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Abstract 

Traditionally, the common cost functions, the number of functional units, registers 
and selector inputs, are used in high level synthesis as quality measures. However, these 
traditional design quality measures may not reflect the real physical design. To establish 
quality measures based on the physical designs, we propose layout estimation models for two 
commonly used data path and control layout architectures. The results show that quality 
measures deriving from our models give an accurate prediction of the final layout. The 
results also show that traditional cost functions are not good indicators for optimization in 
high level synthesis. 
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~ 
1 2 3 5 1 2 6 7 

mux height(um) width( um) delay(ns) with 1 pf load 

~ ~ x 

2:1 80 43.2 7.35 

3:1 80 68.8 7.2 1 3 2 

4:1 80 80 7.25 3 2 (b) 

5:1 80 102.4 7.85 mux 

6:1 80 114 8.9 
4 mux 5 6 7 

7'.1 80 144 7.9 

8:1 80 155.2 7.9 mux mux mux 

to reg1 to reg2 to reg3 

(a) (c) 

Figure 1: Interconnect cost based on physical design 

are required. On the other hand, when a three-level-mux model is used by merging the 

mux inputs, only 11 mux inputs are needed (Figure l(c)). Based on the mux input count, 

the three-level-mux design seems to be better than the one-level-mux design. However, by 

taking into account the mux area and delay information in Figure l(a), the total area for 

the one-level-mux design with one bit datapath is 19,200 µm 2 while the delay is 7 .25ns. 

For the three-level-mux design with one bit datapath, the total area is 19,328 µm 2 and the 

delay is 21.45ns. As a result, the one-level-mux design is better than the three-level-mux 

design in terms of area and delay even though the one-level-mux design uses more mux 

inputs than three-level'"mux design's. This example demonstrates that the number of mux 

inputs is not a good quality measures for data path optimization. 

As another example considers two designs: (1) using two 2-input multiplexers and (2) 
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usmg one 4-input multiplexer. Since both designs have four mux inputs, both designs 

have the same interconnect costs in terms of the mux inputs. However, using the physical 

information shown in Figure 1( a), the area of the two 2-input multiplexers is 6,912µm 2 /bit 

which is larger than the area of the one 4-input multiplexer (6,400µm 2 /bit). Again, the 

traditional interconnect cost function does not well predict for the layout area. 

In this paper, we describe layout models for the data path and control logic. We also 

defj.ne new quality measures, the product of transistor and routing track density for layout 

area optimization. We demonstrate the superiority of our models and the new cost function 

by comparing it to the real layout area during design space exploration of the elliptic filter 

benchmark. 

The remainder of this paper is organized as follows: Section 2 describes the data path, 

control logic, and merrto~y area models. Section 3 describes the experiments and results. 

Finally, Section 4 summaries our approach. 

2 Layout area models 

We divide the chip into four parts: (1) Data path, (2) Control logic, (3) Macrocells, and ( 4) 

Memories. Data paths consist of regular structural components such as an adder/ subtracter, 

ALU, MUX, or register. Control logic consists of a set of random gates or a PLA associated 

with the data path to perform required data transfer. Macrocells include some predefined 

components such as multipliers. Memories include RAMs and ROMs. In this section, we 
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first describe the area estimation models for the data path and the control logic. Then we 

describe the area estimation models for the multiplier and the memories. 

2.1 Data path layout model 

There are two common layout architectures ([12),[17),[28],[25),[2],[26]) for data paths: (1) 

bit slice stack with abutment and (2) bit-sliced macrocells with routing channel where a 

macrocell represents a bit slice of microarchitecture units. The first and second layout 

architectures are shown in Figure 2 (a) and (b) respectively. The first architecture uses 

abutment to connect different bit slices, and over-the-cell routing for connecting different 

units inside one bit slice. Different strips for P and N transistors are laid out horizontally. 

Data signals run vertically in second metal over the bit slices. Power, ground, and control 

lines are routed in first metal or poly between the bit slices. The stack grows horizontally 

when the bit-width increases, and vertically when the number of units increases. In the 

second layout architecture, bit-sliced macrocells or standard cells of each bit slice are placed 

vertically and a routing channel is used for connecting different cells inside one bit slice. In 

this architecture, power and control lines run horizontally in second metal while data lines 

run vertically in first metal or poly. 

We first describe the area cost of the first architecture (bit slice abutment). In this 

architecture, each bit slice has a fixed number of over-the-cell routing tracks (Figure 3(a)). 

If the actual number of routing tracks used to connect units is less than or equal to the 

available routing tracks for a bit slice, then the stack width is equal to the width of the bit 
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Figure 2: Two data path layout architectures 

slice times the number of bit slices. The stack height is equal to the sum of the heights of 

all units in the stack which include functional units, registers, and interconnect units. On 

the other hand, if the actual routing track density used to connect units is higher than the 

number of available routing tracks, then extra routing area is required. Thus, the area cost 

is calculated as follows: 

if Trkavan2::Trkused 
Atotal = I 

w( A FU + A REG + AIU + Awire) if Trkavail < Tr kused 

where 
Atotal is the total area of the data path; 
AFu is the single bit slice area of functional units; 
AREG is the single bit slice area of registers; 
Aiu is the single bit slice area of interconnect units, multiplexers or tri-state buffers; 
Awire is the area of a routing channel; 
Trkavail is the available over-the-cell routing tracks of one bit slice; 
Trkused is the actual routing tracks required to connect units in one bit slice. 
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w is the bit widths of the data path; 

For the second architecture (cells with routing channel), the area cost is the same as 

the described area cost; however, the available over-the-cell tracks in this architecture is 

equal to zero, that is Trkavail =0 (Figure 3(b)). 

fixed # of over-the-cell 
routing tracks 

r---". 

unlt1 
., 

•• 
•• I 

power ........... ,.... : : I 
•• 
• • I •• 

ground ............... :: I 
• • I •• 

.-.t"4-...,.. • • I •• ••I •• •• I •• •• I •• 
ground..,...,._....,.•1 I •• 
unltn •• I •• 

one bit e~~routing 
area 

(a) 

unitn 

I routing area 

I 
I 

.__ __ - ...J 

one bit 

(b) 

Figure 3: The area models for two layout architectures 

The area of a bit slice consists of two parts: (1) the unit area in the bit slice and (2) 

the wiring area. In this section, we first describe the unit area cost. Then, we discuss the 

wiring area cost. Finally, we describe the overall area costs for the data paths. 
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2.1.1 Unit area 

As described in the previous section, the unit area of one bit slice consists of three parts: (1) 

functional unit area, (2) register area, and (3) interconnect unit area. We use the transistor 

costs as the measures of unit area consumptions. Since the transistor costs of the functional 

units and registers can be obtained by examining a component library ([31]), we focus on 

the interconnect unit cost estimations, which consist of two models: (1) multiplexer and 

(2) bus. Using the bus model, a tri-state buffer is needed for each selector input in the RT 

design; thus, the transistor cost of the interconnect units is shown as follows: 

n 

trs(IU) = L trs( tri_bufferi)) 
i=l 

where 
n is the number of selector inputs in the RT design; 
trs(tri_bufferi) is the number of transistors of a tri_buffer. 

Using the multiplexer model, the area cost of the interconnect units depends on two 

factors: (1) area cost of each selector input and (2) area cost of the selector itself. We 

first describe the multiplexer structures and the correlations between transistor costs and 

multiplexer inputs. There are two common multiplexer implementations: (1) one select 

control line for each input (Figure 4( a)) and (2) flog 2 n l control lines per n inputs (Figure 

4(b) ). The first mux has one optional decoder outside the sliced stack while the other has 

a decoder in each unit. The multiplexer consists of three parts: (1) the selector, (2) the 

output drivers, and (3) a~ optional internal decoder. Assume the selector inputs have the 

same selection circuit, the number of transistors of a multiplexer j is shown as follows: 
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I in(muxj) x tr1 + tr2 one control per input 
trs(muxj) = 

in(muxj) x tr1 + 210grin(muxj)l x tra + tr2 decoding control inputs 

where 
in(muxj) is the number of inputs of mux j; 
tr1 is the number of transistors of each selector input; 
tr2 is the number of transistors of the output driver. 
tr3 is the number of transistors of each decoder input; 

input Input 

selector 

selector 

n---
control 

output 
driver 

decoder 

output 
drhier 

n 1 control lo!l"nl 

(a) 
(b) 

input 1 

input n 

sel 1 sel n 

(c) 

Figure 4: Two multiplexer structures 

output 

For example, Figure 4( c) shows a n-input multiplexer with n control lines. In this 

multiplexer, there are four transistors for each input and two transistors for each output 

driver such that tr1 is equal to 4 and tr2 is equal to 2. Thus, the transistor cost of a 

4-input multiplexer is 18. 
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Using the multiplexer model, the transistor cost of the interconnect units is shown as 

follows: 

m 

trs(IU) = L trs( muxj) 
j=l 

where 
mis the number of selector in the RT design. 

2 .1. 2 Wiring area 

The wiring cost can be described as the routing track density required to completely connect 

all nets in a bit slice. The actual density can only be determined after bit slice units have 

been physically placed. However, the placement procedure is often expensive in terms of 

computation time. Hence, we use an inexpensive wiring estimation method. 

In our wiring estimation, the routing density is measured in terms of number of the 

routing tracks using the linear placement model of two described data path layout archi-

tectures. Given a netlist, we place components linearly in a single row. We first use the 

min-cut partitioning algorithm ([7],[13]) to perform component placement. Then, routing 

tracks are assigned to nets using the left-edge algorithm which explores the possibility of 

track sharing. The estimated number of routing tracks for a single bit slice is obtained and 

the wire cost is calculated as follows: 

Awire = f3 (Trkused - Trkavail) 
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where 
Trkused is the number of required routing tracks in a bit slice; 
Trkavail is the number of routing tracks available for over-the-cell routing; 
/3 is the product of wire pitch times the stack height. 

/3 is the area coefficient of a routing track which depends on the wire pitch and routing 

channel width. The wire pitch depends on the layout technology. For example, using a 3µm 

technology, the wire width is 3µm while the distance between two wires is 3µm. Therefore, 

the wire pitch of each routing track is 6µm. 

2.1.3 The Overall data path layout model 

Using the described area and wiring costs, we can derive the overall area cost of the data 

path as follows: 

n m P 

Atotal = w( a(L trs(FUi) + L trs(REGj) + L trs(IUk)) + Awire) 
i=l j=l k=l 

where 
Atotal is the area cost of the data path; 
a is the transistor area coefficient which correlates to the layout technology 
and the layout system; 
trs(FUi) is the number of transistors in functional unit i; 
trs(REGj) is the number of transistors in register j; 
trs(IUk) is the number of transistors in interconnect unit k; 
n is the number of functional units in one bit slice; 
mis the number of registers in one bit slice; 
p is the number of interconnect units in one bit slice; 
w is the bit widths of the data path; 

a is a transistor area coefficient (area/transistor) which is technology dependent and 

varies with different layout systems. For example, a is 220 µm 2 /transistor using the l.5µm 
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technology component library (31), while a is 1,100 µm 2 using the 3µm technology com-

ponent library (1]. This area coefficient a is obtained from the empirical studies using the 

targeted layout system and technology. 

2.2 Control layout area model 

Conditional 
status 

Next-state 
Logic 

Conditional 
status 

Next 
State 

Conditional 
status 

uj Present 
O> State e 
Cl) -s 

en 

Next 

State 

Conditional 
status 

Conditional 
status 

(a) 

AND Plane 

Inputs 

(b) 

OR Plane 

Outputs 

to Data Path 
Control Lines 

Figure 5: Two control logic layout architectures: (a) Random logic and (b) PLA imple
mentations 

In the control logic layout model, we focus on two control logic architectures: (1) 

Random logic and (2) PLA (Figure 5). Random logic includes gates, flip-flops, decoders, 

and drivers which are often laid out using standard or custom cells. On the other hand, 

12 



PLA offers a regular structure for implementing control logic functions. A typical PLA 

uses an AND-OR structure combined with an input and output circuitries. 

One major issue in control logic implementation is the state encoding scheme. Many 

researches([4),[29]) have focused their efforts to find an encoding scheme which can produce 

minimal layout area. Results obtained from these schemes vary in a wide range. Hence an 

accurate general control logic estimation is difficult to achieve. In our control logic layout 

model, we assume that states are encoded in binary value according to their state number. 

However, this assumption can be further improved upon the knowledge of encoding scheme 

uses in the actual layout implementation. 

In this section, we first describe the random logic layout model. Then, we describe the 

PLA layout model. As mentioned earlier, we use the transistor costs as the measurement 

of area consumptions. 

2. 2 .1 Random logic layout area model 

We define the random logic model as a next-state logic, a state registers, and a state decoder 

logic (Figure 5a). The next-state logic consists of combinational gates which computes 

the next state from the present state and the conditional status. A set of state registers 

provides state sequencing effect. The state decoder logic uses the present state and the 

conditional status to determine the control signals of the data path. 

The upper bound of the number of transistors needed in the next-state logic can be 
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PRESENT-STATE IN OUT NEXT-STATE 
PSn ....... PS1 PS0 NSn ....... NS1NSo 

0 1 0 

0 ······· 0 0 0 1 1 

0 0 
NS1 

0 0 0 
0 0 1 

0 1 0 

• • • • • • • • • • • • 
m 

• n = r log2 ml 

Figure 6: The next-state logic model 

determined from the state transition table. Basically, we can express each encoded next-

state bit, (NSi), as a sum of product terms of encoded present-state bits, (PSi), see Figure 

6. To simplify the cost, we do not take into account the conditional status bits. The product 

terms can be implemented as AND gates while the overall sum can be implemented as an 

OR gate (Figure ??). Thus, the next-state logic cost is calculated as follows: 

flog2ml 

trs( ns_logic) = I: trs(NSi) 
i=O 

The state decoder logic can be further sub-divided into two parts: (1) a state decoder, 

and (2) a two-level OR-gate-driver logic. For a data path component with a set of control 

lines, a n-input OR gate is inserted in front of each control line where n is the number 

of time steps in which the particular control is activated(Figure 7( a)). For example, the 

register in Figure 7(b) loads n=3 variables varl, var2, and var3 on the time steps 1, 3, 
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and 5 respectively. A 3-input OR gate takes 3 control inputs for time steps 1, 3, and 5 from 

the state registers. For an n-input MUX (Figure 7( c) ), if n1 variables are selected from 

mux inputl on n1 time steps, then a n1-input OR gate takes n1 control inputs. Similarly, 

an n-input OR gate takes n control inputs to select the add or substract operation of a 

functional unit (Figure 7( d) ). 

control 
inputs 

control 
inputs 

1 

n~-t>. 
1~1 
n~ 

DP component 

step 1 

control ~tep3 
Inputs 

step 5 

n variables 

load Register 

(a) (b) 

n1 "2 
varlables variables 

sel_1 

MUX 

sel_n 

(c) 

1 

control ~ 
Inputs~ 

n 

sel +/-

(d) 

Figure 7: The control driver model 

The transistor cost of the random logic implementation consists of five parts: (1) next-

state logic costs(trs(ns_logic)), (2) state registers costs(trs(state_reg)), (3) state decoder 

costs (trs(state_decoder), (4) OR-gatecosts(trs(OR)), and (5) drivercosts(trs(driver)). 

Where, 
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and 

p < 

trs( state_reg) = flog2m l x ( trs( register)) 

trs(state_decoder) = trs( pog2m l : m DECODER) 

n 

trs(OR) = I:trs(p_input OR gate) 
i=l 

# of control steps in which variables are loaded 
if i is a register control line 

# of control steps in which inputs are selected from mux input i 
if i is a mux select line 

# of control steps in which variables are loaded from the trLstate buffer input 
if i is a tri...state buffer control line 

# of control steps in which operation i is selected 
if i is a functional unit select line 

mis the number of control steps; 
n is the number of control lines. 

Thus, the total transistor cost trs(RL) is calculated as follows: 

n 

trs(RL) = trs(ns-1ogic )+trs(state_reg)+trs(state_decoder )+trs( OR)+ I: trs( driver) 
i=l 

And the .area cost of the random logic is calculated as follows: 

ARandom_Logic = a trs(RL) 
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where 
a is the transistor area coefficient. 

2.2.2 PLA layout model 

We use a common PLA layout implementation ([4],[29]) which performs state encoding 

techniques which yields minimum area in the final implementation. The layout model of a 

PLA consists of five parts: (1) inputs, (2) AND plane, (3) OR plane, (4) outputs, and (5) 

state registers which are described as follows: 

(1). Inputs. For m control inputs, it requires log f ml input drivers and state latches. The 

transistor cost of the inputs of a PLA is shown as follows: 

trs(in) = flog ml x (trs( driver)+ trs(latch)) 

(2). AND plane. The size of AND plane in a PLA is proportional to the number of control 

inputs. The transistor cost of the AND plane is shown as follow: 

trs(AND) = pogml x m 

(3). OR plane. The size of OR plane in a PLA is proportional to the number of control 

inputs as well as the number of control outputs. For m control inputs and n control 

outputs, the transistor cost of the OR plane is shown as follow: 

trs(OR) = m x n 
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( 4). Outputs. For each control output, a driver, a precharging cell, and an optional latch 

are required. For n control outputs, the transistor cost of the outputs of a PLA is shown 

as follow: 

trs(out) = n x (trs(driver) + trs(latch) + trs(precharge_cell)) 

( 5). State registers. Since we assumed that states are encoded as binary value according 

to the state numbers, the transistor cost of the state registers can be defined as follow: 

trs( state_register) = r1og2m l x ( trs( register)) 

Thus, the total transistor cost of the PLA is: 

trs(PLA) = trs(in) + trs(AND) + trs(OR) + trs(out) + trs(state_register) 

and the area cost of the PLA is: 

APLA = a trs(PLA) 

where 
a is the transistor area coefficient. 

2.3 Memory and multiplier layout area models 

In this section, we first describe the RAM/ROM layout area model. Then, we discuss the 

register file layout area model. Finally, we describe the multiplier layout area model. 
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Figure 8: The RAM/ROM layout area model 

2.3.1 RAM/ROM layout area model 

Figure 8 shows the RAM/ROM model. For a MxN bits RAM/ROM, each row contains 

N-bit storages which are divided into N/W sections, where Wis the word size. The row 

decoder selects N-bit out of MxN bits of storages. The column decoder selects W-bit out 

of N-bit of storages. Thus, the transistor cost of RAM/ROM is calculated as follows: 

MxN 
trs(Mem) = L (trs(Mem_cell)) + trs(row_decoder) + trs(column_decoder) 

i=l 

N q 

+ L trs( sense_amp) + L trs(buffer) 
j=l i=l 

where 
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Mem ={RAM, ROM} 

trs(row_decoder) = trs(flog2Ml : M DECODER) 

trs(column_decoder) = trs(flog2N/Wl: N/W DECODER) 

and the area cost is given as follows: 

AMem = a trs(Mem) 

2.3.2 Register file layout area model 
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,~ 

Data 
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Figure 9: The register file layout area model 

Figure 9 shows a p-port M by N bits register file which consists of a register array, a 
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set of address decoders, and a read/write circuitry. For a p-port register file, it requires p 

sets of decoders to decode p register addresses simultaneously. Thus, the transistor cost of 

a register file is calculated as follows: 

MxN p N 

trs(RF) = L (trs(Reg_cell)) + L trs(decoder) + L trs(r/w_cell) 
i=l j=l k=l 

where 

trs(decoder) = trs( pog2p l : p DECODER) 

and the area cost is given as follows: 

ARF = a trs(RF) 

2.3.3 Multiplier Layout area model 

Area usage of the multiplier is estimated using a M by N S-stage pipeline parallel 

multiplier model (Figure 10), where M and N is the number of operand bits, and S is the 

number of pipeline stages. 

The core array of the multiplier requires (M x N) AND gates, (M-1) half adders, and 

(M-1) x (N-2) full adders. Hence, the transistor estimation of the core cells array is given 

as follows: 

trs(core_array) = (M x N)trs(AND) + (M - l)trs(Half_adder) 
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Figure 10: The pipelined multiplier layout area model 

+(M - 1) x (N - 2)trs(Fu1Ladder) 

If S > 1, (S-1) columns of latches are inserted to store intermediate results of each 

pipeline stage. For each of the M rows, a total of 3 latches are required for storing the 

operand, the sum from the adder, and the carry from the adder. In addition, input and 

output latches are inserted for stage computations. Thus, the required latches is given as 

follows: 

trs(stageJ.atch) = (S - 1)(3 x (M - l))trs(latch) 

t (. t I t h) { L:f811
)l(M -1)/SJ xix trs(latch) if S > 1 

rs mpu - a c = o = otherwise 
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trs(output_latch) = { 0I:~~~l) l(N + M - 1)/SJ xix trs(latch) if S > 1 
otherwise 

Thus, the total transistor of the multiplier is calculated as follows: 

trs(Multiplier) = trs(core_array) + trs(stage_latch) 

+trs(input_latch) + trs( outpuLlatch) 

and the area cost is given as follows: 

AMultiplier = a trs(Multiplier) 

2.4 Complexity analysis 

( 1). Data path estimation. For a structural netlist of n components and m nets, unit area 
estimation takes O(n) time. The wiring estimation uses min-cut partitioning ([7],[13]) for 
unit placement and left edge algorithm for routing track assignment. Both take O(mlogm) 
time. 
(2). Control estimation. For the random logic implementation, it takes O(p) time where p 
is the number of the control lines. For the PLA implementation, it takes constant time. 
( 3). Memory and macros layout estimations take constant time. 

3 Experiments and Results 

We have tested our layout models on four different implementations of the elliptic fil-

ter benchmark (19-step with 2-adder and 1-piped multiplier, 21-step with 2-adder and 1-

multiplier, 19-step with 2-adder 2-multiplier, and 17-step 3-adder and 2-piped multipliers) 
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which were collected from the literature ([6],[10],[23],[24]). We first performed allocation 

[30) trading off registers and interconnect units on each example. Then, we used GDT [1) 

tools to generate the layouts. Figure 11 shows the data path of a 16-bit elliptic filter' using 

data path architectures I and II respectively. Figures 12 and 13 show the final layouts 

of a 16-bit, 19-step, 2-adder, 1-piped multiplier, and 10-register elliptic filter example with 

PLA and random logic implementations respectively. 

In the data path area estimation, we used the single-level interconnect model and per

formed multiplexer and bus implementations for all cases. The area and transistor informa

tion of the bit slices and macro cells are obtained from a VTI data path library [31] which 

uses a 1.5-µm technology. Figure 14 shows the results of the multiplexer implementation 

and Figure 15 shows the results of the bus implementation. Since the multiplier is treated 

as a macrocell, its area is constant throughout all examples. Therefore, the multiplier area 

is not included. For example, row 1 of Figure 14(a) is described as follows: The 17-step 

elliptic filter design uses 3-adder and 2-piped multipliers. This design uses 10 registers and 

11 selectors with 34 inputs. This design consists of 552 transistors and 27 nets for each bit 

slice. The final layout of this design contains 11 routing tracks and our track estimation 

is 15. Using layout architecture I, the estimated area is 129,680µm 2 and the actual area 

is 136,720µm 2 per bit, and the ratio of estimated and actual areas is 0.95. Using layout 

architecture II, the estimated area is 213,625µm 2 and the actual area is 193,117 µm 2 per 

bit, and the ratio of estimated and actual areas is 1.11. Figures 16 and 1 7 (a )-(b), ( c )

( d), (e)-(f), and (g)-(h) show the relationships between estimated and actual areas using 

the multiplexer and bus implementations with layout architectures I and II of 17-step, 
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19-step (2-adder and 2-multiplier), 21-step, and 19-step (2-adder and 1-piped multipler) 

respectively. 

For the data P<:th architecture I, we use the sliced layout architecture [16) which has 13 

over-the-cell routing tracks for each bit slice. Therefore, if the routing tracks are less than 

or equal to 13, then the area estimations are solely dependent on the number of transistors 

in the designs. The results in Figure 14 and 15 show that our layout models can predict 

the actual area with an average of 90% accuracy. 

In the total area estimation including data path, control, and multiplier, we have ex

perimented with a 16-bit, 19-step, 2-adder, and 1-piped multiplier elliptic filter example. 

Using data path architecture I, we implemented two control logic models, PLA and random 

logic, along with two interconnect models, bus and mux. Since multiplier is treated as a 

macrocell, the area of multiplier is obtained directly from the component library. Figures 

18( a) and (b) show the results of mux and bus implementations respectively. The results 

show that our layout models can predict the actual area (1) of the data path with 10% 

error, (2) of the PLA with 18% error, (3) of the random logic with 16% error, and ( 4) of 

the total area with 6% error. 

Using the layout results, we also investigated the relationships between the structural 

designs and the physical designs for traditional quality measures. The results show that 

neither the design with the minimal registers nor the design with the minimal 

interconnect units can predict the minimal area which are described as follows: 

( 1) The designs with the minimal number of registers do not produce the minimal area, 
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such as: 

(i) 21-step, mux implementation, and architecture I (Figure 16(g)). 

(ii) 19-step and 19-step with 2-adder and 1-piped multiplier, mux implementation, 

and architecture II (Figure 16( d)(h) ). 

(iii) 21-step and 19-step with 2-adder and 1-piped multiplier, bus implementation, 

and architecture I (Figure 17(e)(g)). 

(iv) 21-step and 19-step with 2-adder and 1-piped multiplier, bus implementation, 

and architecture II (Figure 17(f)(h)). 

(2) The designs with the minimal number of mux inputs do not produce the minimal area, 

such as: 

(i) 19-step with 2-adder and 1-piped multiplier, mux implementation, and 

architecture I (Figure 16(g)). 

(ii) 21-step, mux implementation, and architecture I (Figure 16(f)). 

(3) The design which produces the minimal area for one layout architecture does not guar

antee the minimal area for another layout architecture. For example, using both of the mux 

and bus implementations, the 21-step design (Figure 16(e)) with 11 registers and 27 bus 

inputs produces the minimal area using layout architecture I but not layout architecture II 

(Figure 16( f) ). 

The results in Figures 16 and 17 show that using our layout models, the estimated 

areas do accurately reflect the actual areas. The only two exceptions are the design with 

17-step and 19-step with bus and architecture I (Figure 17(a) and (c)). For both cases, 

the errors are caused by over-estimated routing tracks using our track estimation. 
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4 Conclusions 

In this paper, we demonstrated that the traditional design quality measures, using register 

and selector input counts, do not well reflect the real layout. We established novel layout 

area estimation models for data path and control logic. Our models formulate layout area 

estimation as a function of transistor and wiring costs. Our models are flexible in that 

we can use different area coefficients a and /3. to predict layout areas for different layout 

technologies and layout systems. The results show that our models can accurately predict 

physical layout. Furthermore, the layout estimation can he computed in a O(mlogm) 

time complexity which allows us to explore design space in high level synthesis rapidly and 

efficiently. 
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Figure 11: The data path layouts of a 16-bit elliptic filter example: (a) Architecture I and 
(b) Architecture II (multiplier is not included). 
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** Area not including multiplier 

Lq_out Architecture I Layout Architecture M 

Control 
#of+ #of* #of #of /#Sel. #trks. Est Area Actualkea Est Est Ana Aclualkea Esl 

Steps Reg. Sel. Inputs #trs. #nets Actual (esl) (1111~ biQ (um~biij TciiiiT (um~biQ (um~ biij Tciiir 

17 3 2·~ped 10 11 /34 ns 26 11(15) 182,888 162,240 1.13 259,600 229,164 1.13 

17 3 2·~ped 11 10/33 784 28 10(14) 174,526 163,680 1.07 255,750 225,060 1.14 

17 3 2·~ped 12 8/ 31 780 28 9(13) 171,600 162,720 1.05 242,063 217,638 1.11 

17 3 2·piped 13 9/33 824 29 8(12) 181,280 168,960 1.07 244,976 219,648 1.11 

(a) 

Layout Architecture I Layout Archttecture I 

Control #of* #of #of /#Sel. #trks. EslArea Ac.-Aret Est Esl Area Actualkea Est 
Steps #of+ Reg. Sel. Inputs #trs. #nets Acbal (est) (1111~ biQ (1111~biQ 1CiWi (um~ biij (um~ biij Actual 

19 2 2 10 8/30 672 21 8(10) 147,840 136,960 1.08 199i 176 172,912 1.15 

19 2 2 11 6/28 688 22 7(9) 151,360 136,000 1.11 197,260 171,700 1.15 

19 2 2 12 6 /28 688 23 9(10) 151,360 139,840 1.08 203,800 187,036 1.09 

19 2 2 13 6/29 720 24 8(10) 158,400 146,080 1.08 200,860 189,904 1.06 

(b) 

laj'_out Architecture I Lq_out Architecture II 

Control #of* #of #of /#Sel. #trks. Est Area Acml.Artl Est Est Area Aclualkea Est 
Steps #of+ Reg. Sel. Inputs #trs. #nets Actwlltst) (1111~ biQ (llll~biij kii:i (um~biij (uin~ biij ~ 

21 2 1 10 7130 672 20 10(10) 147,840 136,896 1.08 199i 176 186,816 1.07 

21 2 1 11 5/ 27 656 19 8(8) 144,320 133,536 1.08 184,380 172,464 1.07 

21 2 1 12 5/28 688 20 7(8) 151,360 137,376 1.10 192,572 172,446 1.12 

21 2 1 13 6 / 31 744 23 9(8) 163,680 153,216 1.07 209i644 203,652 1.03 

(c) 

~out Architecture I Lq_out Architecture I 

Control 
#Of+ #of* #of #of /#Sel. #trks. Est Arel Actual Ana Est Est Area Aclua1Ar88 Est 

Steps Reg. Sel Inputs #trs. #nets Actull(est) (IMll~ biij (um~biij Tc;;" (um~ biij (um~ biQ ~ 

19 2 1-piped 10 10/36 744 21 10(13) 163,680 148,896 1.10 225,099 203,316 1.11 

19 2 1·piped 11 6/28 668 19 7(9) 146,960 133,536 1.10 191,706 167,598 1.14 

19 2 1-piped 12 6/26 664 20 8(9) 146,080 132,576 1.10 196,824 171,216 1.11 

19 2 1·~ped 13 5/23 648 20 8(8) 142,560 129i216 1.10 181,324 166,848 1.09 

(d) 

Figure 15: The results of the elliptic filter exampie with bus implementation. 
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Figure 16: The relationships between estimated area and actual areas using multiplexer 
implementation. 32 
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Figure 17: The relationships between estimated area and actual areas using bus implemen
tation. 
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Alclitect1n I Control ~c Total Area 

#of #of /#Sel. Multiplier Data Path Alel(umi PLA Alea (umi IW!dom L~c Alel(umi PLA Alel(umi Random Logic Area (um 2) 
Reg. Sel. Inputs Alelluml Est1Al Actual(~} A:B Est_.!!} Actual(B) A:B ~ ActualJB) A:B Est_{A) Actual(B) A:B Est.(A) Actual(B) A:B 

10 10/36 2,330,880 1,788,160 2,006,016 0.89 332,600 312,256 1.07 278,400 255,352 1.09 4,667,064 4,649,152 1.01 4,612,864 4,592,248 1.01 

11 6/28 2,330,880 1,696,640 1,810,176 0.94 315,000 267,540 1.18 248,400 230,082 1.08 4,435,064 4,408,596 1.01 4,368,464 4,371,138 0.99 

12 6/26 2,330,880 1,731,840 1,851,136 0.94 312,200 266,228 1.17 229,200 196,616 1.16 4,545,544 4,448,244 1.02 4,462,544 4,378,632 1.02 

13 5 / 23 2,330,880 1,724,800 1,819,136 0.95 306,600 259,116 1.18 229,200 200,889 1.14 4,559,144 4,409,132 1.04 4,481,744 4,350~05 1.03 

(a) 

Alchitect1n I Control ~c Total Area 

#of #of I# S&I. Multiplier Data Path Alel(umi PLA Alel(umi Rnlom L~c Alel(umi PLA Alel(umi Random Logic Area (um i 
Reg. Sel. Inputs Arealum_i Est4& Actual(B) A:B Est(A) Actual(B) A:B Estm Actual(~ A:B Est.{_A) Actual(B) A:B Est.( A) Actual(B) A:B 

10 10 /36 2,330,880 2,618,880 2,382,336 1.10 332,600 312,256 1.07 278,400 255,352 1.09 5,282,360 5,025,472 1.05 5,228,160 4,968,568 1.05 

11 6 / 28 2,330,880 2,351,360 2,136,576 1.10 315,000 267~40 1.18 248,400 230,082 1.08 4~97,240 4,734,996 1.05 4~30,640 4,697,538 1.05 

12 6 / 26 2,330,880 2,337,280 2,121,216 1.10 312,200 266,228 1.17 229,200 196,616 1.16 4,980,360 4,718,324 1.06 4,897,360 4,648,712 1.05 

13 5/ 23 2,330,880 2,280,960 2,067,456 1.10 306,600 259,116 1.18 229,200 200,889 1.14 4,921,000 4,657,452 1.06 4,843,600 4,599,225 1.05 

(b) 

Figure 18: The overall area estimation of the elliptic filter example with (a) Mux and (b) 
Bus implementation. 
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