
UC Irvine
ICS Technical Reports

Title
Obtaining functionally equivalent simulations using VHDL and a time-shift transformation

Permalink
https://escholarship.org/uc/item/0nj6w4kd

Author
Vahid, Frank

Publication Date
1991-04-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nj6w4kd
https://escholarship.org
http://www.cdlib.org/

Notice: This Materlal
may be protected
by Copyright Law
(Title 17 U.S.C.)

Obtaining Functionally Equivalent
Simulations Using VHDL andc a

Time-shift Transformation

Frank Vahid
-.c::- ::::--

Technical Report #91-33
April 2, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-7063

vahi d@ics. u ci. ed u

Abstract

(;:, (; r/
- I I

c
h 1) I

The advent of VHDL has brought about a number of VHDL simulators. Many translation
schemes from domain specific languages to supposedly equivalent VHDL have been developed
as an approach to obtaining simulations. However, functionally equivalent VHDL can not be
created for the general case, due to a theoretical limitation to this approach. It is a very subtle
point and has thus been overlooked until now, but it is extremely important since it can cause
incorrect simulation, therefore making translations to VHDL an unsound simulation technique.
In this paper, we introduce this fundamental limitation. In addition, we propose an alternative
approach which strives for functionally equivalent simulation rather than functionally equivalent
VHDL, while still taking advantage of VHDL simulators. Our method uses a novel time-shift
transformation, also introduced in this paper, in conjunction with almost any translation scheme.
The method makes correct simulations easily obtainable, thus bridging the gap to a truly sound
nnd highly advantageous use of VHDL as r1 tool for simulating domain specific languages.

Contents

1 Introduction 1

2 The Barrier to Obtaining Functionally Equivalent VHDL 2

3 The Time-shift Transformation 5

4 Improvements

5 Examples 10

6 Results 10

7 Conclusion 11

8 Acknowledgements 11

9 References 11

A Appendix 12
13
15
16

A. l Swap examples
A.2 Overdriven Signal Example .
A..3 Signal Initialization Example

List of Figures

1 Various approaches for simulating domain specific languages '2
2 An example language based on a derivation of StateCharts 2
3 Various translation schemes considered ;3
4 Two time scales found in many languages, including VHDL 3
5 Values for each delta point in hierarchical activation scheme, showing that swap fails 4
6 Values for each delta point in flattened activation scheme, showing that swap fails 4
7 The current method of mapping control computations to delta-time, causing interference

with micro-time functionality . 5
8 Time-shifted translation, which prevents control computations from interfering with micro-

time functionality . 6
9 Implementation of time-shifted translation, showing the transformation step followed by

the translation step . 6
10 Examples of time-shift applied to domain-specific language's statements 6
11 Time-shift transformation algorithm, applied to a model in the domain-specific language 7
12 Earlier example after the time-shift transformation is applied 8
13 Sample ofVHDL processes generated after time-shift; note that control is done in a different

time scale than are micro-time assignments, which are now 1 fs 8
14 Sample VHDL simulation of earlier example, with inverse shifted and thus final simulation

output . 9
15 The time-shift can be adjusted to any VHDL units, providing more room for shifted micro-

time units . 10
16 Examples which cause problems for translation, all solvable using the time-shift 10
17 Examples simulated without and with the time-shift transformation 11

1 Introduction

The VHSIC Hardware Description Language (VHD L) became an IEEE standard several years
ago [AyWS86, IEEE88, Wa86). Due to this (and its technical capabilities), various industry and
university VHDL tools have begun emerging, such as simulators and design synthesizers.

However, other languages are still being created and used, intended for different domains,
e.g. [Ha87, JePA91, DuHG90, VaNG91]. This is based on the fact that no single language is ideal
for all possible domains. For example, many systems are naturally described as a hierarchy of
state transition diagrams, which might be tedious to manually describe in VHD L. In this paper,
we refer to these other languages as being domain specific. There are enormous advantages
to be gained if these domain specific languages can be converted to VHDL, such as the use of
existing powerful VHDL simulators. Advantages over writing a new simulator include: (1) rnuch
less implementation time to obtain a simulation capability, (2) more reliable simulations, since
VHDL is a standard and thus its simulators are widely used, and (3) more efficient simulations,
since VHD L simulator manufacturers concentrate on simulation.

Thus many translation schemes have appeared from domain specific languages to VHD L
[ArWC90, DuCH91, MaWa90, NaVG91, JePA91, TiLK90]. Intended uses for the generated
VHDL include documentation, simulation, and/or synthesis.

However, we have found that the goal of obtaining completely correct simulations is not
reached by many of the schemes, since they fail to create VHDL that is functionally equivalent to
the domain specific language's description. The basic problem involves trying to perform behav­
ior related to control (e.g. changing states of a state transition diagram) in VHDL's delta time,
which then interferes with delta time behavior for non-control behavior (this will be described
in detail later). Thus the current translation schemes only work for a subset of descriptions,
most failing in maintaining detailed concurrency semantics from the original language. While
still useful, the translation is more of a quick and dirty simulation solution than a truly sound
simulation technique.

This does not mean that these domain specific languages can not benefit from the advan­
tages of VHDL simulators. We distinguish between (1) obtaining functionally equivalent VHDL,
and (2) obtaining functionally equivalent simulations. The former creates a VHDL file that can
he treated as any other VHDL file; i.e. simulated, synthesized, and/or read for documentation
purposes. The latter might use VHDL only as an intermediate representation for simulation
purposes; a modeler sees only the domain specific language and simulation output. Though the
VHDL model might not be functionally equivalent to the model in the domain specific language,
the VHDL simulation output can be transformed to correct simulation output (see Figure 1).

By using VHDL as an intermediary format only, we can realize the goal of obtaining
fully correct simulations while still benefitting from the advantages listed above. This paper
will introduce the fundamental problem that prevents many current schemes from attaining
functionally equivalent VHDL. The main goal of this paper is then to introduce a technique
that essentially shifts time in the original language (what we call a time-shift transformation),
translates to VHDL, simulates, and then shifts the simulation results back. This technique
achieves fully functionally equivalent simulation, eliminating the final obstacle that has prevented
implementations of domain specific languages from benefitting from VHDL simulators in a truly
sound manner.

..... ' -

A

Domain Specific
Language

f0a.cn ,,.••'
:-Jf\O\..a~ ••••••••

?~········

Simulator Slmulatlon
Output

• ' ''''''?Ur su • •• ,, VRe t
: common current '' • • ~ ~ app,.,
V approach ·······~'JS!!

---~~~~~.....;;;;;.~~~~~~~~~~-

New Simulator,
written in C,
assembly, etc.

Translator
to VHDL

VHOL
Simulator

8 Advantages over A:
1. less time to implement
2. more reliable simulations
3. faster simulations

Disadvantages:
1: may change functionality

c

Trans. to VHDL
VHDL wl time­
shift transform

VHDL
Simulator

Advantages over B:

Inverse
time-shift
the out ut

1. functionally correct simulations

Figure 1: Various approaches for simulating domain specific languages

2 The Barrier to Obtaining Functionally Equivalent VHDL

For simplicity, we will focus on translating languages based on some variation of StateCharts ·
[Ha87]. The problem introduced below generalizes to many other languages. Briefly, StateCharts
provides for specification as a hierarchy of concurrent and sequential states. Most languages built
on StateCharts have added activities that are performed in a given state [MaWa90, JePA91,
DuHG90, VaNG91]. Figure 2 gives a simple example of these types of languages. Figure 3
shows three translation schemes that we consider; for simplicity, only the control for activating
processes is shown (i.e. deactivation and other details are omitted).

c

not e1 'stable

loop

Fx <= y;
loop

i <= i + 1 after 10 ns;
wait for 30 us;

end loop;

y <= x;
wait until not e 1 'stable;

end loop;

loop
wait for 30 us;
j <= i after 10 ns;

end loop;

When in A, we are simultaneously in both B and C. When in 8, we are initially in 0.
If e 1 changes, we are in E, which means we are in F and G simultaneously. When
in a state that has activities, we execute those activities. If we reach the end of
the statements of an activity, that activity is idle.

Things to note:
1. When first in A, the values of x and y should be swapped
2. When in E, j should always have the value of i but with a 30 us phase delay
3. When in D and C and e 1 changes, x and y should again be swapped

Figure 2: An example language based on a derivation of StateCharts

In [ArWC90), a scheme is presented for translating StateCharts to VHDL. Each state is
represented as a procedure, and substates are executed by calling each substate's procedure. A
procedural model is a sequential model; thus concurrent items in a StateChart become sequential
in the VHDL (Figure 3a). Many activities will produce quite different results when executed
sequentially rather than concurrently, such as those associated with states F and G. Thus we
do not consider the procedural model further.

(a) Procedural Model (b) Process Model with hierarchical activation

procedure A
procedure C

procedure B
procedure D

procedure E
procedure F

procedure G

begin -- E
F();
G();

end - E
begin -- B

O();
<When not e1 'stable> E();

end -- B

Note that F and Gare
executed sequentially instead
of concurrently

Note that D takes
one delta cycle longer
to be activated than
does C ..

(c) Process Model with flattened activation

hypothetical only Note that there is still an extra delta cycle
needed to activate a process once an event
has occured.

Figure 3: Various translation schemes considered

Developers of other schemes have focused on translating to a concurrent model of VHD L
such as the process model [MaWa90, JePA91, NaVG91, DuCH91] which consists of a set of
concurrent processes, each either active or suspended. Generally each StateChart state is trans­
lated to a VHDL process. Activities associated with a state are translated to VHDL sequential
statements in that state's process.

Most of these schemes maintain a hierarchical activation scheme in the VHD L (see Fig­
ure 3b); that is, some processes are created only to activate other processes, just as some
StateChart states exist only to be composed into substates (such as state B). These processes
are now referred to as control processes. This scheme causes a subtle but important change in
functionality. In Figure 2, when state A is entered, it means both B and C are entered. vVhen
B is entered, it means Dis entered. Thus note that the statement x <=yin D and y <= x in
C should be executed simultaneously, so that the values of x and y are swapped. However, this
will not happen in this scheme. To understand why not, we must first understand VHDL delta
timing.

T T+1 T+2

~~yL
micro-time scale
"'--)

real-time scale

• micro-time units are infinitely small
• any number of micro-time units can
occurr between real-time units

Figure 4: Two time scales found in many languages, including VHDL

VHDL is based on a continuous repetition of a simulation cycle. Briefly, each cycle consist.;;;
of (1) advancing time to the next 'interesting' point, (2) updating signals that should change at

:J

domain-specific language's micro-time functionality, which is also performed in delta-time in the
VHDL. Ideally., .we would perform these computations in a smaller tim~ scale than delta-time,
but VHDL offers no s·maller time-unit (nor should it). By stating the problem in this manner,
a simple solu~ion becomes clear: perform the control computations in delta-time in the VHDL,
and perform micro-time computations in the next higher VHDL time scale. Everything that
used this higher time scale must be done in the next higher time scale, and so on. Essentially ·
we are shifting time to make room at the lower end for the control computations. We call .this a
time-shifted translation (Figure 8). The simulation output will now represent correct function­
ality except that the times are incorrect (shifted). A shifting back will solve this, and if the
translation scheme was correct, then the resulting output represents a completely functionally
equivalent simulation of the domain language.

Simulation Micro-time fs ps ns ...

Control ~tM~ ~ ~ ~
delta-time fs ps ns
(Infinitely small)

TIME-SHIFTED Translation
Control and micro-time do not
conflict. Must be shifted back
after simulation

Figure 8: Time-shifted translation, which prevents control computations from interfering with micro-time
functionality

domain specific language Micro-time fs ps ns
I

: Time-shift
1 transformation
v

domain specific language
I

..
' . ~~~

: Regular translation
, scheme

: (Simulation
~~~~~:) fJs p!s n!s 

vJoL 

~ Control) ~ 

: delta-time fs ps ns 

Figure 9: Implementation of time-shifted translation, showing the transformation step followed by the 
translation step 

The time-shifted translation is implemented by applying a time-shift transformation to 
the domain-specific language, and then applying a VHDL translation scheme (Figure 9). The 
transformation can be applied to any language used to describe activities. We will introduce the 
transformation assuming that the activities are described using VHDL sequential statements. 
We do this because the time related statements of other languages can be easily implemented 
by VHDL's time related statements. Thus, the transformation is easily modified to account for 
other languages' statements. Remember that the transformation deals with the domain specific 
language's statements. 

variable t : time := 1 O ns; ___.. variable t: time := 10 us; 

t := t + 30 n~; ___.. t := t + 30 us; 

s <= 1 after 10 ns; ___.. s <= 1 after 1 O us; 

wait fort+ 10 ns; ___.. wait fort+ 10 us; 
S <= 1; ..__. (s <"' 1 after 1 micro-unit) ___.. s <= 1 after 1 fs; 

Figure 10: Examples of time-shift applied to domain-specific language's statements 

A signal assignment statement sets a signal's value at a specified time. It's relevant form 
is: some_signal < = expression <after time_Expression>. The after clause is optional. Omitting 

G 



it implicitly assigns the value after one micro-time unit (one delta). We first make all micro­
delays explicit in assignment statements. Thus x <= y becomes x <= y after 1 micro-unit (this 
is an intermediate step, so is not actually a valid statement). 

Now, we shift all the occurrences of time units in expressions throughout. Thus everywhere 
a micro-unit appears, we replace it with fs. Everywhere fs appears, we replace it with ps, and 
so on. Note that all occurrences of micro-unit are now gone. See Figure 10 for examples. 

There are only two VHDL sequential statements that deal with time: the signal assignment 
statement and the wait statement. So we must examine these to see if the shift works properly 
in the domain-specific language. 

Assignments with no after clause become assignments with a 1 micro-unit delay which 
then becomes a 1 fs delay, which is correct. If there was an after clause, the time expression's 
units will have been shifted, .since all units throughout have been shifted. For time expressions 
which evaluate to a non-zero value, the correct result is obtained (e.g. 15 ns becomes 1.5 us). 
Now consider the case where the time expression evaluates to 0 ns. The time-shift will have 
made this 0 us. However, an after clause with a value of 0 ns (or any time unit) is identical 
to one without an after clause, implicitly meaning 1 micro-unit delay. Thus the original 0 ns 
( 1 micro-unit) should have been shifted to 1 fs. We can account for this by using the following 
function: 

function ShiftifZero(time_expression : in time) return time is 
begin 

if (time_expression = 0 fs) then -- units of 0 are irrelevant 
return(1 fs); -- 1 micro-time unit shifted 

else 
return(time_expression); 

end if; 
end; 

Then, the time_expression in the assignment is replaced by the call ShiftIJZero(time_expressio11) 
(e.g. x <= y after t becomes x <= y after Shiftl/Zero(t) after the time-shift transformation). 

The form of a wait statement is: wait< on signaUist> <until expression> <for time_expression>. 
The on and until portions are unaffected by the shift. The same discussion of after clauses for 
an assignment statement applies to the for clause for the wait statement. Specifically, a wait 
for 0 is identical to a wait for 1 micro-unit; thus we again replace the time expression by 
Sh iftlfZero ( time_expression). 

For each signal assignment with no after clause 
create the after clause: after 1 micro-unit 

Replace each occurence of 'micro-unit' with 'fs', of 'fs' with 'ps', of 'ps' with 'ns', 
etc., in all expressions. 

For each signal assignment and each wait statement with a for clause 
replace the statement's time expression (the after or for clause) by: 

Shift/fZero(time_expression) <this routine was defined in the text> 

Figure 11: Time-shift transformation algorithm, applied to a model in the domain-specific language 

Figure 11 summarizes the time-shift transformation. Since the micro-time scale is unused 
after the transformation, only control computations will be implemented in VHDL's delta time 
after translation (see Figure 9). The VHDL simulation output will now be correct except that 
the times at which events occur will be wrong. An inverse time-shift must be performed on this 
output. Thus fs become micro-time units, ps become fs, etc. 

Figure 12 shows Figure 2 after the time-shift transformation. Figure 13 shows the relevant 
VHD L generated by the scheme of Figure 3b. Analysis of Figure 13 demonstrates that the time­
s hi ft has worked: the swap will be achieved in both of the problem cases given in the previous 



x <= y after 1 fs; 

C loop 
y <= x after 1 fs; 
wait until not e1 'stable; 

end loop; 

x <= y after 1 fs; 
loop 

i <= i + 1 after 10 us; 
wait for 30 ms; 

end loop; 

(ThB Shilt/fZsro function is not called in this 
sxsmpffl sines all time sxprsssions ars 
litsraJs. In the general case, it would be 
called, e.g. i <• i + 1 alter ShiltlfZero(tO us)) 

Figure 12: Earlier example after the time-shift transformation is applied 

Figure 13: Sample of VHDL processes generated after time-shift; note that control is done in a different 
time scale than are micro-time assignments, which are now 1 fs 

8 



section. The reason is that control is performed in delta time, whereas the assignments have been 
shifted to the fs time domain, so there is no interference. Figure 14 shows sample simulation 
results of the generated VHDL. Note that the inverse shift essentially divides the time by 1000, 
and that any time increments of 1 fs are simply removed, since they are mapped to delta units 
which traditionally are not shown. Also note that shifting delta-time back to zero time requires 
no change: since delta-time is not shown, events separated by delta-time and those separated by 
zero time are indistinguishable; only the order is important. See Figure 1 to review the context 
in which these transformations are used. 

VHDL simulation output 

50,000,000,000 ts (SO us} 

A_state = true 

B_state = true 

C_state = true 

D_state =true 

50,000,000,001 ts 

X=7 
Y=6 

100,000,000,000 ts (100 us} 

e1=99 

E_state =true 

F _state = true 

100,000,000,001 ts 

Comments 

(assume x - 6, y • 7) 

Corresponds to time 50 ns without time-shift 
These are actually eadi separated by f delta, but 
simriators donY usually show this explicitly. 

C_state going true activates C's process, which 
scheduJes y to get 6 after t fs. 

D_state going true activates D's process, which 
schedules y to get 7 after 1 Is. 

The swap worked 

(assume e 1 changes) 

'not e 1 'stable' evaluates to true, 
which activates processes B and C. Process C 
schedules y to get 7 after 1 Is. 
PTOC86s E is activated. 

Process Fis adivated, which schedules 
x to get 6 after 1 Is. 

x = 6 The swap worked 
y=7 

Inverse shifted simulation output 

50,000,000 ts (50 ns} 

A_state = true 

B_state = true 

C_state =true 

O_state =true 

X=7 
Y=6 

100,000,000 fs (100 ns} 

e1=99 

E_state =true 

X=6 
Y=7 

Figure 14: Sample VHDL simulation of earlier example, with inverse shifted and thus final simulation 
output 

4 Improvements 

One may notice that in the original domain-specific language, there were infinitely many possible 
micro-time units that could appear between any two real-time units. However, when we shifted 
micro-time to femtoseconds, we now have limited the number of micro-time units to 1000, after 
which they will overlap with picoseconds. In practice, this is a reasonable limitation. We can 
greatly reduce this limitation by noting that most models don't use more than 2 consecutive 
time units (e.g. seconds and milliseconds). Let's assume that a single model uses 3 consecutive 
time units, which is extremely rare. The highest unit can then be shifted to seconds in VHDL, 
the next lower unit to ms, and the next to us, leaving ns, ps, and fs available for micro-time when 
shifted. The number of micro-time units between any two real time units is then l,000,000,000, 
which will likely never be exceeded. 

Note that the usefulness of the time shift transformation is not limited to merely solving 
the delta-time interference problem. It can also be used when the domain-specific language uses 
units that are outside VHDL's range, e.g. kiloseconds, or even years, kiloyears, etc. These can 
be shifted to VHDL units as discussed above. 

9 



~~~~~r~\lcro-ilm\ P'\~~ 

. delta-time fs ps ns us ms s

~
entire range can be
used for micro-time

Figure 15: The time-shift can be adjusted to any VHDL units, providing more room for shifted micro-time
units

5 · Examples

Figure 16 shows examples of several problems that can arise due to the delta-time conflict prob­
lem. Figure 16a,b show examples which will simulate incorrectly using a hierarchical activation
scheme in the generated VHDL. In the first case, concurrency is affected (the first swap example
of this report). In the second, the driver for one state is not shut off before that of another
is turned on, causing an· overdriven signal error. Figure 16c requires an extra delta for state
activation (second· swap example: of this report). Figure 16d gives an example where an extra
delta is needed to initialize. a signal upon each entry of a state, causing incorrect results. Fig­
ure 16e shows an example in which an extra delta used for handshaking will cause a sw·ap to
fail. In the appendix of this report is shown the original specification, the non-shifted VHDL
and its simulation results, and the shifted VHDL with its simulation results, for several of these
examples.

X <• y; I y <• X I ...
I I

(a) unbalanced activation tree
affects concurrent functionality

A signal x : integer;

(b) unbalanosd activation trH
caUS6s ave/driven signal

B -:c avant 1 wait until event;
I y <• x;
I

y ~

(c) extra delta for state transition
affects roncurrent functionality

B signal x : integer :- 4; 1C

x <• x + y; : y <• y + 1 ;

extra delta for signal
(d) initialization affects

concurrent functionality

[!l
B

I ,c

~
: y <• 7;
1 wait on y;
I y <• x;
I
I
I

I
I

extra de/Ila for completion
(e) handshake affects concurrent

functionality

Figure 16: Examples which cause problems for translation, all solvable using the time-shift

6 Results

The time-shift transformation has been implemented in C for the domain-specific language
described in [VaNG91]. A translator from this language to VHDL is also implemented [NaVa90]
(we believe this translation scheme to be the most complete and strajghtforward of any existing
scheme for StateCharts derived languages 1 but the reasons for this are beyond the scope of this
paper). Numerous examples were tested which. 11:-;ing the translator only, created VHDL which
simulated incorrectly (using a commercial sinrnh tor), which would also occur in other schemes
[,\fa Wa90, JePA91, DuHG90]. When the time-shift was applied before translation, the results

10

were correct (see Figure 17; the lettered examples correspond to Figure 16). The transformation
was also applied to examples that previously simulated correctly. We currently perform the
inverse time-shift visually on the simulation results, which is a trivial task (e.g. divide all times
by 1000).

Example

(a)

(b)

(c)

(d)

(e)

draco

cont_ counter

processor

Problem

Some processes take longer than others to activate
(example in this paper), causing swap to fail

Unbalanced activation causes overdriven signal

State transition requires extra delta, causing swap
to fail
Extra delta for initializing signal

Extra deltas for a control handshake

none

none

none

Slmulatlon correct after transform?

yes

yes

yes

yes

yes

yes

yes

yes

Figure 17: Examples simulated without and with the time-shift transformation

7 Conclusion

This paper introduced an until now unnoticed and unsurmountable obstacle that prevents trans­
lation from domain-specific languages to completely functionally equivalent VHDL. The funda­
mental obstacle was isolated to be that of simulation control computations necessarily being
performed in VHDL's delta time, thus interfering with other delta time compu~ations. We dis­
cussed an approach which aims simply for functionally equivalent simulation. A novel method
of shifting time, translating to VHDL, simulating, and then reshifting the results back was in­
troduced. By this method we can obtain completely correct simulations of the domain-specific
language, while still bene:fitting from the advantages of VHDL simulators. This opens the door
to the use of VHDL simulators as part of a truly sound and practical simulation technique.

8 Acknowledgements

This work was supported by the Semiconductor Research Corporation (grant #90-DJ-146). We
are grateful for their support. We would also like to thank Sanjiv Narayan, Nikil Dutt, Tedd
Hadley, and Loganath Ramachandran for their help and suggestions.

9 References

[ArWC90) Arsenault, A., Wong, J.J., Cohen, M., "VHDL Transition from System to Detailed Design",
VHDL User's Group Meeting, Boston, April 1990.

(AyWS86) Aylor, J., Waxman, R., and Scarratt, C., "VHDL-Feature Description and Analysis", IEEE
Design and Test, April 1986.

[DuCH91) Dutt, N., Cho, J., and Hadley, T., "A User Interface for VHDL Behavioral Modeling," CHDL,
April 1991.

(DuHG90] Dutt, N., Hadley, T., and Gajski, D., "An Intermediate Representation for Behavioral Syn­
thesis," DAC, 1990.

[Ha87] Harel, D., "StateCharts : A Visual Formalism for Complex Systems", Science of Computer
Programming 8, 1987 pp 231-274.

[IEEE88) IEEE Standard VHDL Language Reference .\Ianual, IEEE, March 1988.

11

.~..,...,

..... \. ,..... .,

· ... '•

Jerraya, A., Paulin, P., and Agnew,· D., "F:acili_ties for controllers modeling and synthesis in
VHDL", VHDL Users' Group Conference, April 1991. ·· ·

~~'.'.·::~{::{O':fM.a:Wa90] M-~tDonald, R.; and Waxman, R., "Operational Specification Of the SINCGARS Radio in
, ·. V~DL", AFCEA-IEEE Tactical Communications Conference, April 1990.

[NaVa90] Narayan, S. and Vahid, F., "Translating SpecCharts to VHDL", UC Irvine, TR 90-21, July
1990.

[Na VG91] Narayan, S. Vahid, F., and Gajski, D., "Translating System Specifications to VHDL", The
European Conference on Design Automation, Amsterdam, February 1991.

[Sh85] Shahdad, M., et al., ''VHSIC Hardware Description Language", Computer, February 1985.

[TiLK90] Tikanen T., Leppanen T., and Kivela J., "Structured Analysis and VHDL in Embedded ASIC
Design and Verifica~ion", EDAC, 1990.

[VaNG91] Vahid, F., Narayan, S., and Gajski, D., "SpecCharts: A Language for System Level Synthe­
sis," CHDL, April 1991.

[Wa86] Waxman, R., "The VHSIC Hardware Description Language - A Glimpse of the Future",
IEEE Design and Test, April 1986.

A Appendix

This appendix gives the details of several examples. The domain-specific language used is the
StateChart based language called SpecCharts [VaNG91). For each example, a textual dump of
the original SpecChart is given. Simulation results for VHDL files generated aut9matically for .
norr-shifted and shifted examples are then given. The translator has a flag that indicates that a
time-shift should be performed, so it is done automatically. A few of the VHDL files are shown,
but space does not permit displaying all of them. The time-shifted simulation output should
be mentally shifted back by dividing times by 1000. Remember that events separated by 1 fs
simply get shifted to the same time (they are actually delta events). .

12

A.I Swap examples
This is the example of Figure 2, showing the swap problems
discussed in the report. The swap problems also correspond
to Figure 16a,c. Note from the VHDL outputs that without
the time shift the swap fails, but with it, the swap succeeds
both times (i.e. x and y change values from 6,7 to 7,6 and
back to 6,7).

SpecChart

state
{

name {A}
declarations
{

signal x integer
signal y integer
signal i integer
signal j integer;
signal e1 : integer

}

concurrent substates
{

B
c

}

:= 6;
:= 7;
:= 1;

:= 99;

}

state
{

}

name {B}

sequential substates
{

}

D: (EI, not e1 1stable, E);
E . I

state
{

name {C}
declarations
{

signal cs
}

code
{

loop
y <= x;

integer ·= 1;

wait until not e1'stable;
end loop;

}
}

state
{

name {D}
code
{

x <= y;
e1 <= e1 + 1 after 100 fs;

}
}

state
{

name {E}
concurrent substates

{

F . ,
G . ,

}

}

state
{

name {F}
code
{

x <= y;
loop

}

}

state
{

i <= i + 1 after 10 fs;
wait for 30 ps;

end loop;

name {G}
code
{

loop
wait for 30 ps;
j <= i after 10 fs;

end loop;
}

}

Non-shifted VHDL simulation results
Note that X and Y do not get swapped.

0 FS
SMON:

SP1016:
SP10li10:
SP10li10:

SP10li5:
SP1013:
SP10N2:
SP1011:
SP10li7:
SP10N8:
SMON6:

SMO.li10:
SMO.li12:
SMON11:

SMOl7:
SMON10:
SMON16:
SMON13:
SMON15:

SMON1:
SMON17:
SMON18:
SMDN16:
SMDN17:

SMON2:
100 FS

SMONS:
SMON14:
SMON13;

SM01l2:
SMON1:

110 FS

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IIA_INIT (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/E1 (value = 99)
ACTIVE /AE/I (value = 1)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 6)
ACTIVE /AE/DOIEA_INIT (value = TRUE)
ACTIVE /AE/IIA_ORIG (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = FALSE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/INC (value = TRUE)
ACTIVE /AE/A/A_ORIG/INB (value = TRUE)
ACTIVE /AE/DOIEA_INIT (value = FALSE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/INC_INIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IND (value = TRUE)
ACTIVE /AE/A/A_DRIG/C/CS (value = 1)
ACTIVE /AE/X (value = 7)
ACTIVE /AE/A/A_ORIG/C/DDNEC_INIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/INC_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/INC_INIT (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/DONEC_INIT (value = FALSE)
ACTIVE /AE/Y (value = 7)

ACTIVE /AE/E1 (value = 100)
ACTIVE /AE/A/A_ORIG/B/INE (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IND (value = FALSE)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 7)

SMOl3: ACTIVE /AE/I (value.= 2)
30110 FS

SM0113: ACTIVE /AE/I (value = 3)

SM014: ACTIVE /AE/J (vallle = 2)
60110 FS

SMOfl4: ACTIVE / AE/ J (value = 3)
SMOll3: ACTIVE / AE/I (value = 4)

90110 FS
SMOfl3: ACTIVE /AE/I (value = 5)
SMOfl4: ACTIVE /AE/J (value = 4)

120110 FS
SMON4: ACTIVE /AE/J (value = 5)
SMOfl3: ACTIVE I AE/ I (value = 6)

Time-shifted VHDL simulation results

Note that X and Y do get swapped two times.

0 FS
SMOI:

SMOfl6:
SMOl10:
SMOl10:

SMOll5:
SMOfl3:
SMOfl2:
SMOfl1:
SMOfl7:
SM0fl8:
SMOfl6:

SMOfl10:
SM0fl12:
SMOfl11:

SHON7:
SHOfl10:
SHOfl16:
SHON13:
SHOfl15:

SHON!:
SHON17:
SHON18:
SHON16:
SHON17:

SHON2:
100 FS

SHON5:
SHON14:
SHON13:

SHON2:
SHON!:

110 FS
SMON3:

30110 FS
SMON3:
SMON4:

60110 FS
SHON4:
SMON3:

90110 FS
SMON3:
SMON4:

120110 FS
SMON4:
SMON3:

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IflA_IIIT (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/E1 (value = 99)
ACTIVE /AE/I (value = 1)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 6)
ACTIVE /AE/DONEA_IllIT (value = TRUE)
ACTIVE /AE/IflA_ORIG (value = TRUE)
ACTIVE /AE/IllA_INIT (value = FALSE)
ACTIVE /AE/A/A_IflIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/INC (value = TRUE)
ACTIVE /AE/A/A_ORIG/INB (value = TRUE)
ACTIVE /AE/DOIEA_IIIT (value = FALSE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/IllC_IflIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IND (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/CS (value = 1)
ACTIVE /AE/X (value = 7)
ACTIVE /AE/A/A_ORIG/C/DONEC_IflIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/INC_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/INC_INIT (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/DOflEC_IflIT (value = FALSE)
ACTIVE /AE/Y (value = 7)

ACTIVE /AE/E1 (value = 100)
ACTIVE /AE/A/A_ORIG/B/IJIE (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IID (value = FALSE)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 7)

ACTIVE /AE/I (value = 2)

ACTIVE /AE/I (value = 3)
ACTIVE /AE/J (value = 2)

ACTIVE /AE/J (value = 3)
ACTIVE /AE/I (value = 4)

ACTIVE /AE/I (value = 5)
ACTIVE /AE/J (value= 4)

ACTIVE /AE/J (value = 5)

ACTIVE /AE/I (value = 6)

Non-shifted VHDL (generated auto­
matically)

l-+

entity AE is
end;

Architecture AA of AE is
signal inA : boolean :=false;
-- NOTE: A's decls (except variables) have been pulled up to here.
type A_integer_RES is array (natural range<>) of integer;
function A_integer_RESfct(INPUT : A_integer_RES) return integer i's
begin

assert (IBPUT 'length = 1) report "overdriven signal,
type: A_integer_RES" severity 11arning;

return IIPUT(O);
end;
signal x A_integer_RESfct integer register;
signal y A_integer_RESfct integer register;
signal i A_integer_RESfct integer register;
signal j A_integer_RESfct integer register;
signal el : A_integer_RESfct integer register;
signal inA_init : boolean :=false;
signal doneA_init : boolean :=false;
signal inA_orig : boolean :=false;
signal doneA_orig : boolean :=false;

begin
.A: block
begin

A_init: block (inA_init and not(inA_init'stable)) ·
begin

code: process
variable REMAifl_TIHE: time;
variable GLOBAL_TIME: time;

begin
if guard then
REMAil_TIHE := 0 fs;
e1 <= 99;

<= 1;

y <= 7;

x <=
11ait

6·
'

for REHAIN_TIHE;
doneA_init <= transport true;
11ait until not (inA_init) ;
doneA_init <=transport false;
end if;
x <=transport null;
y <=transport null;
i <=transport null;
el <= transport null;
11ait on guard;
end process code;

end block A_init;
A_orig: block

signal inB boolean :=false;
signal inC boolean :=false;

begin
B: block

signal inD boolean :=false;
signal inE boolean :=false;

begin
D: block (inD and not(inD'stable))
begin

code: process
variable REHAIN_TIME: time;

begin
if guard then
D_Loop : loop
x <= y;

e1 <= e1 + 1 after 100 fs;
wait until not (inD)
if (not inD) then
exit D_Loop;
end if;
exit D_Loop;
end loop D_Loop;
end if;
e1 <= transport null;
x <=transport null;
wait on guard;
end process code;

end block D;
E: block

signal inF boolean :=false;
signal inG boolean :=false;

begin
F: block (inF and not(inF'stable))
begin

code: process
variable REMAil_TIME: time;

begin
if guard then
x <= y;
loop
i <= i + 1 after 10 fs;
llait for 30 ps;
end loop
llait ;
end if;
i <=transport null;
x <= transport null;
llait on guard;
end process code;

end block F;
G: block (inG and not(inG'stable))
begin

code: process
variable REMAil_TIKE: time;

begin
if guard then
loop
llait for 30 ps;
j <= i after 10 fs;
end loop
llait ;
end if;
j <=transport null;
llait on guard;
end process code;

end block G;

control: process begin
if (inE and not(inE'stable)) then

inF <= transport true;
inG <=transport true;

end if;
llait until (not inE'stable);

end process control;
end block E;
control: process begin

if (inB and not(inB'stable)) then
inD <=transport true;

elsif (inD and (not e1'stable)) then
inD <=transport false;
inE <=transport true;

end if;
llait until (not inB'stable)

l:)

or (inD and (not e1'stable)) ;
end process control;

end block B;
C: block

type C_integer_RES is array (natural range <>)
of integer;

function C_integer_RESfct
(IIPUT : C_integer_RES) return integer is
begin

assert (IIPUT'length = 1) report
"overdriven signal, type: C_integer_RES"
severity warning;
return· IIPUT(O);

end;
signal cs : C_integer_RESfct integer register;
signal inC_init : boolean :=false;
signal doneC_init : boolean :=false;
signal inC_orig : boolean :=false;
signal doneC_orig : boolean :=false;

begin
C_init: block (inC_init and not(inC_init'stable))
begin

code: process
variable REMAil_TIME: time;
variable GLOBAL_TIME: time;

begin
if guard then
REMAil_TIME := 0 fs;
cs <= 1;
~ait for REMAil_TIME;
doneC_init <= transport true;
wait until not (inC_init) ;
doneC_init <= transport false;
end if;
cs <=transport null;
wait on guard;
end process code;

end block C_init;
C_orig: block (inC_orig and not(inC_orig'stable))
begin

code: process
variable REMAil_TIME: time;
variable GLOBAL_TIME: time;

begin
if guard then
REKAil_TIME := 0 .fs;
loop
y <= x;
GLOBAL_TIME := noll;
llait until not e1'stable
GLOBAL_TIME := noll - GLOBAL_TIKE;
REKAil_TIME := KAX(REKAil_TIKE - GLOBAL_TIME,O fs);
end loop ;
llait for REKAil_TIKE;
doneC_orig <= transport true;
llait until not (inC_orig) ;
doneC_orig <= transport false;
end if;
y <= transport null;
llait on guard;
end process code;

end block C_orig;
control: process begin

if (inC and not(inC'stable)) then
inC_init <=transport true;

elsif (doneC_init and (true)) then
inC_init <=transport false;
inC_orig <= transport true;

elsif (doneC_orig and (true)) then
inC_orig <= transport false;

end if;
~ait until (not inC'stable)

or (doneC_init and (true))
or (doneC_orig and (true));

end process control;
end block C;

control: process begin
if (inA_orig and not(inA_orig'stable))

inB <= transport true;
inc <= transport true;

end if;
~ait until (not inA_orig'stable);

end process control;
end block A_orig;
control: process begin

if (inA and not(inA'stable)) then
inA_init <= transport true;

elsif (doneA_init and (true)) then
inA_init <= transport false;
inA_orig <= transport true;

elsif (doneA_orig and (true)) then
inA_orig <=transport false;

end if;
~ait until (not inA'stable)

or (doneA_init and (true))
or (doneA_orig and (true));

end process control;
end block A;

start: process begin
inA <=transport true;
~ait;

end process start;

end AA;

A.2 Overdriven Signal Example
This is the example of Figure 16b. Note that the non-shifted
VHDL simulation output has an error indicated that a signal
was overdriven. The shifted VHDL has no such problem.

Spec Chart

state
{

}

name {A}
declarations
{

}

signal x : integer ;
signal evnt : integer

sequential substates
{

}

B (EI, not (evnt'stable) , C);
c

state
{

name {B}
concurrent substates
{

D
E

then

}
}

state
{

name {C}
code
{

x <= 2;
}

}

state
{

name {D}
code
{

x <= 1;
}

}

state
{

name {E}
code
{

evnt <= 1 after 10 ns;
}

}

Non-shifted VHDL simulation results
Note the overdriven signal error.

0 FS
SMON:

SM01l3:
SMOl6:
SMOl5:
SM01l8:
SMOl9:
SMOl9:
SMOl8:
SMOl1:

10 FS
SMOl2:
SMON4:
SMOl3:
SMON7:

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/INB (value = TRUE)
ACTIVE /AE/A/B/IIE (value = T~9E)
ACTIVE /AE/A/B/IID (value = TRUE)
ACTIVE /AE/A/B/D/GUARD (value = TRUE)
ACTIVE /AE/A/B/E/GUARD (value = TRUE)
ACTIVE /AE/A/B/E/GUARD (value = FALSE)
ACTIVE /AE/A/B/D/GUARD (value FALSE)
ACTIVE /AE/X (value = 1)

ACTIVE /AE/EVNT (value = 1)
ACTIVE /AE/INC (value = TRUE)
ACTIVE /AE/INB (value = FALSE)
ACTIVE /AE/A/C/GUARD (value = TRUE)

Assertion WARNING in AA: "overdriven signal, type: A_integer_RES"
SMON6: ACTIVE /AE/A/B/INE (value = FALSE)
SMON5: ACTIVE /AE/A/B/IND (value= FALSE)
SMON7: ACTIVE /AE/A/C/GUARD (value= FALSE)
SMON1: ACTIVE /AE/X (value= 2)

SMON8: ACTIVE /AE/A/B/D/GUARD (value= FALSE)
SMON9: ACTIVE /AE/A/B/E/GUARD (value= FALSE)
SMON9: ACTIVE /AE/A/B/E/GUARD (value = FALSE)
SHON8: ACTIVE /AE/A/B/D/GUARD (value = FALSE)
SMON1: ACTIVE /AE/X (value= 2)

1000000000 FS

Time-shifted VHDL simulation results

~ote the O\'erclriven signal error.

0 FS
SMON:

SMON3:
SMOM6:
SMONS:
SMON8:
SMOll9:

ACTIVE /AE/INA (value = TRUE)
ACTIVE /AE/INB (value = TRUE)
ACTIVE /AE/A/B/INE (value = TRUE)
ACTIVE /AE/A/B/IND (value = TRUE)
ACTIVE /AE/A/B/D/GUARD (value TRUE)
ACTIVE /AE/A/B/E/GUARD (value = TRUE)

S~Ol9:

SHOl8:
FS

SHOl1:
10000 FS

SHOl2:
SHOl4:
SH013:

ACTIVE /AE/A/B/E/GUARD (value
ACTIVE /AE/A/B/D/GUARD (value

ACTIVE /AE/X (value = 1)

ACTIVE /AE/EVIT (value = 1)
ACTIVE /AE/IIC (value = TRUE)
ACTIVE /AE/IIB (value = FALSE)

FALSE)
FALSE)

SHOl7:
SHOl6:
SHOB5:
SHOl7:
SH0.18:
SHOl9:
SH019:
SHOl8:

10001 FS

ACTIVE /AE/A/C/GUARD (value = TRUE)
ACTIVE /AE/A/B/IIE (value = FALSE)
ACTIVE /AE/A/B/IID (value = FALSE)
ACTIVE /AE/A/C/GUARD (value = FALSE)
ACTIVE /AE/A/B/D/GUARD (value = FALSE)
ACTIVE /AE/A/B/E/GUARD (value = FALSE)
ACTIVE /AE/A/B/E/GUARD (value FALSE)
ACTIVE /AE/A/B/D/GUARD (value FALSE)

SHOl1: ACTIVE /AE/X (value= 2)
1000000000 FS

Time-shifted VHDL (generated auto­
matically)

use work.A_pack.all;

entity AE is
end;

Architecture AA of AE is
signal inA : boolean :=·false;
-- NOTE: A's decls (except variables) have been pulled up to here.
function ShiftifZero(time_expression : in time) return time is
begin

if (time_expression = 0 fs) then
return (1 fs);
else
return (time_expression);
end if;

end;
type A_integer_RES is array (natural range <>) of integer;
function A_integer_RESfct(IIPUT : A_integer_RES)

return integer is
begin

assert (INPUT'length = 1) report
"overdriven signal, type: A_integer_RES"
severity warning;

return IIPUT(O);
end;
signal x : A_integer_RESfct integer register;
signal evnt : A_integer_RESfct integer regi~ter;
signal inB boolean :=false;
signal inC : boolean :=false;

begin
A: block
begin

B: block
signal inD boolean :=false;
signal inE boolean :=false;

begin
D: block (inD and not(inD'stable))
begin

code: process

x <= 1 after ShiftifZero(1 fs);
wait until not (inD)
if (not inD) then
exit D_Loop;
end if;
exit D_Loop;
end loop D_Loop;
end if;
x <= transport null;
wait on guard;
end process code;

end block D;
E: block (inE and not(inE'stable))
begin

code: process
variable REHAil_TIHE: time;

begin
if guard then
E_Loop : loop
evnt <= 1 after ShiftifZero(10 ps);
wait until not (inE)
if (not inE) then
exit E_Loop;
end if;
exit E_Loop;
end loop E_Loop;
end if";
evnt <= transport null;
wait on guard;
end process code;

end block E;

control: process begin
if (inB and not(inB'stable)) then

inD <= transport true;
inE <= transport true;

elsif (inB=false and not(inB'stable)) then
inD <= transport false;
inE <= transport false;

end if;
wait until (not inB'stable);

end process control;
end block B;
C: block (inC and not(inC'stable))
begin

code: process
variable REHAIN_TIHE: time;

begin
if guard then
x <= 2 after ShiftifZero(1 fs);
11ait ;
end if;
x <=transport null;
11ait on guard;
end process code;

end block C;
control: process begin

if (inA and not(inA'stable)) then
inB <= transport true;

elsif (inB and (not (evnt'stable))) then
inB <= transport false;
inC <= transport true;

end if;
11ait until (not inA'stable) or (inB and (not (evnt'stable)));

end process control;
variable REHAIN_TIME: time;

begin
end block A;

if guard then
D_Loop : loop

17

start: process begin

inA <= transport true;
liait;

end process start;

end AA;

A.3 Signal Initialization Example
This is the example of Figure 16bd Assuming y is initially
0, the final value of x during simulation should be 4. In
the non-shifted VHDL, y is incremented earlier than x is
updated, thus x is .5, which is incorrect.

SpecChart

state
{

}

name {A}
declarations
{

signal y : integer :=O;
}

concurrent substates
{

}

B
c

state
{

}

name {B}
declarations
{

signal x integer :=4;
}

code
{

x <= x + y;
}

state
{

name {C}
code
{

y <= y + 1;
}

}

Non-shifted VHDL simulation results
Note that x equal 5 at the end, which is incorrect.

0 FS
SMOll:

SMOll2:
SMOll6:
SMOll6:
SMOll1:
SMON3:
SMON4:
SMON2:
SMON6:
SMON8:
SMON7:
SMON3:
SMON6:

SMON14:

ACTIVE / AE/IHA (value = TRUE)
ACTIVE /AE/INA_INIT (value = TRUE)
ACTIVE /AE/A/A_INIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/Y (value = 0)
ACTIVE /AE/DONEA_INIT (value = TRUE)
ACTIVE /AE/INA_ORIG (value = TRUE)
ACTIVE /AE/INA_INIT (value = FALSE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/INC (value = TRUE)
ACTIVE /AE/A/A_ORIG/INB (value = TRUE)
ACTIVE /AE/DONEA_INIT (value = FALSE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/GUARD (value = TRUE)

SMOl10: ACTIVE /AE/A/A_ORIG/B/IIB_IllIT (value= TRUE)
SM0114: ACTIVE /AE/A/A_ORIG/C/GUARD (value = FALSE)

SMOl1: ACTIVE /AE/Y (value= 1)
SMOl9: ACTIVE /AE/A/A_ORIG/B/X (value = 4)

SMOl11: ACTIVE /AE/A/A_ORIG/B/DOIEB_IIIT (value= TRUE)
SM0112: ACTIVE /AE/A/A_ORIG/B/IIB_ORIG (value= TRUE)
SMOl10: ACTIVE /AE/A/A_ORIG/B/IIB_IIIT (value = FALSE)
SM0111: ACTIVE /AE/A/A_ORIG/B/DOIEB_INIT (value= FALSE)

SM019: ACTIVE /AE/A/A_ORIG/B/X (value = 5)
SMOl13: ACTIVE /AE/A/A_ORIG/B/DONEB_ORIG (value = TRUE)
SM0112: ACTIVE /AE/A/A_ORIG/B/INB_ORIG (value= FALSE)
SMOl13: ACTIVE /AE/A/A_ORIG/B/DONEB_ORIG (value = FALSE)

1000000000 FS

Time-shifted VHDL simulation results

~ote that x equals 4 at the end, which is correct.

0 FS
SMOI:

SM012:
SMOl6:
SM01l6:
SMOPl1:
SMOPl3:
SM0Pl4:
SM01l2:
SMOJJ6:
SMOl8:
SMON7:
SM01l3:
SMON6:

SM0Pl14:
SMON10:
SMON14:

SMON9:
SM01l11:
SMON12:
SMON10:
SMON11:

1 FS

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/Y (value = O)
ACTIVE /AE/DOIEA_IIIT (value = TRUE)
ACTIVE /AE/IIA_ORIG (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/INC (value = TRUE)
ACTIVE /AE/A/A_ORIG/INB (value = TRUE)
ACTIVE /AE/DONEA_IIIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/GUARD (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IIB_IIIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/B/X (value = 4)
ACTIVE /AE/A/A_ORIG/B/DOIEB_INIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/INB_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IllB_INIT (value = FALSE)
ACTIVE /AE/A/A_ORIG/B/DONEB_INIT (value = FALSE)

SMON1: ACTIVE /AE/Y (value= 1)
SMON9: ACTIVE /AE/A/A_ORIG/B/X (value= 4)

SMON13: ACTIVE /AE/A/A_ORIG/B/DOBEB_ORIG (value= TRUE)
SMON12: ACTIVE /AE/A/A_ORIG/B/INB_ORIG (value= FALSE)
SMON13: ACTIVE /AE/A/A_ORIG/B/DONEB_ORIG (value = FALSE)

1000000000 FS

