+mpgl sin θ = 0 (2)

where x(t) and θ(t) represent the position of the cart and
the swing angle of the rope, respectively. u(t) is the control
input. M denotes the weight of the crane system, mp denotes
the weight of the load, l denotes the length of the rope, and
g is the gravitational constant, g = 9.8m/s2. Fr denotes the
friction force which is approximately modeled as

Fr = f1 tanh(ẋ/ξ)− f2|ẋ|ẋ = βTψ(ẋ) (3)

where

ψ(ẋ) = [tanh(ẋ/ξ), − |ẋ|ẋ]T (4)

β = [f1, f2]
T (5)

where f1 and f2 are the friction parameters, ξ is a constant,
ψ(x, ξ) is a nonlinear function and β is an unknown param-
eter vector.
The following assumption is assumed.

Fig. 1. Illustration of an offshore crane

Assumption 1: The swing angle satisfies θ(t) ∈
(−π/2, π/2).

Remark 1: The length of the rope l is a constant and
available for control design. It is commonly required in [9],
[21]. The friction parameters are not required to be known.

Remark 2: Note that the payload is always beneath the
trolley during the overall transferring process, such that the
swing angle θ(t) satisfies θ(t) ∈ (−π/2, π/2) in [5], [9],
[16], [21].

Fig. 2. Illustration of an underactuated crane [13]

In this paper, the control objective is to drive the crane from
its initial position x(0) = 0 to reach the target position xd
and suppress the pendulum swing angles at the same time,
such as x(t) → xd and θ(t) → 0 as t→ ∞.

III. ENERGY-BASED ADAPTIVE CONTROL

To facility the control design and stability analysis, the
matrix representation of system (1)-(2) is written as

q = [x, θ]T (6)

M(q)q̈ =

[
mplθ̇

2 sin(θ)
−mpgl sin(θ)

]
+

[
u+ βTψ

0

]
(7)

where the matrix M(q) is defined as

M(q) =

[
M +mp mpl cos(θ)
mpl cos(θ) mpl

2

]
. (8)

It is clear that M(q) = M(q)T is positive, definite, and
bounded. First, we analyze the energy storage function of
pendulum crane, which can be written as follows:

E =
1

2
q̇TM(q)q̇ +mpgl(1− cos(θ)) (9)

Differentiating E(t) gives that

Ė = q̇TM(q)q̈ +
1

2
q̇T Ṁ(q)q̇ +mpgl sin(θ)θ̇ (10)

From (8), we have

Ṁ(q) = −mpl sin(θ)θ̇

[
0 1
1 0

]
. (11)

Then substituting (7 ) and (11) into the resulting equation
(10), the derivative of E(t) is given as

Ė = q̇T
[
mplθ̇

2 sin(θ) + u+ βTψ
−mpgl sin(θ)

]
− 1

2
mpl sin(θ)θ̇q̇

T

[
0 1
1 0

]
q̇ +mpgl sin(θ)θ̇ (12)

= ẋ[u(t) + βTψ] (13)

which indicates that the pendulum crane system, with u(t)+
βTψ as the input and ẋ(t) as the output, is passive.
To achieve the control objective, the following Lyapunov



control function is constructed:

V = E +
k1
2
e2 +

1

2
β̃TΓ−1β̃ (14)

where e(t) = x(t)− xd is the tracking error of the position,
k1 is a positive constant, β̂ is an estimate of β, β̃ = β − β̂,
Γ ∈ is a positive definite matrix. Then the time-derivative of
V is

V̇ = Ė + ẋk1e− β̃TΓ−1 ˙̂β

= ẋ[u(t) + k1e+ βTψ]− β̃TΓ−1 ˙̂β (15)

The adaptive control law and parameter estimator are de-
signed as

u(t) = −k1e− k2ẋ− β̂Tψ (16)
˙̂
β(t) = Γψẋ (17)

where k2 is a positive constant. Thus

V̇ = ẋ
(
−k1e− k2ẋ− β̂Tψ + k1e+ βTψ

)
)− β̃TΓ−1 ˙̂β

= −k2ẋ2 − β̃TΓ−1(
˙̂
β − Γψẋ)

= −k2ẋ2 ≤ 0. (18)

It directly implies that

V (t) ≤ V (0). (19)

We then have the following stability and performance results
based on the developed control scheme.

Theorem 1: Considering the closed-loop adaptive system
consisting of the system (1)-(2), the adaptive controller (16),
and the parameter updating law (17). All signals in the
closed-loop system are ensured to be bounded. Furthermore,
asymptotic tracking of position is achieved, i.e. x(t)−xd →
0, θ(t) → 0, ẋ(t) → 0, θ̇(t) → 0 as t→ ∞.

Proof: By applying the LaSalle-Yoshizawa theorem to (18),
V is uniformly ultimate bounded. The matrix M(q) is pos-
itive definite and bounded. This further implies that ė = ẋ,
θ̇, e, β̃ are bounded and ė = ẋ is asymptotically stable, such
as limt→∞ ẋ = 0. x is also bounded since e = x − xd and
xd are bounded. From (16), it follows that the control input
u is bounded. Equation (18) shows that V̇ is bounded, such
as V̇ ∈ L∞. Again from (10), it shows that θ̈ ∈ L∞. Hence,
Barbalat’s lemma is employed to show that limt→∞ θ̇ = 0 .
Based on the fact that θ(t) and sin(θ(t)) have the same sign
for ∀ θ ∈ (−π

2 , + π
2 ). Equation (1) can be written as

d

dt2

[
(M +mp)x+mpl sin θ

]
= u+ Fr (20)

Then the asymptotically stable e, ẋ, θ, θ̇, u → 0 as t→ ∞.

IV. ADAPTIVE SLIDING MODE CONTROL

To facility the sliding mode control design and stability
analysis, the system (7) is further transformed to the follow-

ing model.

ẍ = ϕ1(θ, θ̇) + b1(θ)(u+ βTψ) (21)

θ̈ = ϕ2(θ, θ̇) + b2(θ)(u+ βTψ) (22)

where ϕi(θ, θ̇) and bi(θ) are defined as

ϕ1 =
mplθ̇

2 sin(θ) +mpg sin(θ) cos(θ)

M +mp sin
2(θ)

(23)

b1 =
1

M +mp sin
2(θ)

(24)

ϕ2 = − (M +mp)g sin(θ) +mplθ̇
2 sin(θ) cos(θ)

(M +mp sin
2(θ))l

(25)

b2 = − cos(θ)

(M +mp sin
2(θ))l

(26)

Clearly, system (21)-(22) is an underactuated system.
We firstly design the sliding surfaces of the trolley and
payload subsystems as

s1 = c1(x− xd) + ẋ (27)

s2 = c2θ + θ̇ (28)

where c1, c2 are predefined positive constants. Then the
second layer sliding surface is designed as

S = λs1 + s2 = λc1(x− xd) + λẋ+ c2θ + θ̇ (29)

where λ is a constant. The derivative of S yields

Ṡ = λc1ẋ+ λẍ+ c2θ̇ + θ̈

= λc1ẋ+ λϕ1 + c2θ̇ + ϕ2 + (λb1 + b2)(u+ βTψ) (30)

Define the Lyapunov function as

V =
1

2
S2 +

1

2
β̃TΓ−1β̃ (31)

The control law and the parameter update law are designed
as

u(t) =
−k1S − k2sign(S)

λb1 + b2
− β̂Tψ

− c1λẋ+ λϕ1 + c2θ̇ + ϕ2
λb1 + b2

(32)

˙̂
β(t) = ΓψS (33)

Then the derivative of V

V̇ = S[−k1S − k2sign(S) + β̃Tψ]− β̃TΓ−1 ˙̂β

= −k1S2 − k2|S| − β̃TΓ−1(
˙̂
β − ΓψS)

= −k1S2 − k2|S| (34)

Equation (31) and (34) imply that S is uniformly bounded
and monotonically decreasing, and that it also converges
asymptotically to zero as t → ∞. It further implies that
the first layer sliding variables s1 and s2 are asymptotically
stable, as shown in [18]. The stability and performance
results are summarized in the following theorem.

Theorem 2: Considering the closed-loop adaptive system
consisting of the underactuated crane system (1)-(2), the



adaptive sliding mode controller (32) with (29), the parame-
ter updating law (33). All signals in the closed-loop system
are ensured to be bounded. Furthermore, asymptotic stability
is achieved, such as x(t) − xd → 0, θ(t) → 0, ẋ(t) → 0,
θ̇(t) → 0 as t→ ∞.

V. ADAPTIVE QUANTIZED CONTROL

We consider a control system with input quantization as
shown in Figure 3, such that the input u is quantized at
the encoder side to be sent over the network. The network
is assumed noiseless, so that the quantized input q(u) is
recovered and sent to the crane plant.
The same model (21)-(22) with input quantization is given
as follows:

ẍ = ϕ1(θ, θ̇) + b1(θ)(q(u) + βTψ) (35)

θ̈ = ϕ2(θ, θ̇) + b2(θ)(q(u) + βTψ) (36)

where q(u) is the quantized input.

Fig. 3. Crane control with input quantization over a network

A. Uniform quantizer

A uniform quantizer is considered in the paper, which is
modeled as

q(u) =

{
uisgn(u), ui − l

2 < |u| ≤ ui +
l
2

0, |u| ≤ u0
, (37)

where u0 > 0 and u1 = u0 + l
2 , ui = ui−1 + l with

i = 2, . . . , and l is the length of the quantization interval.
q(u) is in the set U = {0, ± ui}. The map of the uniform
quantizer (37) is shown in Figure 4. The quantizer q(u) has

Fig. 4. The map of uniform quantizer q(u)

the following property.

|q(u)− u| ≤ δ, (38)

where δ > 0 is quantization bound.
In order to propose a suitable control scheme, we decompose

the quantizer into the following form.

q(u) = u+ d(t) (39)

where d(t) = q(u(t)) − u(t). Clearly the property (38) is
satisfied with |q(u)− u| ≤ δ = max{u0, l}.

B. Adaptive Quantized Control

The control law and the parameter update law are designed
as

u(t) =
−k1S − k2sign(S)

λb1 + b2
− β̂Tψ

− c1λẋ+ λϕ1 + c2θ̇ + ϕ2
λb1 + b2

(40)

S = λc1(x− xd) + λẋ+ c2θ + θ̇ (41)
˙̂
β(t) = Proj{ΓψS} (42)

where Proj{·} is the projection operator given in [36].
Remark 3: The projection operator Proj{·} in (42) en-

sures that the estimate and estimation error are nonzero and
within known bound, that is ∥β̂∥ ≤ kβ and ∥β̃∥ ≤ kβ , and
has the property −β̃⊤Γ−1Proj(ψS) ≤ −β̃⊤Γ−1ψS, which
are helpful to guarantee the closed-loop stability.
The stability and performance results are summarized in the
following theorem.

Theorem 3: Considering the closed-loop adaptive system
consisting of the underactuated crane system (1)-(2) with
a uniform input quantizer (37), the adaptive sliding mode
controller (40) with the surface (41), the parameter updating
law (42). All signals in the closed-loop system are ensured
to be bounded. Furthermore, asymptotic stability is achieved,
such as x(t) − xd → 0, θ(t) → 0, ẋ(t) → 0, θ̇(t) → 0 as
t→ ∞.

Proof: Define a Lyapunov function as

V =
1

2
S2 +

1

2
β̃TΓ−1β̃ (43)

Then the derivative of V is derived as

V̇ = −k1S2 − k2|S|+ (λb1 + b2)Sd(t) (44)

− β̃TΓ−1(
˙̂
β − ΓψS)

= −k1S2 − k2|S|+ (λb1 + b2)Sd(t) (45)

− β̃TΓ−1(Proj{ΓψS} − ΓψS)

≤ −k1S2 − k2|S|+ |(λb1 + b2)δ||S| (46)

≤ −k1S2 − k̄2|S| (47)

where the control parameter k2 satisfies

k2 > |(λb1 + b2)δ| (48)

where k̄2 = k2 − |(λb1 + b2)δ| > 0. It shows that all signals
are bounded since the parameter estimates β̂ are bounded
with the projection. The proof of asymptotic stability is same
as the proof in Theorem 2.

Remark 4: The control parameter k2 and the quantization
parameter δ are chosen to satisfy (48).



VI. SIMULATION

In this section, a numerical simulation in Matlab is shown
to illustrate the effectiveness of the proposed schemes. The
physical parameters for the crane system are given as M =
5kg, mp = 0.1kg, l = 0.5m, g = 9.8m/s2. The friction
parameters are f1 = 0.5, f2 = 0.005, ξ = 0.1. The reference
signal is set as xd = 1 m.
The control gains are designed as follow. For the energy-
based adaptive control: k1 = 4, k2 = 8, Γ = diag{1.6, 0.1}.
For the adaptive sliding mode control: c1 = 0.75, c2 = 10,
λ = −4, k1 = 8, k2 = 0.05, Γ = diag{1.6, 0.1}. The initial
value of the states are x(0) = 0 and θ(0) = 0. The initial
estimated friction parameters are β̂(0) = 0.

A. Without quantization

Two proposed control schemes, energy based adaptive
control (EAC) and adaptive sliding mode control (ASMC),
are compared to show their effectiveness and superiority.
Figure 5 and Figure 7 and show the position x, swing
angle θ and control input u(t) using EAC and ASMC
methods proposed in the paper respectively. Figure 8 and
Figure6 show the velocity ẋ and swing velocity θ̇ using
EAC and ASMC respectively. As shown in the simulations,
both methods are able to drive the cart from the initial
position to reach the target position xd in 6 seconds for
ASMC and 10 seconds for EAC. ASMC method is able
to suppress the swing angle in 6 seconds. The EAC dose
not suppress the angle in 20 seconds and will suppress it in
about 200 seconds. The results with ASMC method show
that tracking of position is achieved and the velocity of
cart, the swing angular and its velocity converge to zero,
in accordance with the findings of Theorem 2. Therefore
in terms of position stabilization and anti-swing control, the
adaptive sliding mode control scheme outperforms the energy
based adaptive control scheme.
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Fig. 5. Energy-based control: position x, payload swing θ, and control
u(t)

B. With quantization

The system is then tested with a uniform quantized input
and with the proposed adaptive control method in section
V. The quantization level is chosen as l = 1 and u0 = l

2 .
Figures 9 shows the position x, swing angle θ and control
input u(t). Figure 10 shows the velocity of the cart ẋ, and
swing velocity θ̇ using the quantized adaptive sliding mode
control method. The results show that tracking is achieved
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Fig. 6. Energy-based control: velocity ẋ, payload swing speed θ̇
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Fig. 7. ASMC: position x, payload swing θ, and control u(t)

and that all signals are uniformly bounded, in accordance
with the findings of Theorem 3.

VII. CONCLUSIONS
The paper proposes a nonlinear adaptive sliding mode

control scheme for underactuated offshore cranes with uncer-
tainties. The proposed control method can ensure asymptotic
stability and does not need linearization of the complicated
nonlinear dynamic equations during controller design and
stability analysis. To reduce the communication burden in the
remote control of cranes, a uniform quantizer is introduced in
the input channel. The proposed quantized adaptive control
scheme ensures the closed-loop asymptotic stability. Simula-
tion results illustrate the effectiveness of proposed schemes.
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