Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/S1

BMC
Bioinformatics

Multicore and GPU algorithms for Nussinov

RNA folding

Junjie Li", Sanjay Ranka, Sartaj Sahni

From Third IEEE International Conference on Computational Advances in Bio and Medical Sciences

(ICCABS 2013)
New Orleans, LA, USA. 12-14 June 2013

Abstract

algorithms are referred to as RNA folding algorithms.

.

Background: One segment of a RNA sequence might be paired with another segment of the same RNA sequence
due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence’s secondary
structure. Several algorithms have been proposed to predict an RNA sequence’s secondary structure. These

Results: We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov’s algorithm.

Conclusions: Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive
straightforward single core code. The multicore version of the cache efficient single core algorithm provides a
speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our
GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between
5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding.

Background

An RNA sequence is a chain of nucleotides from the
alphabet {G (guanine), A (adenine), U (uracil), C (cyto-
sine)}. One segment of a RNA sequence might be paired
with another segment of the same RNA sequence due to
the force of hydrogen bonds. This two-dimensional struc-
ture is called the RNA sequence’s secondary structure.
Two nucleotides in an RNA sequence can form Watson-
Crick AU and GC base pairs as well as the GU wobble
pair. Several algorithms have been proposed to predict an
RNA sequence’s secondary structure. These algorithms
are referred to as RNA folding algorithms. Waterman and
Smith [1] and Nussinov et al. [2] made the first attempt in
1978. Zuker et al. [3] refined Nussinov’s algorithm by
using a thermodynamic energy minimization model,
which produces more accurate results at the expense of
greater computational complexity. Although our focus in
this paper is the simpler Nussinov’s algorithm, our strate-
gies may be applied to Zuker’s algorithm as well.

* Correspondence: jl3@cise.ufl.edu
Department of Computer and Information Science and Engineering,
University of Florida, 32611 Gainesville, USA

The complexity of Nussinov’s and Zuker’s algorithm is
O(n%), where 7 is the length of the RNA sequence to be
folded. Other RNA folding algorithms with better predic-
tion properties and higher complexity also exist. When
folding viral sequences, n ranges from several thousand
to several million and single-core run time becomes
excessive and so much effort has gone into developing
parallel versions of various RNA folding algorithms.
For example, [4,5] develop a multicore code for an O(x*)
folding algorithm while [6] does this for Nussinov’s
algorithm. [7] develops a framework for RNA folding
algorithms on a cluster and tests this framework using an
O(n°) (Pknots-RE) and an O(n*) (Pknots-RG) algorithms
for the prediction of RNA secondary structure. FPGA
solutions for secondary structure prediction have been
proposed in [8-10] and GPU solutions in [11,12]. We
note that [11] is based on the algorithm of Zuker et al.
[3] while [12] is based on that of Nussinov et al. [2].

We start in this paper by describing the GPU architec-
ture and programming model. Then we state Nussinov
et al’s [2] dynamic programming recurrence for secondary
structure prediction and we give modifications of these

© 2014 Li et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons

(BioMVed Central

Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:jl3@cise.ufl.edu
http://creativecommons.org/licenses/by/4.0
http://�creativecommons.org/publicdomain/zero/1.0/

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/51

equations as obtained by Chang et al. [12]. These modifi-
cations simplify the parallelization of the original equa-
tions and compute the same results. We also describe the
strategy used in [12] to obtain a GPU algorithm to solve
the modified equations. A naive implementation of the
modified equations of [12] together with a cache efficient
version and multicore versions are given. We note
that although [6] gives a multicore version of Nussinov’s
algorithm, our multicore version is much simpler and
provides similar speedup. Then our GPU algorithm for
the modified equations is described. Experimental and
benchmark results are presented after that.

GPU architecture and programming model

Our work targets the NVIDIA C2050 GPU. Figure 1
shows the architecture of one streaming multiprocessor
(SM) of the NVIDIA Fermi line of GPUs of which the
C2050 is a member. The C2050 comprises 448 processor
cores grouped into 14 SMs with 32 cores per SM. Each
SM has 64KB of shared memory/L1 cache that may be

Page 2 of 9

set up as either 48KB of shared memory and 16KB of L1
cache or 16KB of shared memory and 48KB of L1 cache.
In addition, each SM has 32K registers. The 14 SMs
access a common 3GB of DRAM memory, called device
or global memory, via a 768KB L2 cache. A C2050 is
capable of performing up to 1.288 TFLOPS of single-
precision operations and 515 GFLOPS of double preci-
sion operations. A C2050 connects to the host processor
via a PCI-Express bus. The master-slave programming
model in which one writes a program for the host or
master computer and this program invokes kernels that
execute on the GPU is supported. GPUs use the SIMT
(single instruction multiple thread) programming model
in which the GPU accomplishes a computational task
using thousands of light weight threads. The threads
are grouped into blocks and the blocks are organized as
a grid. While a block of threads may be 1-, 2-, or
3-dimensional, the grid of blocks may only be 1 or
2-dimensional. The key challenge in deriving high
performance on this machine is to be able to effectively

CUDA Core

Dispatch Port
Operand Collector

Result Queue

Figure 1 Architecture of one SM of the NVIDIA Fermi [14].
.

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/S1

minimize the memory traffic between the SMs and the
global memory of the GPU. This effectively requires
design of novel algorithmic and implementation app-
roaches and is the main focus of this paper.

Nussinov’s dynamic programing recurrence

Let S = aja,...a,, be an RNA sequence where a; € {4, C,
G, U} is a nucleotide. Nussinov’s algorithm finds the most
possible secondary structure by maximizing the number of
bonded pairs (AU, GC or GU). Let C(j, j) be the maximum
number of bonded pairs in the subsequence ; ... a;, 1 < i <
j < n. Nussinov’s dynamic programming recurrence for C
is given below.

Ci,i—1)=02<i<n
C@i,)=01<i<n

C(i+1,j)

Ci,j—1)

C(i+1,j— 1)+ bond(ai, a;)
max;{C(i, k) + C(k+1, j)}

C(i,j) = max

Here, bond(a; a;) is 1 if (a; a;) is an AU, GC or GU
pair and O otherwise, and the third equation applies
when i <j. The third equation computes the maximum
of four terms that have the following significance.

1 Add unpaired a; to the best structure for subse-
quence a;,;..4; , as shown in Figure 2(a).

2 Add unpaired g; to the best structure for subse-
quence a;..4;_1, as shown in Figure 2(b).

3 Add (a; a;) pair to the best structure for subse-
quence a;,1..4;_1, as shown in Figure 2(c).

4 Combine two best structures for a;...a; and ag,;..q;
as shown in Figure 2(d).

Once the C(j, j), 1 < i <j < n, have been computed, a
traceback procedure can be used to construct the actual
secondary structure, which is represented in the matrix

Page 3 of 9

as a path leading to the maximum score. While this
traceback procedure takes O(n) time, the actual compu-
tation of the C matrix takes O(r°) time.

Simplified recurrence and GPU algorithm
Chang et al. [12] simplified Nussinov’s recurrence to the
following.

C(i,i)=0 forl<i<n 1)
Cli,i+1)=0 forl<i<n-—1 2)

S C(i+1,j— 1) + bond(ai, a;)
C(i,j) = max { maxi(C(i, k) + CG k+ 1)) O

Like Nussinov’s original recurrence, the simplified
recurrence uses O(1*) memory and O(#®) time. However,
Chang’s formulation is easier to parallelize. In a serial
computation of C, we would start by initializing C(i, i)
(the main diagonal of C) and C(;, i + 1) (the diagonal just
above the main one) using Equations 1 and 2 and then
use Equation 3 to compute the remaining diagonals in
the order C(i, i + 2) ... C(i, i + n — 1). Figure 3(a) shows
how the computation progresses.

In [12], the entire computation is divided into three
stages as shown in Figure 3(b), namely the initial stage,
the middle stage and the final stage. In the initial stage,
since the computation at each element is shallow (the
distance to the central diagonal is short), one GPU thread
is assigned to compute one element. No data exchange
between threads is needed. All threads synchronize before
moving to the next diagonal. In the middle stage, an
entire block of threads is assigned to compute one
element and the parallel reduction method contained in
CUDA SDK is used. In the final stage, all SMs collabo-
rate to compute one element because the distance from
the element to the central diagonal is long and the
computation for each element is heavy. Again, parallel
reduction is used in this stage. To reduce accesses to

i+1

(a) (b)

Figure 2 Four cases in Nussinov’s recurrence [15].

k k+1

(c) (d)

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/S1

Page 4 of 9

AAAGCUUU

cccom>»>» >

(a)

Figure 3 (a) Initialization of the matrix in Chang’s algorithm [12]. (b) Three stages in Chang's algorithm.

(b)

device memory, the GPU algorithm of [12] stores each
C(i, j) value, i <j in positions (i, j) as well as in the
otherwise unused position (j, i). When C(j, k + 1) is to
be read from device memory (i.e., when it is needed in
the right side of Equation 3), the read is done from
position (k + 1, j). This changes column reads to row
reads and better utilizes the L2 and L1 caches of the
target GPU.

Methods
Cache efficient and multicore algorithms
CPU1 (Algorithm 1) is a naive single-core algorithm to
compute C using the simplified recurrence of Chang et al.
This algorithm computes M [i][j] = C(i+1, j+1),0<i <
<n, where # is the length of the RNA sequence R.
Algorithm 1 CPU1
Require: RNA sequence R
Ensure: Array M such that M [{][j] = C(i + 1,j + 1)

1: for i « 0 to |R|-1 do

2. M)« 0

3: end for

4: for i « O to |R|-2 do

5. MI[i[i +1]« 0

6: end for

7: for diag < 2 to |R|-1 do

8: for row < 0 to |R|-diag-1 do

9: col < diag + row

10: a < R[row]; b < R[col]

11: max < M [row + 1][col — 1] + bond(a, b)
12: for k < row to col-1 do

13: t < M [row][k] + M [k + 1][col]
14: max < max{max, t}

15: end for

16: M [row][col] < max

17: end for

18: end for

By using the lower triangle of M to store the transpose of
the computed values in the upper triangle of M as is done
in the GPU implementation of [12], we get a cache efficient
version of CPUL. To arrive at CPU2, we change Line 13 of
Algorithm 1 to “t <~ M [row][k] + M [col][k + 1]”, and
change Line 16 to “M [row][col] <— M [col][row] < max".
Values of M [k + 1][col] locate in the same column
but values of M [col][k + 1] locate in the same row, for
row < k < col. Reading values in a row is more cache
efficient than reading values in a column.

Multicore versions of CPU1 and CPU2, respectively
labeled OMP1 and OMP2, are obtained by inserting
OpenMP statements to parallelize the for loops of lines 1,
4, and 8.

Our GPU algorithm

Unlike the GPU algorithm of [12] which computes C by
diagonals, we use a refinement of the block strategy used
in [11,6]. Figure 4 shows the 20 x 20 C matrix for the case
of RNA sequences whose length is n = 20. To compute
the element labeled “X”, elements “a” to “l” are, respec-
tively, added to elements “A” to “L” and the maximum of
“a+A”, “b+B7, ... “14+L” is computed. We note that the com-
putation for “Y” also requires “A” to “L” and that “X” has
to be computed before “Y” and “Z” can be computed.

In our block strategy, we partition the upper triangle of
the C matrix into square blocks except that adjacent to
the main diagonal the partitioning is into triangles and
that at the right end is into possibly non-square rectangles.
Figure 4 shows the partitioning for the case n = 20 using
4 x 4 blocks. Notice the triangles adjacent to the main
diagonal and the 4 x 1 non-square partitions at the right
end. The blocks (whether triangular, square, or non-
square) are indexed left-to-right top-to-bottom beginning
with (0, 0). In keeping with the traditional way to number
blocks for GPU computation, the first coordinate increases

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/S1

Page 5 of 9

EDO \Q‘m @2 @3 ﬁm RDS
Y
abljcdeflghi jlkl XZ
r mw A
qg|OM B
PlQ ©
D
E
F
G
H
I
J
R K
L
Figure 4 Block partitioning of C matrix.

as you move to the right and the second as you move
down. So “X” (Figure 4) resides in (4, 1), “K” in (4, 4), and
“P” in (3, 2). Blocks on the main diagonal are indexed (i, i)
and are triangular. For the dependencies in Equation 3, it
follows that blocks that lie on the same diagonal of blocks
(i.e., blocks with the index (i, i — k) for some fixed k) are
independent and so may be computed in parallel but that
elements within a block are to be computed by diagonals.
Our 20 x 20 example of Figure 4 has 6 diagonals of blocks
and so six iterations of computation with each iteration
computing all blocks on the same diagonal in parallel are
required.

As noted earlier, the first diagonal of blocks is comprised
of triangles. To each triangular block, we assign a thread
block. The threads within the assigned thread block com-
pute the elements in the triangular block in diagonal order
with all elements on the same diagonal being computable
in parallel. Hence, for this computation, the number of
thread blocks equals the number of triangular blocks.

Let us turn our attention now to the remaining blocks (i.
e., the non-triangular blocks). Notice that when we start

the computation of the elements in, say, block (4, 1),
where “X” resides, “a” to “j”, and “C” to “L” have already
been computed, because they are on preceding block
diagonals. But “k”, “1”, “A”, and “B” have yet to be
computed. The computation of the maximum of “c+C” to
“j+]” can be done using a kernel maxKernel (described
later). This kernel uses registers for temporary values and
writes these temporary values to shared memory upon
completion. The final value for “O” can be obtained by
comparing the temporary maximum value in “O” with “P”
plus the bond value in Equation 3. Then the maximum of
“r+0O”, “q” plus its bond value, and the temporary maxi-
mum value in “m” is written to “m” as its final value.
Similarly, for “M”, the maximum of “O+R”, “Q” plus its
bond value, and the temporary maximum value in “M” is
written to “M” as its final value. The computations for “m”
and “M” can be done in parallel. So the computation
within element block (4, 1) is done in diagonal order. All
elements on the same diagonal can be computed in
parallel with all data residing in shared memory. The
pseudocode is shown as Algorithm 2.

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/S1

Algorithm 2 Our GPU algorithm
Require: RNA sequence R, blocked diagonal index D,
block size BS
Ensure: C matrix
: Register[16)] reg
: Shared_Memory[BS][BS] sA
: Shared_Memory[BS + 1][BS + 1] sC
: Global_Memory|BS][BS] ¢gB
: Global_Memory[BS][BS] gC
: tx < threadldx.x; ty < threadldx.y
: bx < blockldx.x; by < blockldx.y
: aRow <« by x BS; aCol <~ aRow - 1
: bRow < aRow; bCol <— D x BS - 1 + aRow
10: for blk < 1 to D - 1 do
11: SA « the block starting at (aRow, aCol + blk
x BS)
12: gB « the block starting at (bRow + blk x BS,
bCol)
13: maxKernel(sA, gB, reg)
14: Syncthreads
15: end for
16: sC < reg
17:ford < 1to BS x 2 - 1 do
18: for Each element e on diagonal d do
19: Finish remaining computation
20: end for
21: Syncthreads
22: end for
23: gC « sC
Algorithm 3 maxKernel
Require: Block sA in shared memory, block gB in glo-
bal memory
Ensure: Partial result of reduction in reg
r0 < gB[0][¢x]; r1 <« gB[1][tx]
r2 < gB[2][tx]; r3 « gB[3][tx]
for j < 0 to 6 do
for k< 0 to 15 do
reglk] < max{reglk], 0 + sA[ty x 16 + k]

O 00 NI O UL W

[x 41
end for
10« gB[(j + 1) x 4][tx]
/1 2 similar for loops for rl and r2 come here
for k < 0 to 15 do
reglk] < max{reglk], r3 + sA[ty x 16 + k]
[x4 + 3]}
end for
r3« gB[(j + 1) x 4 + 3][tx]
end for
for k < 0 to 15 do
reglk] <— max{regl[k], rO + sA[ty x 16 + k][28]}
end for
/1 2 similar for loops for r1 and r2 come here
for k < 0 to 15 do
reglk] «— max{regl[k], r3 + sA[ty x 16 + k][31]}
end for

Page 6 of 9

Description of maxKernel
The computation of the maximum of “c+C” to “j+J”
(Figure 4) bears some resemblance to the computation of
a term in a matrix multiply. So, we can adapt the ideas
used in matrix multiply kernels to arrive at an efficient
kernel to find the desired maximum of the sum of pairs.
In our case (Algorithm 3), we adapt the GPU matrix mul-
tiply kernel of Volkov and Demmel [13]. The element
block size used in our implementation is 32 x 32 and a
thread block is configured as 32 x 2. Each thread com-
putes 16 elements that lie in the same column as shown in
Figure 5 (this figure shows only six threads as arrows
above block C). The 16 elements computed by one thread
are represented as a slim gray bar in block C. The gray
area in block A depicts the data needed by the first
32 threads. This data will be read into shared memory. To
achieve high throughput from/to device memory, we use
coalesced memory accesses in which all data accessed by
one warp (this is the minimum scheduling unit and it con-
tains 32 threads) falls in the same device memory cache
line of size 128 bytes. In Figure 5, six threads fetch the
first row from the gray area of block B. Then each thread
uses the value just fetched to add with the first column in
the gray area of block A (which is already read into shared
memory). In other words, thread i will add B[0][i] with A
[/1(0] (0 < j < 16) and compare this value with register(j] of
thread i and update register]j] if necessary. Then B[1][i] is
added with A[j] [1] and the result is compared with regis-
ter(j]; the register is updated as needed, 0 < j < 16. Since
threads in the same warp will read data in the same row of
block B, this reading is coalesced and serviced at the
throughput of L1 or L2 cache in case of a cache hit, or at
the throughput of device memory, otherwise. Besides, all
threads in the same warp use the same value from block
A, which resides in shared memory. This value can be
broadcast to all threads in the same warp.

We note that [11] also employs a maxKernel but their
kernel is different from ours.

Results

We benchmarked our algorithms using a PC with a
hyperthreaded 6-core Intel i7x980 3.33GHz CPU and
12GB DDR3 RAM. The PC also had NVIDIA Tesla
C2050 GPU. Since only two threads may be scheduled
per i7 core at any time, a maximum of 12 threads may
be gainfully used. We used randomly generated RNA
sequences in our experiments. Since the run time of our
codes is relatively insensitive to the actual RNA
sequence in use due to the fact that the entire computa-
tion is to fill out an # x n matrix, our use of random
sequences does not materially impact our conclusions.

Single and multicore algorithms
In both the codes OMP1 and OMP2, the work assigned
to the threads is well balanced by OpenMP and so best

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):51
http://www.biomedcentral.com/1471-2105/15/58/S1

Page 7 of 9

32

Figure 5 maxKernel illustration.

\

performance is expected using either 6 or 12 threads.
Our experiments confirmed this expectation with the use
of 6 threads generally being better than the use of
12 threads. So, for our application the overhead of con-
text switching between the two threads assigned to a
core when a total of 6 threads are used generally
exceeded the gains obtainable from having a second
thread ready in case the first thread stalls from memory
delay. Table 1 gives the run times for our algorithms
CprU1, CPU2, OMP1, and OMP?2 for n values ranging
from 3000 to 16000. The columns labeled ratio give the
ratios CPU1/OMP1 and CPU2/OMP2, respectively.
Although we have 6 cores on our CPU, we are able to
achieve speedups of almost 5 from the multicore
versions. By comparison, the far more complex multicore
code of [6], which uses a blocking strategy similar to that
used by our GPU code, achieves a simulated speedup of
6.3 with 4 threads. The speedup reported in [6] is
referred to as “simulated speedup” because it comes from
the use of a multicore simulator rather than from actual
speedup measurements on a real muticore computer.
However, this simulated speedup ignores several factors
such as synchronization overhead that will reduce
speedup in a real environment. Further, the simulated
speedup of 6.3 is relative to the equivalent of the code
CPU1. The speedup achieved by OMP2 relative to CPU1

is between 7.5 and 14.0! We note also that the speedup
obtained solely from the use of the caching strategy (i.e.,
the ratio CPU1/CPU2) ranges from 1.6 to 3.0.

GPU algorithms

We experimented with three versions of our GPU algo-
rithm. The first is called Oursl, which is as described in

Table 1 Running time (seconds) of different CPU

algorithms
n CcPU1 OMP1 Ratio CPU2 OMP2 Ratio
3000 359 7.1 5.1 223 4.8 46
4000 98.1 186 53 52.8 1.3 47
5000 208.1 416 5.0 1029 22.2 46
6000 363.7 72.2 50 1775 453 39
7000 646.1 1252 52 2813 61.0 46
8000 9244 197.8 47 4196 92.5 45
9000 1461.5 291.0 50 596.6 1299 46
10000 1927.7 395.0 49 819.1 1769 46
11000 2800.8 5592 50 10884 2345 46
12000 35252 7414 4.8 14136 3033 4.7
13000 4852.3 978.8 50 17954 3884 46
14000 6008.9 1250.2 48 22435 485.2 4.6
15000 7930.0 16414 4.8 27573 594.0 4.6
16000 10120.0 2380.8 43 33435 7254 46

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/S1

Table 2 Running time (seconds) of different GPU
algorithms

n Ours1 Ours2 [12] OursR Ratio1 Ratio2
2000 0.1 0.1 03 0.1 30 1.0
6000 06 0.7 40 08 6.7 13
10000 19 22 164 32 8.6 1.7
14000 45 5.1 430 7.9 9.6 18
18000 88 99 89.5 16.0 102 1.8
22000 15.1 169 161.7 282 10.7 19
26000 239 26.7 266.3 458 11.1 1.9
37000 - 715 - - - -

Our GPU algorithm section. In the second version, which
is called Ours2, device memory usage is reduced by half by
storing only the upper triangle of the output matrix. This
upper triangle is mapped into a onedimensional array
using the standard row-major mapping. Since this version
uses only half the device memory used by the other
versions, it may be used on larger instances. In the third
version, which is called OursR, we replaced our maxKernel
with the kernel described in [11]. Since we were unable to
get the GPU code of [11], the kernel used by us was actu-
ally one we wrote based on the description provided in
[11]. These three codes were benchmarked against each
other as well as against the GPU Nussinov code of [12].
The maximum size of sequence Ours2 can handle is
37000 while the other versions can handle sequences of
size up to 26000. Ours2 runs slightly slower than Oursl as
shown in Table 2. So, Ours2 is recommended only when
the instance size is large enough to make Oursl nonfeasi-
ble. Table 2 and Figure 6 show the running time for the

Page 8 of 9

four different GPU codes. Ratiol in Table 2 shows the
speedup of Oursl relative to [12] ([12]/Oursl). Ratio2
shows OursR/Oursl. As can be seen, Oursl is up to 1.9
times as fast as OursR indicating that a corresponding
speedup could be obtained for Zuker’s algorithm by repla-
cing the maximum finding kernel used in [11] with our
kernel for this operation. Also, Oursl is between 3.0 and
11.1 times as fast as the GPU algorithm of [12].

Single core vs multicore vs GPU

Table 3 gives the speedup obtained by Ours1 relative to
CPU2 and OMP2. Using a GPU, we can do the Nussinov
computations up to 522.6 times as fast as using a cache
efficient single core code and up to 113.4 times as fast as
using a 6-core cache efficient code! Compared to the naive
single-core code CP U 1, our GPU codes provides a
speedup of up to 1582!

Conclusions

We have developed simple and efficient single and multi-
core algorithms as well as an efficient GPU code for RNA
folding based on Nussinov’s equations [2]. Our cache effi-
cient single-core algorithm provides a speedup between
1.6 and 3.0 relative to a naive straightforward single core
code. The multicore version of the cache efficient single
core algorithm provides a speedup, relative to the naive
single core algorithm, between 7.5 and 14.0 on a 6 core
hyperthreaded CPU. Our GPU algorithm, Ours1, for the
NVIDIA C2050 is up to 1582 times as fast as the naive
single core algorithm and between 3.0 and 11.1 times as
fast as the fastest previously known GPU algorithm for
Nussinov RNA folding. With the available 3GB device

300 T T T
Ours1 —+—
Ours2 --->---
OursR ---*---
H2] -8
250 i -
5]
5]
200 - / .
P [
[} ’
=
2 3
Q s}
o
2 150 [E -
= a
= !
£
= =
100 | A -
.D'
.D4
a
50 + i v -
. o g ¥ 3
ol s w w g g @ R
0 5000 10000 15000 20000 25000 30000
n
Figure 6 Plot of running time of GPU algorithms.

Li et al. BMC Bioinformatics 2014, 15(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/15/58/51

Table 3 Speedup of Ours1 relative to other versions

n CPU2 OMP2 n CPU2 OMP2
3000 157.0 338 10000 4244 9.7
4000 224.7 481 11000 4414 95.1
5000 2598 56.1 12000 4659 100.0
6000 3029 773 13000 4723 102.2
7000 3418 74.1 14000 496.9 107.5
8000 376.0 82.9 15000 5033 1084
9000 3922 854 16000 5226 1134

memory on an NVIDIA GPU, Oursl is able to handle
sequences of length up to 26000. Sequences of length
between 26000 and 37000 may be handled using Ours2,
which uses a onedimensional array mapping of the
upper triangle of the output matrix rather than a two-
dimensional array that represents the full output matrix.
Ours2, however, runs slightly slower than Oursl. Our
methods can be used to speedup up RNA folding using
Zuker’s equations as well [3,11].

List of abbreviations used

RNA: RiboNucleic Acid; GPU: Graphics Processing Unit; PCI-Express: Peripheral
Component Interconnect Express; CUDA: Compute Unified Device
Architecture; GCUPS: Billion Cell Updates per Second; SM: Streaming
Multiprocessors; DRAM: Dynamic Random-Access Memory; TFLOPS: Trillion
Floating Point Operations Per Second; GFLOPS: Billion Floating Point
Operations Per Second; I/0: Input/Output; CPU: Central Processing Unit.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JL, SR, and SS developed the GPU algorithms, and analyzed the
experimental results, and wrote the manuscript. JL also programmed and
debugged the GPU algorithms and ran the experiments.

Declarations

Publication of this supplement was funded, in part, by the National Science
Foundation under grants CNS0963812, CNS1115184, CNS0905308, and the
National Institutes of Health under grant RO1-LM010101.

This article has been published as part of BMC Bioinformatics Volume 15
Supplement 8, 2014: Selected articles from the Third IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS 2013): Bioinformatics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/15/58.

Published: 14 July 2014

References

1. Waterman MS, Smith TF: Rna secondary structure: A complete
mathematical analysis. Math Biosc 1978, 42:257-266.

2. Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ: Algorithms for Loop
Matchings. SIAM Journal on Applied Mathematics 1978, 35(1):68-82.

3. Zuker M, Stiegler P: Optimal computer folding of large rna sequences
using thermodynamics and aukxiliary information. Nucleic Acids Research
1981, 9(1):133-148.

4. Mathuriya A, Bader DA, Heitsch CE, Harvey SC: Gtfold: a scalable multicore
code for rna secondary structure prediction. Proceedings of the 2009 ACM
Symposium on Applied Computing SAC 09, pp 981-988 ACM, New York, NY,
USA; 2009.

Page 9 of 9

5. Swenson MS, Anderson J, Ash A, Gaurav P, Sukosd Z, Bader DA, Harvey SC,
Heitsch CE: Gtfold: Enabling parallel rna secondary structure prediction
on multi-core desktops. BMC Res Notes 2012, 5(1):341.

6. Tan G, Sun N, Gao GR: A parallel dynamic programming algorithm on a
multi-core architecture. Proceedings of the Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures SPAA 07, pp 135-144
ACM, New York, NY, USA; 2007.

7. Estrada T, Licon A, Taufer M: comppknots: a framework for parallel
prediction and comparison of rna secondary structures with
pseudoknots. Proceedings of the 2006 International Conference on Frontiers
of High Performance Computing and Networking ISPA06, pp 677-686
Springer, Berlin, Heidelberg; 2006.

8. Xia F, Dou Y, Zhou X, Yang X, Xu J, Zhang Y: Fine-grained parallel
rnaalifold algorithm for rna secondary structure prediction on fpga. BMC
Bioinformatics 2009, 10:1-14.

9. Jacob A, Buhler J, Chamberlain RD: Accelerating nussinov rna secondary
structure prediction with systolic arrays on fpgas. Application-Specific
Systems, Architectures and Processors, 2008 ASAP 2008 International
Conference On, pp 191-196 2008.

10. Dou Y, Xia F, Jiang J: Fine-grained parallel application specific computing
for rna secondary structure prediction using scfgs on fpga. Proceedings of
the 2009 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems CASES 09, pp 107-116 ACM, New York, NY, USA; 2009.

11. Lavenier D, Rizk G, Rajopadhye S, et al: Gpu accelerated rna folding
algorithm. GPU Computing Gems 2011.

12. Chang DJ, Kimmer C, Ouyang M: Accelerating the nussinov rna folding
algorithm with cuda/gpu. Signal Processing and Information Technology
(ISSPIT), 2010 IEEE International Symposium On, pp 120-125 2010.

13. Volkov V, Demmel JW: Benchmarking gpus to tune dense linear algebra.
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing SC ‘08, pp
31-13111 IEEE Press, Piscataway, NJ, USA; 2008.

14. NVIDIA: NVIDIA's Next Generation CUDA Compute Architecture: Fermi.
NVIDIA', 1.1 2009 [http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf].

15. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis.,
11 2006, 92-96, Chap. 4.4.

doi:10.1186/1471-2105-15-S8-S1
Cite this article as: Li et al. Multicore and GPU algorithms for Nussinov
RNA folding. BMC Bioinformatics 2014 15(Suppl 8):S1.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolMed Central

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S8
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S8
http://www.ncbi.nlm.nih.gov/pubmed/6163133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6163133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22747589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22747589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19118496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19118496?dopt=Abstract
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	GPU architecture and programming model
	Nussinov’s dynamic programing recurrence
	Simplified recurrence and GPU algorithm

	Methods
	Cache efficient and multicore algorithms
	Our GPU algorithm
	Description of maxKernel

	Results
	Single and multicore algorithms
	GPU algorithms
	Single core vs multicore vs GPU

	Conclusions
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Declarations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

