
Data collection with in-network fault detection

based on spatial correlation

Lei Fang, Simon Dobson

School of Computer Science

University of St Andrews, UK

Email: lf28@st-andrews.ac.uk, simon.dobson@st-andrews.ac.uk

March 3, 2015

Abstract

Environmental sensing exposes sensor nodes to environmental stresses

that can lead to various kinds of sampling failure. Recognising such faults

in the network can improve data reliability therefore making sensor net-

works suitable candidate for critical monitoring applications. We develop

a technique that builds a spatial model of a sensor network and its obser-

vations, and show how this can be updated in-network to provide outlier

detection even for non-stationary time series. The solution does not re-

quire local storage of learning data or any centralised control. The method

is evaluated by both real world implementation and simulation, and the

results are promising.

Key words: Fault detection, Sensor networks, Online learning, Energy effi-

ciency

1 Introduction

Wireless sensor networks (WSNs) are prime candidates for the application of

both autonomic and cloud computing techniques. Considered in the large, they

observe, collect, and deliver events and/or data from a distributed system to a

data store for further analysis. On a small scale, they must function in a hostile

environment with limited power budgets, communications and computational

capabilities. Since the data observed by WSNs may later be used for scientific

or policy purposes, it is vital that the results can be trusted, despite the lack of

human-in-the-loop oversight and independent ground truth.

The performance of individual nodes in a WSN may vary for a variety of

reasons, including hardware faults, direct or indirect environmental action, or

1

deliberate attack. While the observations of a single node are questionable,

the existence of observations from other, nearby nodes observing the same phe-

nomena may be used to provide corroborating evidence, allowing the network

as a whole to be more accurate than its individual components. The situation

is however complicated by two factors. First, the phenomena being observed

are by definition dynamic, and may present discontinuous rapid changes be-

tween more stable regimes (such as when temperature changes rapidly before

a storm). Failing at recognising this change will lead to high false alarm rates,

as good data will be classified as faults for its mismatch with the stale model.

Second, as resource constrained computing devices, sensors cannot host compu-

tational expensive models nor even large scale storage of learning data. Both

effects complicate the statistical techniques required, and in particular make

in-network decision-making and machine learning more difficult.

Mathematically, the network must process a data stream presenting non-

stationary statistical characteristics. The various nodes in the WSN have differ-

ent views on the phenomena being observed: some will be independent, others

will be correlated, depending both on physical placement and environmental

influences. The problem is then to subject this compound system to statisti-

cal analysis and develop a model that can autonomously manage and improve

the quality of the information being deduced from the raw data streams, which

can then either be returned for analysis in the cloud or used for local decision-

making.

Sensor data usually exhibits strong spatial correlation: sensor readings mea-

sured at close distance are more similar. For example, at a specific time point

s, we should not expect two temperature readings, ti,s and tj,s, measured at co-

located positions, i, j, to deviate significantly. In general, the spatial correlation

assumption holds true for most sensor applications, as long as the underlying

physical process over the space is continuous.

In this paper, we introduce a novel on-line in-network sensor fault detection

algorithm that accounts for spatial correlation. The algorithm autonomously se-

lects nodes to be used to verify observed readings, and uses dynamic learning to

construct and maintain spatial models of the expected observational correlation.

This solution has the following important features.

1. The proposed algorithm performs formal, well-founded fault detection but

remain lightweight enough to be carried out locally on resource-constrained

sensors. (We have implmented it on TMote Sky nodes.)

2. The solution features on-line fault detection performed locally in real time,

which allows timely human intervention when sensor failure is detected.

The fault detection algorithm is combined with normal data collection

protocols so that the extra communication for fault detection is minimised.

2

3. The learning algorithm is robust to noisy sensor data, working even when

faults are present in the training data.

4. The model adapts to the changes in the underlying physical process, so

that false positives originating from stale models are minimised.

The structure of the paper is as follows. In section 2 we first present the

spatial assumption model used for the algorithm and introduce the fault detec-

tion technique in detail in the next section. The combination of the technique

with existing data collection protocol as well as implementation details are il-

lustrated in section 4. The performance evaluation of the proposed algorithm is

presented in section 5. We briefly compare our approach to other related work

in section 6 before concluding in section 7 with some future directions.

2 Model Assumptions

Spatial Correlation Model

We use {Yi,t} to denote a time series of observations for t ≥ 0 of some physical

variable Y at location i. Given two series {Yi,t} and {Yj,t} of the same phe-

nomenon observed from two locations i and j, we assume that both are unbiased

observations of some true signal plus Gaussian white noise:

Yi,t = µ(xi, t) + εt, εt
iid∼ N

(
0, σ2

1

)
(1a)

Yj,t = µ(xj , t) + εt, εt
iid∼ N

(
0, σ2

2

)
, (1b)

where µ(x, t) represents the ground truth of the underlying physical process at

the location of x and time instance t.

For co-located sensors i, j, we can further assume µ(xi, t) ≈ µ(xj , t), as their

distance dij is close. The approximate equality is valid as long as the physical

process is diffusive and continuous. Without loss of generality, we assume the

true signal difference is a small constant δij = µ(xi, t)− µ(xj , t).

The spatial model simply states that for any two co-located sensor series

{Yi,t} and {Yj,t}, the synchronised difference {et = Yi,t − Yj,t, t ≥ 0} is a Gaus-

sian random variable. That is to say,

et
iid∼ N (δij , σ

2
e). (2)

The model can be easily verified given (1).

Note that the variance σ2
e can be treated as a known constant in most WSN

context, since σ2
e = Var[ε−ε] = σ2

1+σ2
2 , where σi is the measurement uncertainty

associated with the sensor at node i and which can typically be read-off the

component data sheets. For example, the SH10 temperature sensor installed

on the TMote Sky nodes offers an accuracy of ±0.5℃, leading to a pairwise

measurement uncertainty of σe =
√

2× 0.52 = 0.7℃.

3

System Assumptions

The following assumptions are made in addition to the spatial correlation as-

sumptions from above:

• We consider monitoring applications of WSNs, which require designated

sensor nodes continuously to send back real-time sampled sensor data to

one or more sinks. We assume that an appropriate routing protocol exists

that can direct message flows from each local node to a sink.

• The network topology is assumed to be set in advance and known by local

sensor nodes. This assumption is usually true for static WSN deployments,

although not for, for example, air-deployed networks.

• Local synchronisation is maintained by local sensor clusters. Time syn-

chronisation can be easily achieved by adding an integer type value into

radio messages [1].

It is also advantageous (although not required) that the specification of the

hardware – the mote and sensor chips – used in the deployment is known be-

forehand. However, the relevant parameters can be estimated from sensor data

if no such description is available.

3 Statistical model

3.1 Two Inference Problems

The proposed solution revolves with two sub-problems. The first is verifier

selection: each source node needs to find its qualified verifier nodes in the sense

that valid spatial correlation is held between their data traces. Second, after

the appropriate verifiers are selected, how the sampled sensor data at source

node can be validated. We are going to show these two problems can be solved

as probabilistic inferences by formal statistical tests.

Verifier Node Selection

The problem can be defined as follows: Given a sensor network that continuously

monitors a continuous physical variable, for each node i with physical neighbours

Nbr(i), design a distributed algorithm to find a subset Vrf(i) ⊆ Nbr(i) such that

the spatial correlation is valid.

The reason for including this process is that, for some exceptional cases,

geometrically co-located sensors may not necessarily exhibit spatial correlation.

For instance, when one of co-located nodes is in a separate enclosure like another

room, the readings reported may be quite different from its neighbours.

4

Based on the spatial assumption model, δij , the true signal difference be-

tween two co-located sensors, should be a small quantity for spatial correlated

nodes, i.e. they are essentially measuring the same phenomenon with marginal

difference. Therefore, to filter out irrelevant nodes, one only needs to make

inference on the size of δij . Formally we set P(|δij | < ∆µ|e1:n) ≥ 0.95 for

some predefined small constant ∆µ in order to get the standard 95% confidence

interval. In Bayesian terms, the distribution, δij |e1:n, is called the posterior

distribution.

Fault Detection

After the verifier node selection step, each source node i now has the knowledge

of its data verifier set Vrf(i). The problem of fault detection can be formed as

follows: For a source node i and collected sensor reading Yi,t, given its verifiers

Vrf(i) and their sensor readings Yj,t, j ∈ Vrf(i), design a distributed data

validation algorithm to test whether Yi,t is sensor data fault or not.

To validate new sensor readings, instead of making inference on δij , the

hidden physical signal, we are going to make inference on the new observation

en+1 = Yi,n+1 − Yj,n+1 directly. The distribution of en+1 given historical data

set e1:n, i.e. en+1|e1:n is called predictive distribution. Based on it, the fault

detection problem can be solved by calculating the probability of observing the

new data: if the chance is small then it should be classified as a fault and vice

versa.

In summary the solution boils down to two steps:

1. learn the relevant probability distributions; and then

2. solve the problems by forming statistical tests.

The detailed tests which depends on the distributions, are presented later in

section 3.3 after the model learning algorithms are introduced.

3.2 Learning model

Efficient Online Learning

In this section, we are going to show the two distributions can be learnt in a on-

line sequential way with minimum computational overhead and constant storage

requirement, which is desirable for resource constrained devices like sensors.

According to Bayesian statistics, one can show that, by using uninformative

prior [2, 3, 4]:

Case 1: σe is known

5

1. The posterior is

δij |e1:N ∼ N
(
µ̂,
σ2
e

N

)
; (3)

2. The prediction is

eN+1|e1:N ∼ N
(
µ̂, (N + 1)

σ2
e

N

)
; (4)

where µ̂ , 1
N

∑N
i=1 ei.

Case 2: σe is unknown

1. The posterior distribution is Student T distributed with mean µ̂,

variance s2

N , and N − 1 degree of freedom

δij |e1:N ∼ T (µ̂,
s2

N
,N − 1); (5)

2. The prediction is

eN+1|e1:N ∼ T (µ̂, (N + 1)
s2

N
,N − 1); (6)

where s2 , 1
N−1

∑N
i=1(ei − µ̂)2

To put this another way, we predict the expected signal difference and noise-

driven error using a distribution learned in the previous N steps. Note that Case

2 distributions share the same mean but use an estimator s2 instead of the known

variance, comparing with Case 1. For both cases, the predictive distributions

are identical to their posterior counterparts except the inflated variances (by a

factor of N + 1). Therefore, one only needs to learn the shared parameters once

to obtain the two distributions.

It can be shown that the distributions for both cases can be learnt efficiently

with linear growth time complexity and constant memory storage. Theorem 1

shows this claim.

Theorem 1 (Efficient Model Learning). The posterior distribution δij |e1:N ∼
T (µ̂, s

2

N , N − 1) can be learnt in an on-line fashion with space complexity Θ(1),

and time complexity Θ(N) via the following recursive procedure:

µ̄n = µ̄n−1 +
1

n
(en − µ̄n−1), (7a)

Sn = Sn−1 + (en − µ̄n−1)(en − µ̄n), , (7b)

s2(n) =
Sn
n− 1

(7c)

and

µ̂ = µ̄N and
s2

N
=

SN
N(N − 1)

. (8)

6

Proof. By defining µ̄1 = e1 and S1 = 0, for 1 < k ≤ N , µ̄k and Sk can

be calculated at constant cost as a sum of µ̄k−1, Sk−1 and an adjusting term

involving ek. The time complexity is Θ(N) for k = N . Throughout the process,

three parameters µ̄k, Sk and ek are maintained, so the space complexity is of

Θ(1). The proof of the given recursive procedures is omitted due to space

limit.

The learning formula for Sn is due to Knuth [5]. There are other one-pass

algorithms for computing sample variance, notably

Sn =

n∑
i=1

e2
i −

1

n

(n∑
i=1

ei

)2

However, this equation needs to maintain two additional parameters in memory

and then perform the subtraction of two substantial sums, which risks larger

relative error.

Robust Learning by Markovs’ Inequality

Just like normal sensor data, the learning data is subject to faults as well. We

believe the assumption of error free learning data is not realistic; therefore, an

additional step of error data filtering is added to make the algorithm robust.

The filtering test applies Markov’s inequality.

Theorem 2 (Markov’s Inequality). Let ξ be a non-negative random variable

and its mean E[ξ] exists, For any t > 0

P(ξ > t) ≤ E[ξ]

t
(9)

Proof. Since ξ > 0,

E[ξ] =

∫ +∞

−∞
ξp(ξ)dξ =

∫ +∞

0

ξp(ξ) dξ =

∫ t

0

ξp(ξ)dξ

+

∫ +∞

t

ξp(ξ) dξ ≥
∫ +∞

t

ξp(ξ)dξ ≥ t
∫ +∞

t

p(ξ) dξ

= tP(ξ > t).

Let ξ = (ei − µ̄n)2, then its mean E[ξ] can be estimated by µ̄ξ = Sn
n =

1
n

∑n
i=1(ei− µ̄n)2. When a new learning data entry ek is arrived, the probability

of observing some value as extreme as it is P (ξ > ξk) whose value is smaller than
µ̄ξ/ξk, where ξk = (ek − µ̄k−1)2. By selecting a test probability threshold like

pthred = 1%, we can filter out the noisy learning data. Note that the filtering test

is lightweight and does not require any extra parameter estimation, as the only

parameter used is Sn. The model learning algorithm is summarised in Figure 4.

7

3.3 Statistical Tests

Verifier Node Selection Test

As discussed in Section 2, to find spatial correlated nodes, one only needs to

make inference on δµ by calculating the probability P(|δµ| < ∆µ|e1:N) and

comparing it with some predefined confidence level. The exact probability can

be calculated by integration. However, to ease the computation, we instead

derive the following test rule.

Theorem 3 (Verifier Node Test). If

Case 1: δij |e1:N ∼ N
(
µ̂,

σ2
e

N

)
,

µ̂+ tα,∞

√
σ2
e

N
< ∆µ and µ̂− tα,∞

√
σ2
e

N
> −∆µ, (10)

Case 2: δij |e1:N ∼ T (µ̂, s
2

N , N − 1),

µ̂+ tα,N−1

√
s2

N
< ∆µ and µ̂− tα,N−1

√
s2

N
> −∆µ, (11)

then

P(|δij | < ∆µ|e1:N) ≥ 1− 2α, (12)

where ∆µ is a positive constant, and tα,N−1 is the critical percentile value from

the corresponding Student T distribution. tα,∞ is the Gaussian counterpart.

Proof. The transformed random variable

δij − µ̂√
s2/N

∣∣∣∣∣ e1:N ∼ T (0, 1, N − 1).

So P(−tα,N−1 <
δij−µ̂√
s2/N

< tα,N−1|D) = 1− 2α, leading to

P

(
µ̂− t

√
s2

N
< δij < µ̂+ t

√
s2

N

∣∣∣∣∣D
)

= 1− 2α.

If (11) holds, then

P(|δij | < ∆µ|D) = P

(
µ̂− t

√
s2

N
< δij < µ̂+ t

√
s2

N

∣∣∣∣∣D
)

+ P

(
−∆µ < δij ≤ µ̂− t

√
s2

N

∣∣∣∣∣D
)

+ P

(
µ̂+ t

√
s2

N
≤ δij < ∆µ

∣∣∣∣∣D
)

≥ 1− 2α.

8

By the converging property for Student T distribution, the proof for case 1

follows by setting N =∞.

According to Theorem 3, there are three user controlled parameters: the

learning data size N , critical percentile value tα,N−1 and predefined spatial

difference threshold ∆µ. Some general rule of thumbs can be applied to select

them. For example, confidence intervals of 95% and 90% (α = 0.025 or 0.5) are

commonly used in statistical tests. Learning data size should be relative large

number, such as N ≥ 500, which implies a more stable learnt model but also the

Student T distribution converges to a Gaussian distribution: the corresponding

Gaussian critical values can be used instead. The spatial difference threshold

∆µ is used to specify how close co-located sensor readings are. Some expert

field knowledge or even common sense can guide the selection of the value.

For example, for a normal sensor application with average node distance of 10

meters, we should not expect two co-located temperature readings differ by 1℃.

Data Fault Test

The following theorem presents the statistical test to find out whether a new

observation is faulty or not. A positive result from the test implies the proba-

bility of observing a value as extreme as the current one is small. The theorem

actually rephrases a regular Student t-test, whose proof is omitted.

Theorem 4 (Data Fault Test). Given observations Yi,N+1, Yj,N+1 from sensor

i, j, ∆N+1 = Yi,N+1 − Yj,N+1, and node j ∈ Vrf(i). If

Case 1: eN+1|e1:N ∼ N
(
µ̂, (N + 1)

σ2
e

N

)
,

µ̂+ tα,∞

√
(N + 1)

σ2
e

N
< ∆N+1 ∨

µ̂− tα,∞

√
(N + 1)

σ2
e

N
> ∆N+1, (13)

Case 2: eN+1|e1:N ∼ T (µ̂, (N + 1) s
2

N , N − 1),

µ̂+ tα,N−1

√
(N + 1)

s2

N
< ∆N+1∨

µ̂− tα,N−1

√
(N + 1)

s2

N
> ∆N+1, (14)

then

P (|eN+1 − µ̂| > |∆N+1 − µ̂||e1:N) ≤ 2α. (15)

9

Multiple Verifiers Test For multiple verifiers, we can collect verification

information from all (or a sub-set) of vrf(i): if at least one verification result

supports the suspect data, we mark the data as non-faulty. This mechanism

protects against the risk of the breakdown of pairwise spatial correlations, since

the synchronised difference et is only partially stationary, meaning that, which

et remains stationary locally, it still evolves over the long term resulting in a

learned historic model breaking down over time. It is substantially less likely

that a node’s observation will be totally different from those of all its neighbours.

The following test rule is used.

faulty : if

vrf(i)∧
j=1

boolj(Yi,t) == true (16)

3.4 Spatial model update

After the model eN+1|{Yi,t} is learned initially from the first batch of N obser-

vations, it needs to be updated as more data are observed. There are essentially

three reasons for updating:

1. The spatial difference et is only partially stationary, and so will evolve

over time and invalidate the learned model;

2. Future data provide improved temporal correlations, allowing inference on

the whole observed data series rather than only on the learned prefix; and

3. The computational effort involved in updating the model is significantly

less than that involved in learning a new model from scratch if the initial

model becomes outdated.

We further argue that only the mean estimator µ̂ needs to be updated, while

the variance s2 can be ignored. Under our spatial assumption, σe representing

the measurement of independent sensors does not change with time: the per-

formance of a “healthy” sensor neither improves nor degrades with time. Real

world sensor data series can also demonstrate this claim. Figure 1 shows an

excerpt of sensor traces from [6]: the grey line is the difference of two spa-

tially correlated temperature sensor data, while the red line shows its rolling

variance calculated with window size 100. Obviously, the variance remains con-

stant comparing the sensor data. Secondly, although sensor performance may

degrade over time in long run, the predictive distributions here are used as a

reference model: expected readings from a normal sensor. Only comparing with

a “healthy” normal model, faulty data can be found out. Finally, dropping

an unnecessary regular parameter update can bring in the benefit of energy

conservation.

10

Time
e i

0 200 400 600 800 1000 1200

0.
05

0.
10

0.
15

0.
20

0.
25 ei

Rolling Variance

Figure 1: Spatial difference sensor data ei with its mean adjusted rolling vari-

ance.

Obviously only data classified as non-faulty should be admitted into the

model as it is updated. We reuse the test in Theorem 4 to check the eligibility of

a data entry et to be incorporated into the model. However, a different, or more

conservative, critical value tα should be used. The motivation is to protect the

model update from over data selection. For example, if 90% confidence interval

was used, then there would be approximately 10% of good data being excluded

from update. To differentiate these two thresholds, we denote the significance

level used for update selection as αupdate and αftest for the other.

Temporally close observations should resemble each other in the same way

as spatially close observations. Another way of looking at this is that different

elements of {Yi,t} carry different amounts of information. Therefore, for predic-

tion, each data entry in e1:N carries a different level of information. It is natural

to give them varying weights based on this correlation.

Note the model update procedure for the mean in Theorem 1, however, gives

equal weights. To see this, the formula can be rewritten as

µ̄n =
n− 1

n
(
n− 2

n− 1
µ̄n−2 +

1

n− 1
en−1) +

1

n
en

=
1

n
en +

1

n
en−1 +

1

n
en−2 + . . .

We use the following recursive formula instead to update the model to take

temporal correlation into account. The modified procedures provide estima-

tors with time varying weighting such that newer data entries are given higher

weights.

µ̃n = µ̃n−1 + ψ(en − µ̃n−1) (17)

where 0 < ψ < 1 is called the smoothing parameter. The initial values can be

simply set as the parameters learnt from the verifier selection step, i.e. µ̃0 = µ̄N .

11

Note that (17) can be rewritten as µ̃n = ψen + (1 − ψ)µ̃n−1. By induction, it

can be shown that

µ̃n = ψen + (1− ψ)ψen−1 + . . .+ (1− ψ)ne0

=

n∑
i=1

(1− ψ)n−iψei + (1− ψ)ne0 =

n∑
i=0

wiei,

where w0 = (1 − ψ)n, wi = (1 − ψ)n−iψ for 1 ≤ i ≤ n. The time varying

weighting is evident as the weight decays exponentially as time traces back.

Note that µ̃n is a convex combination of the observations, i.e. the weights sum

to one, which makes µ̃n an unbiased estimator.

W
ei
gh
t

0.
00

0.
02

0.
04

0.
06

W
ei
gh
t

0.
00

0.
05

0.
10

0.
15

Time

Figure 2: Time Varying Weights with ψ = 0.1 (top) and ψ = 0.3 (bottom)

respectively.

The smoothing constant, ψ, is a user controlled parameter. As can be seen

from Figure 2, large ψ, leading to a lighter tail, will give recent observations

heavier weights. In other words, different ψ will make the system responsive to

physical process changes at different rates. To help user specify the value, the

following heuristic rule is derived.

The sum of partial weights on the k recent observations is

n∑
i=n−k+1

wi = ψ
1− (1− ψ)k

1− (1− ψ)

= 1− (1− ψ)k;

Therefore, the weights over the first n− k historic data are given by

W (ψ) = (1− ψ)k.

One only needs to choose a ψ such that W (ψ) is small. For example, consider

an application in which deployed sensors sample ambient temperature every

12

15 seconds. It is safe to assume observations within 10 minutes lag are more

temporal correlated; so we should set k = 40. Therefore, selecting ψ = 0.3 will

make sure W (ψ) ≈ 0.

4 Protocol Design and Implementation

In this section, we present how the technique is incorporated into existing WSN

data collection protocols.

Figure 3: An Overview of the Message Passing Sequence.

A sequence diagram showing the whole life cycle of the proposed solution is

listed in Figure 3. The whole data collection procedure starts with a learning

phase, in which the objective is to learn the two distributions, which later will be

used for the verifier selection test and fault detection in operational phase. More

specifically, the relevant source nodes broadcast its sensor readings to its one-

hop distance neighbours as learning data. Each potential verifier then learns the

corresponding spatial model via (7). After a model with a predefined amount

of learning data is learnt, each potential verifier carry out the verifier selection

test by Theorem 3. The test result, if positive, is sent back to the corresponding

source node. Upon this point, each source node and its corresponding eligible

verifier nodes have established their source-verification relationships. Note that

we differentiate source node and verifier node here only for the sake of clar-

ity; however, each sensor can serve as both roles at the same time. Figure 4

summarises the steps involved in the learning phase.

The operational phase, in which the actual data collection takes place, is

ensued. In group validation scenario, each sampled data entry, before sending

back the sink, will be verified sequentially by its corresponding verifiers via

the test discussed in Theorem 4. This is achieved via a simple routing protocol

maintained by the source node. The source node inserts a FIFO queue of verifier

addresses in the order of the desired sequence into the radio message (shown

in Section 4). The verifier node whose address matches the destination verifies

the contained data. Based on the test result, the current verifier can sets the

13

Input: msg : received learning data message

1: if Packet.src(msg) ∈ Nbr then . If the source node is within one hop

distance

2: ei ← msg.sensorData− localData
3: p← n× e2i/Sn . Robust learning using Markov’s inequality,

see Theorem 2

4: if p ≤ pthred then

5: discard ei
6: else

7: update corresponding parameters via Theorem 1

8: end if

9: end if

10: if n == LearningDataSize then . Learning phase finishes

11: verifier node test via Theorem 3

12: if test is positive then

13: notify source node . Notify the source node if test is positive

14: else

15: discard corresponding model . Delete the model parameters to

save space

16: end if

17: end if

Figure 4: Learning Spatial Model

typedef nx_struct VrfRadioMsg {

nx_uint16_t id; /* Node id of source mote. */

nx_uint16_t count; /* Epoch count */

nx_uint8_t qIndex; /* Front of the vrf queue */

nx_uint8_t qSize; /* The size of the queue */

nx_uint16_t vrfQueue[MAX_NBRSIZE]; /* Verifier addrs Queue */

nx_uint16_t voltage;

nx_uint16_t sensorData; /* Sensor data from source */

nx_uint8_t vrfRst; /* A Boolean flags the vrf result so far */

} VrfRadioMsg_t;

Listing 1: Verification Message Layout

14

message destination either to the next verifier in the queue, or the sink, if

the test result is negative, i.e. not faulty. The data message will finally be

delivered to the sink by normal WSN routing protocols such as the Collection

Tree Protocol [7]. The verifiers who test the data also need to update its local

model according to (17). To give each verifier equal chance to update their

local models and, more importantly, to balance the work load, it is advisable

for the source node to change the verifier sequence queue from time to time

by rotating the queue or even shuffle the sequence. The algorithm for data

validation procedure is summarised in Figure 6.

Figure 5 shows an example of deployment featuring the proposed data

validation technique. There are two source nodes, S1 and S2; each with its

verifier node set {S2, V 2} and {V 3, V 4, V 5} respectively. Note that S2 serves

as both source node and verifier node for S1 in this case. We use hollow arrows

to represent the message passing for local data validation; while the regular

arrows are used to mark the message relay to the sink. In this case, S2 sets its

verification sequence as [V 3, V 4, V 5]. However, the group validation mechanism

finalises its decision before reaching V 5; therefore, the verified data is enroute

to the sink directly.

Figure 5: A WSN Deployment with Spatial Fault Detection

5 Evaluation

We access the solution in various aspects. First, to show the proposed algorithm

is lightweight enough to run in sensors, we implement the solution and deploy

it to sensor nodes. Second, numeric simulation is done to access the detection

accuracy.

5.1 Implementation

To demonstrate the algorithm is a feasible solution for resource constrained

sensors, we have implemented the framework in nesC on TinyOS 2.1.0 [8] and

evaluated it using IEEE 802.15.4 complaint TMote Sky mote. It consists of an

15

Input: msg: a radio message of VrfRadioMsg t received

Output: Check the contained data and forward the msg accordingly

1: if Packet.isForMe(msg) then

2: (isFault, toUpdate)←
dataValidate(msg.sensorData)

. Data test via Theorem 4

3: if toUpdate == true then . Include for model update

4: updateModel(msg.sensorData) . Model update using (17)

5: end if

6: msg.qIndex← msg.qIndex + 1

7: if isFault == true && msg.qIndex < msg.qSize then

. If it is a fault, forward to the next verifier

8: Packet.destination(msg) ←
msg.vrfQueue[msg.qIndex]

9: Packet.send(msg)

10: else . Else flip the flag and send to the sink

11: msg.vrfRst← false

12: Packet.destination(msg) ← root

13: Packet.send(msg)

14: end if

15: end if

Figure 6: Data Validation At a Verifier Node

16

Table 1: Program Size Comparison

Without SDV SDV (increase) P. of total

RAM (in Bytes) 492 576 (17%) 5.6%

ROM (in Bytes) 15860 20872 (24%) 42.5%

processor running at maximum 8MHz and RAM of 10 KB [9]. The relative small

RAM size becomes a major hindrance for the system and application program.

The footprint of a typical node which serves as both source and verifier is

reported in Table 1. Comparing with a pure data collection implementation,

a marginal increase of 17% in RAM with the spatial data validation (SDV)

augmented solution is observed. Actually, the program size only depends on

the number of spatial models kept locally, Figure 7 shows this relationship.

Note that even for the extreme case of 64, i.e. a verifier serving 64 source nodes

at the same time, the RAM is 696 bytes, only constituting 6.8% of the total

memory (the ROM is 20876 bytes).

58
0

60
0

62
0

64
0

66
0

68
0

70
0

Number of Source Nodes For a Verifier

R
A

M
 U

se
d

(I
n

B
yt

es
)

1 2 4 8 16 32 64

Figure 7: Memory Footprint of the Solution Versus the Number of Local Spatial

Models

5.2 Numerical simulation

To better understand the detection accuracy of the solution, we use a real-

world data set: the Intel Lab Data [6] to run numerical simulation. All the

experimental results are obtained from simulations written in R [10]. The user

controlled parameters used for the evaluation are listed in Table 2.

Fault Model Injecting artificial faults into a real data set is a common ap-

proach to measuring the accuracy of a detector [11, 12, 13]. For our evaluation,

four particular kinds of faults are considered: short, constant, noise and drift.

17

Table 2: A Summary of Key Parameters

Name Value Used Description

N Learning data size 500

pthred Probability threshold set to fil-

ter out erroneous learning data;

see Section 3.2

1%

∆µ Spatial difference threshold for

co-located sensor readings

0.5℃

αvtest Significance level set for verifier

selection test

0.25%

αftest Significance level set for data val-

idation test

0.25%

αupdate Significance level set for selected

update test

0.05%

ψ Decaying parameter set for time

varying parameter update

0.3

Table 3 summarises the definitions, models and the parameters used for the

different faults. The parameters are selected based on existing works [11, 12].

Detection Accuracy The faults detected mainly can be categorised into the

following four classes: data points correctly detected as faulty (true positive,

TP); data points correctly detected as non-faulty (true negatives, TN); data

points incorrectly detected as faulty (false positives, FP); and data points in-

correctly detected as non-faulty (false negatives, FN). Two simulation scenarios

are considered:

1. Injecting errors only in source nodes;

2. Injecting errors in both a source node and its neighbours.

Two measurements, sensitivity and specificity, are reported. Note that

Sensitivity =
TP

TP + FN
(18)

Specificity =
TN

FP + TN
. (19)

Sensitivity, also called true positive rate, measures the correctly identified pos-

itive proportion; good sensitivity (approaching 1) means most of the faults are

18

T
a
b

le
3
:

D
iff

er
en

t
F

a
u

lt
M

o
d

el
s

C
la

ss
D

efi
n

it
io

n
M

o
d

el
P

a
ra

m
et

er
s

S
H

O
R

T
M

om
en

ta
ry

d
ev

ia
ti

on
fr

o
m

th
e

tr
u

e
re

ad
in

g

S
s
(x
,t

)
=
g
(x
,t

)
+
f
∗
g
(x
,t

)
ra

n
d

o
m
f

,
i.

e.
fa

u
lt

in
-

te
n

si
ty

,
fr

o
m

[0
.1
,1

0
]
is

a
ss

ig
n

ed

C
O

N
S

T
A

N
T

S
en

so
r

re
ad

in
gs

re
m

ai
n

co
n

st
a
n
t

fo
r

an
u

n
ex

p
ec

te
d

p
er

io
d

S
c
(x
,t

)
=
c

,
w

h
er

e
t
∈
T

ra
n

d
o
m

c
fr

o
m

[3
3,

9
9
9
]

is
ch

o
se

n

N
O

IS
E

S
en

so
r

re
ad

in
gs

ex
h

ib
it

la
rg

e
u

n
-

ex
p

ec
te

d
va

ri
at

io
n

S
n
(x
,t

)
=

g
(x
,t

)
+
N

(0
,σ

2
)

,

w
h

er
e
t
∈
T

ra
n

d
o
m

σ
fr

o
m

[3
,1

0
]

is
a
ss

ig
n

ed

D
R

IF
T

S
en

so
r

re
ad

in
gs

d
ev

ia
te

fr
o
m

tr
u

e
va

lu
es

b
y

a
ti

m
e-

va
ry

in
g

o
ff

-

se
t

S
d
(x
,t

)
=
g
(x
,t

)
+
f

(t
)

,
w

h
er

e

t
∈
T

a
n

d
f

(t
)

=
a
t

ra
n

d
o
m
a

fr
o
m

[2
,e

]
is

a
ss

ig
n

ed

19

Table 4: Simulation Results of Detection Accuracy

SHORT CONST. NOISE DRIFT

CASE 1 Sens. 1.0 1.0 0.774 0.996

Spec. 1.0 1.0 1.0 1.0

CASE 2 Sens. 1.0 1.0 0.682 0.996

Spec. 0.999 0.999 0.999 0.999

Table 5: Comparing with PLA

Sensitivity Specificity

SDV 0.932 1.0

PLA (clean training data) 1.0 0.98

PLA 0.184 0.997

correctly identified. On the other hand, specificity measures the proportion of

negatives, i.e. innocent sensor data, which are correctly identified as such; there-

fore, good specificity also means low false positive rate. According to Table 4,

we observe the solution performs well for Short, Constant, and Drift fault types.

It successfully detects almost all the faults but keeps the false positive rate low.

For case two, the performance degrades a bit when faults are introduced to ver-

ifiers as well. However, because of the employed Multiple Verifiers Test, the risk

of detection errors is shared among the verifiers, leading to a minor degradation.

The relative poor performance of fault type Noise is due to the fact that the

added noises are zero mean Gaussian samples, which lead to minor faults, i.e.

deviating too marginally from the truth to be identified as a fault.

The good specificity means the solution has a very low false positive rates. As

pointed in [13, 14], false positives are usually caused by mismatching detection

models. As sensor data is always evolving, models learnt by historic data, if

not updated, will not commensurate with the changing phenomenon, leading

to false positives. The relative low FP rate is attributed to the employed time

varying model update procedure, which makes the spatial model adaptive to

the changing phenomenon. Figure 8 shows an example of this adaptiveness.

The upper figure shows the evolution of a pair of sensor data; while the second

figure shows the corresponding spatial difference et, and the solution successfully

catches this evolution by updating its model parameter (the red line) via (17).

Learning in Noisy Environments The proposed solution uses a robust

learning method to downplay the effects of faults in learning data. We evaluate

20

Te
m

pe
ra

tu
re

0 200 400 600 800 1000

18
20

22
24

26

Time

e i

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Diff
Updated Mean

Figure 8: Time Varying Model Update

this effect by injecting errors into learning data set and compare the perfor-

mance with the solution proposed in [11]. The method [11], called PLA here,

employs a ad hoc heuristic rule to derive the faulty data threshold. As shown

in Table 5, after introducing errors into learning data, the performance degrades

in sensitivity (decrease 6.8%) while the false positive rate is still great. On the

other hand, PLA suffers a more severe sensitivity degradation (over 81.6%) in

comparison with its error free learning counterpart.

6 Related work

Ni [15] presents a detailed taxonomy of sensor data faults; however, no detailed

detection method is proposed. Sharma [12] also studies data faults, as well

as their possible causes. Four different data fault detection methods are com-

pared: heuristic methods, estimation methods, time series analysis methods,

and learning-based methods. The authors found that these four classes sit at

different points on the detection accuracy spectrum. But none of the four are

on-line and distributed solutions neither not adaptive. They depend heavily on

domain/expert knowledge to set learning parameters beforehand rather than

adjusting the learned model adaptively. A good survey on outlier detection

techniques is presented by Zhang et alia [16], although most of the solutions

work off-line.

A packet-level attestation method to increase sensor data reliability is pro-

posed by Kamal [11]. This work attaches an attestation bit to each observation

to indicate its validity by exploiting one-hop spatial correlation. However, it uses

an ad hoc heuristic model without proper mathematical justification. Moreover,

it ignores the possible breakdowns in the correlation between neighbouring sen-

sor readings, which may result in wrong validations. One typical Naive Bayesian

Network based solutions find outliers from a probabilistic viewpoint, but suf-

21

fer from memory explosion [17]. An alternative solution [18] presents a on-line

solution based on statistical tests and the technique can distinguish between

erroneous measurements and events. However, no flexible adaptive procedure is

given to update the model and no details on the integration of the solution and

existing data collection protocol is presented.

7 Conclusion

We have proposed an online, distributed fault detection technique. The solution

is lightweight and integrates well with existing data collection protocols for

WSNs. To make the solution adaptive to the changing physical phenomenon,

we make use of a time varying model update procedure. Simulation results

show that the solution can effectively detect short, constant, and drift faults.

We have also implemented the solution on real-world sensors, with a memory

footprint less than 6% of the total available memory.

Some parts of the solution still need further investigation. For instance, due

to time limits, we only implemented the core part of the solution and no compre-

hensive evaluation on the real-world deployment has been carried out. Because

ground truth for regular sensor data is missing, most fault detection works are

evaluated by injecting artificially-created faults. However, we think it would be

better to directly apply the solution blindly to original sensor data and compare

the result over different solutions. For example, we may compare the test result

of our computationally cheap solution with more complex solutions featuring

more sophisticated statistical models, like Gaussian process or Bayesian space-

time models, computed at server-side. The sophisticated solutions can serve as

reference models in the absence of ground truth.

References

[1] P. Levis and D. Gay, TinyOS programming. Cambridge University Press,

2009.

[2] D. S. Sivia, Data analysis: a Bayesian tutorial. Oxford university press,

1996.

[3] K. P. Murphy, Machine learning: a probabilistic perspective. MIT Press,

2012.

[4] G. Petris, S. Petrone, and P. Campagnoli, Dynamic linear models with R.

Springer, 2009.

[5] D. E. Knuth, “The art of computer programming, 3rd edn., vol. 2,” Seminu-

merical Algorithms, 1998.

22

[6] INTEL, “Intel Berkeley Laboratory sensor data set,”

http://db.csail.mit.edu/labdata/labdata.html, 2004.

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection

tree protocol,” in Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems. ACM, 2009, pp. 1–14. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1644040

[8] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,

A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler,

“TinyOS: An Operating System for Sensor Networks,” in Ambient

Intelligence, W. Weber, J. Rabaey, and E. Aarts, Eds. Berlin/Heidelberg:

Springer Berlin Heidelberg, 2005, ch. 7, pp. 115–148. [Online]. Available:

http://dx.doi.org/10.1007/3-540-27139-2 7

[9] Moteiv, Tmote Sky Datasheet http://www.sentilla.com/pdf/eol/tmote-sky-

datasheet.pdf, 2006.

[10] R Core Team, R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN

3-900051-07-0. [Online]. Available: http://www.R-project.org

[11] A. R. M. Kamal, C. Bleakley, and S. Dobson, “Packet-Level Attestation

(pla): A framework for in-network sensor data reliability,” ACM Trans.

Sen. Netw., vol. 9, no. 2, pp. 19:1–19:28, Apr. 2013. [Online]. Available:

http://doi.acm.org/http://dx.doi.org/10.1145/2422966.2422976

[12] A. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection

methods and prevalence in real-world datasets,” ACM Transactions on

Sensor Networks, vol. 6, no. 3, pp. 23–33, 2010.

[13] J. Gupchup, A. Sharma, A. Terzis, A. Burns, and A. Szalay, “The perils

of detecting measurement faults in environmental monitoring networks,”

in Proceedings of the International Workshop on Wireless Sensor Network

Deployments (WiDeploy), 2008.

[14] L. Fang, S. Dobson, and D. Hudges, “An error-free data collection method

exploiting hierarchical physical models of wireless sensor networks,” in

Proceedings of the 10th ACM Symposium on Performance Evaluation of

Wireless Ad Hoc, Sensor, & Ubiquitous Networks, ser. PE-WASUN

’13. New York, NY, USA: ACM, 2013, pp. 81–88. [Online]. Available:

http://doi.acm.org/10.1145/2507248.2507255

[15] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,

S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava,

23

http://dl.acm.org/citation.cfm?id=1644040
http://dx.doi.org/10.1007/3-540-27139-2_7
http://www.R-project.org
http://doi.acm.org/http://dx.doi.org/10.1145/2422966.2422976
http://doi.acm.org/10.1145/2507248.2507255

“Sensor network data fault types,” ACM Transactions on Sensor

Networks, vol. 5, no. 3, pp. 25:1–25:29, 2009. [Online]. Available:

http://doi.acm.org/10.1145/1525856.1525863

[16] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques for

wireless sensor networks: A survey,” Communications Surveys Tutorials,

IEEE, vol. 12, no. 2, pp. 159–170, 2010.

[17] E. Elnahrawy and B. Nath, “Context-aware sensors,” in Wireless Sensor

Networks. Springer, 2004, pp. 77–93.

[18] L. Bettencourt, A. Hagberg, and L. Larkey, “Separating the wheat from

the chaff: Practical anomaly detection schemes in ecological applications of

distributed sensor networks,” in Distributed Computing in Sensor Systems,

ser. Lecture Notes in Computer Science, J. Aspnes, C. Scheideler, A. Arora,

and S. Madden, Eds. Springer Berlin Heidelberg, 2007, vol. 4549, pp. 223–

239. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-73090-3 15

24

http://doi.acm.org/10.1145/1525856.1525863
http://dx.doi.org/10.1007/978-3-540-73090-3_15

