
Layout Driven Logic Restructuring/Decomposition

Massoud Pedram and Narasimha Bhat
Department of Electrical Engineering and Computer Science

University of California, Berkeley CA 94720

Abstract

As feature sizes decrease and chip sizes increase, the area and per-
formance of chips become dominated by the interconnect. In spite
of this trend, most existing synthesis systems relegate the intercon-
nect optimization to physical design. Physical design is, however,
too far down in the design pipeline to meet the performance spec-
ifications by itself. Therefore, it is necessary for synthesis tools to
share part of this optimization. In this paper, we present techniques
to integrate interconnection optimization with logic restructuring
and technology decomposition phases of logic synthesis. Our ap-
proach is based on a point placement of a Boolean network which is
used to guide the synthesis process by providing accurate estimates
on wiring area and delay. The placement solution is incrementally
updated as intermediate Boolean nodes are extracted or eliminated
during the decomposition or elimination procedures. Combining
these techniques with layout-driven technology mapping enables
us to to produce a synthesis solution and a “companion” placement
solution for a given combinational logic circuit simultaneously. Us-
ing these techniques, we are able to generate circuits with smaller
area and higher performance.

1 Introduction

Excessive factorization based on common kernel extraction during
the technology independent phase of logic synthesis has favored
gates with high fanout count and increased path delay. Inordinate
attention to minimizing the active cell area has tended toward gates
with high fanin count which often increase routing congestion dur-
ing the final layout and increase interconnection lengths. Attempts
have been made to alleviate these problems. Abouzeid et al. [1]
describe an algebraic decomposition procedure based on lexico-
graphic expressions of Boolean functions in order to reduce gate
and wiring areas. This approach aims at expressing the set of logic
functions in a form which after technology mapping leads to lay-
ered structured cones with ordered input injection. Murgai et al. [2]
propose a kernel extraction procedure for Table Look-Up PLD’s
whose objective is to minimize the number of wires created as a re-
sult of replacing a node in the network by one of its kernels and the
corresponding residue. Our approach which follows [9] is different
from these approaches, in that placement and logic synthesis are in-
tegrated and that wiring cost is estimated explicitly using placement
information.

Themajor issue in decomposition is the identification of common
subexpressions. Sharing of such expressions across the design re-
duces the complexity of the synthesized network. Brayton et al. [3]
proposed the notion of kernels in algebraic expressions and showed
how to use kernels to find multiple cube factors which are com-
mon to two or more expressions. Their algorithm selects a kernel
which produces the biggest cost reduction in terms of the number

This project is supported in part by Semiconductor Research Corporation under
grant number 91-DC-008 and National Science Foundation under grant number MIP-
88-3711.

e f a c d b

x

x = b’ c’ d’ + a c d’ + a c e’ + d e’ f + c e’ f + b c’

co−kernel kernel
e’ f
c e’
a c
c
c’
d’
e’

c + d
a + f
e’ + d’
a d’ + a e’ + e’ f
b’ d’ + b
b’ c’ + a c
a c + d f + c f

e f a c d b

4
5

6

x

[4] = e’ + d’
[5] = f e’ + a [4]

[6] = b + d’ b’
x = c [5] + e’ f d + c’ [6]

e f a c d b

1
2 3

x

[1] = c + d
[2] = a c + f [1]
[3] = b + d’ b’
x = e’ [2] + a c d’ + c’ [3]

(a)

(b)

(c) (d)

Figure 1.1: Layout-driven kernel extraction

of literals. This kernel selection policy tends to minimize the active
gate area after technology mapping. Here, we present a decompo-
sition procedure with the objective of minimizing interconnects in
the synthesized network.

We shall motivate incorporating the wiring estimates into the ker-
nel selection phase with the following example. Assume that the
Boolean network has been placed and that node and its fanin
nodes have positions as shown in Figure 1.1a. The logic expres-
sion for node is equal to .
Figure 1.1b shows all the kernels and co-kernels for this expression.
The value of kernel (that is, the number of literals saved if this
kernel is extracted and made it into a new node) is one. Similarly,
the value of kernel is one. Figure 1.1c shows the final decom-
position when is extracted while Figure 1.1d shows the final
decomposition when is extracted. Both decompositions result
in 16 literals (one less than the original 17 literals). However, the
interconnect length for 1.1c is more than that of 1.1d. The reason
is that the input signals for kernel are coming from sources
on the placement plane which are placed far apart while those for
kernel are coming from sources which are placed near one
another. Therefore, the placement information can be used to guide
the decomposition procedure in order to minimize the interconnect
(often at the expenseof little or no cost in terms of the literal count.)

2 Logic Restructuring

In this section, techniques for multiple-cube common factor extrac-
tion (which subsumes the node decomposition problem) and elimi-
nation targeted toward minimizing the total interconnection length
of the synthesized network are discussed. These techniques can be
combined with those targeted toward minimizing the total number
of literals in the factored form representation of the network in order
to simultaneously minimize the routing and active cell area.

2.1 Kernel Extraction

The extraction algorithm follows that presented in [4, 5]. We con-
centrate on selection and stopping criteria for layout-driven extrac-
tion. In particular, we shall describe the kernel extraction algorithm
in detail since the cube extraction algorithm is simpler and follows
a similar technique.

The area value of a candidate kernel is considered first. In order
to finduseful intersections of kernels (which correspond to common
multiple-cube divisors between two or more expressions), it is ben-
eficial to construct the co-kernel kernel-cube matrix as in [6]. A row
in this matrix corresponds to a kernel (and its associated co-kernel),
and a column corresponds to cubes which are present in some ker-
nel. The entry is non-zero if kernel contains kernel-cube .
The product of the co-kernel for a row and the kernel-cube for a
column yields a cube of some expression. For reference, the cubes
of the original expressions are numbered from 1 to . The number
of the cube resulting from the product of the co-kernel for row and
kernel-cube for column is placed at position in the co-kernel
kernel-cubematrix. A rectangle of this matrix identifies an intersec-
tion of kernels; this kernel-intersection is a common subexpression
in the network.

The area value of a rectangle – denoted by –
measures the difference in the number of literals in the network if
that rectangle is extracted and made into a new node. The number
of literals after the rectangle is selected is given by

where is one plus the number of literals in the co-kernel for row
and is the number of literals in the kernel-cube for column .

The number of literals before extracting the rectangle is
where is the number of literals in the cube which

is coveredby position of the co-kernel kernel-cube matrix. Then,

The process terminates when falls below some user-
defined literal saving threshold.

In order to reduce the routing complexity, a kernel-selection pol-
icy which chooses a kernel with the greatest cost reduction in terms
of the interconnection length is proposed. In particular, the inter-
connect value of a rectangle – denoted by – measures the
difference in the total wire length in the network if that rectangle
is extracted and made into a new node . In order to calculate this
wire length, node must be assigned a position and positions of
nodes that was extracted from must be updated. That is, positions
of all nodes : must be recalcu-
lated. An exact solution requires solving a local placement problem
which optimally places and nodes with respect to their current
fanin and fanout nodes in the current network. This local placement
problem can be solved efficiently by formulating a quadratic opti-
mization problem with I/O pins located at the boundary of a poly-
gon (and not necessarily a rectangle). (For example, see [7, 8].) The

(a)

(b)

y1
y2

k1

k2

k3

k4

t3t1

t2

z1

j2

j1

z1

y1
y2

x

k1

k2

k3

k4

t3t1

t2

z1

j2

j1

z1

Figure 2.2: Interconnect value of an extracted kernel

exact solution, however, takes more time than is acceptable during
the kernel selection phase, and therefore, an approximate solution
is calculated: Positions of nodes are made fixed and is placed
with respect to its fanin nodes and nodes. Since only one node
needs to be placed, the placement update problem is easily solved
by placing at the center-of-mass of its fanin and fanout net en-
closing rectangles [9].

After assigning a position to , the new interconnection length is
computed as

where () denotes the wire length needed to con-
nect node and its fanout nodes in the old (new) network before
(after) extraction.

Figure 2.2 shows an example of interconnect value computa-
tion for a kernel. The dark lines in Figure 2.2a (2.2b) identify
the connections which must be considered for calculating
().

The kernel extraction process terminates when the ratio
drops below some user defined wire saving

threshold. In order to optimize both literal count and wiring, the
value of a kernel is a function of both and .

As new kernels are extracted, the number of nodes and the struc-
ture of the network changes. Therefore, the network and its cor-
responding global placement on layout plane must be updated ac-
cordingly. After a new node is created, positions of and ’s
are re-calculated by solving a quadratic optimization problem as
described earlier.

Note that interconnect values for overlapping rectangles in the
co-kernel kernel-cube matrix are implicitly handled – when kernel

is extracted, its fanin nets are updated and interconnect values of
subsequent kernel extractions which overlap will be calculated
based on this update.

2.2 Elimination

The elimination algorithm follows the outline of that presented in
[4, 5]. Candidate vertices are selected according to some criterion
and the elimination takes place if some constraints are satisfied.
Elimination terminates when no candidate vertices can be found.
We concentrate on the selection and acceptance criteria for layout-
driven elimination.

The area value of an elimination is considered first. This value
is the difference between the number of literals of the resulting net-
work if the node is eliminated and the number of literals in the cur-
rent network. This change in the total number of literals in the net-
work (as a result of elimination) is computed by the formula given
in [4, 5].

The wire length value of an elimination is defined as the differ-
ence between the total wire length in the resulting network if the
node is eliminated and the wire length in the current network. It
is computed in a straight-forward manner from the placement in-
formation regarding the node in question and its immediate fanins,
immediate fanouts and immediate fanouts of the immediate fanins.

3 Technology Decomposition

The procedure for converting an optimized Boolean network into
the subject DAG is not unique and it is an open problem to deter-
mine which of the possible subject DAGs yields an optimum so-
lution when an optimum covering algorithm is applied. The goal
of our technology decomposition procedure is to find a circuit rep-
resentation which provides a good starting point for the layout-
oriented technology mapping. In particular, the logic function as-
sociated with nodes in the Boolean network are decomposed such
that signals coming from nearby regions of the network enter the
decomposition tree at topologically near point(s).

The decomposition process starts by constructing AND-OR trees
implementing the sum-of-product form representation of the logic
function associated with each intermediate node in the Boolean net-
work. The function of AND subtrees is to compute the product
terms (cubes) and that of the OR subtrees is to compute the sum of
the product terms. The input signals to the AND subtrees and then
the cubes in the OR subtrees are ordered. The conversion from
the ordered AND-OR subtrees to the gates in base function set is
straight-forward.

In order to obtain the input signal ordering, one refer to the com-
panionplacement solution for the Boolean network. Each multi-pin
net signal is modeled by a star connection from the source toward
the sinks. By circularly traversing around each node, a unique or-
dering is determined for the input signals to the node. This ordering
is directly related to the positions of the fanin nodes with respect to
the node in question. Next, cube ordering is achieved by setting
up a linear assignment problem. slots are placed on an imagi-
nary inner circle around the node, and the projections of the fanin
signals into an imaginary outer circle around the node are found.
Then, linear assignment cost matrix is set up whose entry
corresponds to the cost of assigning cube to slot . This entry is
equal to zero if slot falls inside the shortest circular span for the
immediate support of cube . Otherwise, the cost is proportional to
the angular distance of slot from the nearest end of the support
span of cube . (See Figure 3.3.)

A linear assignment algorithm [10] is run on the matrix .
Since rows in the cost matrix correspond to the “floating” cubes

x1

x2

x3

x4

x5

C1−spanC2−span

C3−span

slot

fanin node

F = X1 X3 X4 + X2 X3’ + X4’ X5

F

Figure 3.3: Cube ordering viewed as a linear assignment problem

and columns correspond to the slots, the linear assignment deter-
mines a cube assignment with the minimum sum-cost. The cube
ordering is easily derived from the cube positions obtained by the
above linear assignment procedure. The process of ordering input
signals, cubes and then primitive gate decomposition is recursively
applied to all nodes in the Boolean network in order to produce the
subject DAG.

4 Placement Relaxation

After logic synthesis stage, a net list of gates anda companionplace-
ment solution are available. The placement solution, however, has
overlapping gates and has not yet been mapped to rows (in case
of standard cell layout methodology) or to slots (in case of sea-of-
gates style). The objective of global relaxation step is to reduce
gate overlaps and produce even distribution of gates over the lay-
out image. An additional goal is to make the placement solution
feasible. Two basic approaches are generally used for mapping a
global placement result to legal locations: (1) Perform a minimum
squared error linear assignment which maps the cells in the global
placement to the legal positions simultaneously; (2) Use a hierarchi-
cal bi-partitioning technique to obtain a feasible placement solution.

Wehave adopted the top-down bi-partitioning heuristic in the fol-
lowing way. The placement procedure consists of alternating and
interacting global optimization and partitioning steps. In particular,
for a circuit with gates, the placement procedure goes through

2 steps in order to producea detailed placement. Now,
assume that an initial placement solution for the circuit and two pa-
rameters and are given. These parameters specify the start
and finish conditions for the relaxation procedure, that is, relaxation
begins when number of modules per hierarchical region is and
ends when this number is . Let 2 , 2 ,
then 0.

Our objectives are 1) to maintain structure of the initial place-
ment solution by skipping earlier global optimization and partition-
ing steps and 2) to distribute gates evenly over the circuit bound-
ary by doing global optimization and partitioning at the later steps.
The placement procedure is, therefore, modified such that it goes

through steps only, thereby, achieving the re-
laxation goal without drastically disturbing the initial placement
solution. Note that the final mapping to rows is performed when

1.

5 Experimental Results

The benchmarks were first optimized for minimum area using the
rugged script [11]. This script produces the areaoptimized circuits.
Next, the delay script (which does a quick decomposition, resub-
stitution, depth reduction, redundancy removal and full simplifica-
tion) was run on the area optimized circuits to produce the delay
optimized ones. The literal count results are given in Table 1.

Table 2 shows comparisons between LILY and MIS2.1 results in
terms of active cell area, total chip area and total interconnection
length (for area optimized circuits and mapping in area mode). In
general, LILY’s mapper tends to use smaller gates, larger active cell
area (avg. 1%) but smaller total chip area (avg. 3%) and intercon-
nection length (avg. 3%).

Table 3 shows comparisons between LILY and MIS2.1 results in
terms of total chip area and longest path delay (for delay optimized
circuits and mapping in timing mode). The delays are based on a 1
standard cell library. Both MIS2.1 and LILY delays are computed
after detailed placement, and the wiring delays are included during
the delay calculation. LILY shows an average area improvement of
27% and delay improvement of 12% compared to MIS2.1.

We used GORDIAN package for global placement, PACT pad
placement program, TimberWolf 4.2 global router, and YACR de-
tailed router during and after synthesis.

circuit original area opt delay opt
C1355 1032 552 832
C1908 1497 535 841
C3540 2934 1283 1629
C432 372 219 317
C5315 4369 1763 2494
C880 703 414 558
apex6 904 732 1002
apex7 289 243 334
rot 764 664 797

Table 1: Multi-level benchmarks: number of literals in factored
form (means full simplify could not be used)

MIS2.1 LILY
circuit inst. chip wire inst. chip wire

area area length area area length
2 2 2 2

C1355 0.458 1.311 136.7 0.454 1.257 129.7
C1908 0.515 1.720 192.1 0.520 1.665 188.3
C3540 1.384 5.737 694.6 1.391 5.588 672.1
C432 0.246 0.742 84.2 0.258 0.696 77.8
C5315 1.700 7.694 920.9 1.721 7.611 903.9
C880 0.452 1.458 158.8 0.453 1.357 148.3
apex6 0.728 3.194 386.7 0.737 3.010 378.5
apex7 0.258 0.720 81.1 0.265 0.817 89.1
rot 0.747 3.035 376.6 0.759 2.929 369.8

Table 2: Comparison of the instance area, final chip area and inter-
connection length after detailed routing

MIS2.1 LILY
circuit chip area delay chip area delay

2 2

C1355 6.231 18.09 4.100 15.15
C1908 7.923 32.60 6.774 24.98
C3540 21.325 40.11 13.020 36.00
C432 3.215 24.00 3.051 20.81
C5315 28.331 28.04 17.45 25.06
C880 3.226 20.67 3.158 19.68
apex6 6.160 15.91 5.818 13.60
apex7 1.376 8.27 1.324 8.50
rot 5.803 15.78 5.921 15.34

Table 3: Comparison of the final chip area and longest path delay
results after detailed routing

6 Future Work

We studied the effects of interconnect on circuit area and per-
formance, presented appropriate models and computational proce-
dures for capturing some of these effects during logic synthesis, and
most of all, introduced techniques for coupling logic synthesis to
placement and for maintaining simultaneous and interactive data
representations in logic and layout domains. There is still much
work to be done here. Extension of layout-driven approach to the
synthesis of sequential networks and Field Programmable Gate Ar-
rays, and investigation of layout-driven techniques for logic resub-
stitution, simplification and redundancy removal are a few of pos-
sible research directions.

References
[1] P. Abouzeid, K. Sakouti, G. Saucier and F. Poirot, “Multilevel syn-

thesis minimizing the routing factor,” Proc. 27th ACM/IEEE Design
Automation Conf., pages 365-368, 1990.

[2] R. Murgai, Y. Nishizaki, N. Shenoy,
R. K. Brayton and A. Sangiovanni-Vincentelli, “Logic synthesis for
programmable gate arrays,” Proc. 27th ACM/IEEE Design Automa-
tion Conf., pages 620-625, 1990.

[3] R. K. Brayton and C. McMullen, “The decomposition and factoriza-
tion of boolean expressions,” Proc. Int. Symp. Circuits and Systems,
Rome, May 1982.

[4] R. K. Brayton, “Algorithms for multilevel synthesis and optimiza-
tion,” G. De Micheli, A. Sangiovanni-Vincentelli and P. Antognetti,
Editors, Design Systems for VLSI Circuits: Logic Synthesis and Sili-
con Compilation, Martinus Nijhoff, 1987.

[5] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang,
“MIS: a multiple-level logic optimization system,” IEEE Trans. on
Computer-Aided Design, Vol. CAD-6, No. 6, pages 1062-1081,
November 1987.

[6] R. Rudell, “Logic synthesis for VLSI design,” Ph.D. dissertation, Uni-
versity of California, Berkeley, 1989.

[7] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich, “GOR-
DIAN: VLSI placement by quadratic programming and slicing opti-
mization,” IEEE Trans. on Computer-Aided Design, Vol. 10, No. 3,
pages 356-365, March 1991.

[8] A. Srinivasan, K. Chaudhary and E. S. Kuh, “RITUAL: an algorithm
for performance-driven placement of cell-based ICs,” Proc. Third
Physical Design Workshop, May 1991.

[9] M. Pedram and N. Bhat, “Layout driven technology mapping,”
Proc. 28th ACM/IEEE Design Automation Conf., pages 99-105, 1991.

[10] R.E. Burkhard and U. Derigs, “Assignment and matching problems:
solution methods with Fortran programs,” Springer Verlag, 1980.

[11] H. Savoj, H. -Y. Wang, “Improved scripts in MIS-II for logic min-
imization of combinational circuits,” Proc. Int. Workshop on Logic
Synthesis, Vol. 3, 1991.

