
Test Generation for Bridging Faults in CMOS ICs
Based on Current Monitoring versus Signal Propagation

 U. Gläser, H. T. Vierhaus, M. Kley, A. Wiederhold

German National Research Center for Computer Science (GMD)

Abstract

Bridge-type defects play a dominant role in state-of-
the-art CMOS technologies. This paper describes a
combined functional and overcurrent-based test
generation approach for CMOS circuits, which is
optionally based on layout information. Comparative
results for benchmark circuits are given to
demonstrate the feasibility of voltage-based versus
IDDQ-based testing.

1 Introduction

The problem of generating tests that cover bridge-
type defects has been dealt with by many authors
throughout the late 80s and early 90s [1,2,3].
There are two basic problems: First, bridge-type
defects will often not result in logic faults. Delay
faults are more likely, but recent investigations [4]
indicated only minor delays and even occasional
speed-up effects for bridges within logic gates.
Second, the number of all possible bridging faults
between nodes of a large circuit may be prohibitively
high.
The first problem has found a partial solution by
introducing static overcurrent (IDDQ) testing [3,5].
Compared with voltage-based testing, current test is
a much more sensitive instrument with respect to the
detection of bridge-type defects, at least in static
CMOS circuits [4].
It was recently demonstrated [3] that a good
coverage of bridging faults can be achieved with a
very small number of test patterns. However, the
results may be overoptimistic with respect to global
bridges. No layout information for fault list reduction
was used, and the storage space required was not
shown.
The identification of "candidates" for bridge-type
defects from layout was reported before [7]. Mostly
an inductive fault analysis process was used, which
may be very precise, but requires prohibitively high
computational efforts for large circuits.
The main objective of this paper is to explore the
feasibility of bridging fault IDDQ testing with and
without previous layout analysis and to compare the
results with a realistic voltage-based approach.

2 Layout Proximity Analysis

Based on an existing layout extractor tool [8], we
developed a weighted proximity analysis program for
CMOS layouts.

net A

net B

metal

expanded layout

bridging-sensitive distance

metal

Fig. 1: Layout analysis for bridging fault
sensitivity

The extractor is used to identify the association of
layout structures with signals. Nodes are registered
with annotation of associated layout structures. In
general we do not assume bridging faults between
non-overlapping structures on different layers.

Then layout structures are expanded by a user-
definable number of microns, which will normally be
slightly larger than the minimum distance between
lines on the same layer.
Then overlap conditions where two nodes approach
each other are registered, even the total area of the
proximity section is recorded. This value may serve
as a measure to evaluate the statistical importance of
a bridging fault in such an area.
We also record crossovers between lines of different
nodes (metal / polysilicon) optionally. Hence we can
systematically evaluate a layout for nodes which are
prone to
- bridging at the same level of interconnect (e. g. by

dust particles)
- bridging at crossovers metal / polysilicon (e. g.

due to pin-holes through oxide layers).
Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0036 $3.50

The resulting fault list then serves as an input to an
adapted ATPG program such as MILEF [6] or a fault
simulator. Run times required for the layouts of
ISCAS 85 benchmark circuits are acceptable (see
Tab. 1).
The time for the circuit extractor has to be added. It
is in the order of a few minutes for most of the
examples and slightly below 30 min. for the largest
benchmark layouts on an advanced pre-commercial
tool with hierarchical facilities [8].
The number of bridges extracted requires further
treatment. We subtract bridges between signal
nodes and VDD / GND, since such defects will most
likely be detected by stuck-at patterns. We also
subtract bridges at the polysilicon level within gates
(also complex gates), since those are also quite likely
to be detected by "normal" ATPG in combination
with overcurrent tests [2,3].

Tab. 1: Analysis process for the layout of
ISCAS 85 layouts (not including
efforts for circuit extraction from
layout)

circuit extracted CPU-time (SPARC 2)
 bridges min:s

mc17 36 0:00.47
mc 432 1214 0:19.72
mc 499 1315 0:22.00
mc 880 1451 0:25.19
mc 1355 1475 0:35.07
mc 1908 2012 0:42.79
mc 2670 3284 1:33.64
mc 3540 4406 2:46.70
mc 5315 9242 9:13.73
mc 6288 7354 7:46.75
mc 7552 10148 11:19.33

3 Bridging Fault Testability

3.1 Basics

In general we can distinguish between two basic
types of bridging faults:
"Local" (or intra-) bridging faults occur within logic
gates, e g. between different input lines, or between
inputs and internal nodes.
"Global" (inter-) bridging faults may occur on (mostly
metal) interconnects, which are arbitrarily placed
close to each other by the routing process during
chip construction.
Recent investigations [2,3,4] have shown that test
patterns, which are generated for stuck-open-,
stuck-on-, and transition faults within logic gates or
complex gates, will often excite the fault condition in
case of internal bridging defects. Then, if not by

delays or functional faults, the testability via static
supply current measurements is highly likely.
Hence our main concern is the generation of test
patterns for bridging defects that occur on the global
wiring.
Using the facilities in MILEF [6], the approach taken
is quite different from previous work.
If a circuit level description of the circuit to be tested
is available, an extraction process is performed first. If
only primitive gates are identified, the ATPG process
is based on gate-level information only. In this case
bridging fault ATPG will be based on virtually all
circuit nodes, because the number of purely
"internal" nodes in basic gates is small (e. g. ANDs
are split into NANDs plus inverters). If complex gates
are used, a local switch-level ATPG process for such
subcircuits is performed and coupled to a global
gate-level ATPG procedure. As essentially all local
bridging faults are excited by switch-level structural
ATPG, the global ATPG process for bridges on
interconnects is limited to external nodes.

3.2 Testing Non-Feedback Bridges

For the first type of fault, the situation is described in
Fig. 2. A low-resistance bridge connects two nodes
in a CMOS circuit. It will inevitably cause a static
overcurrent condition for the driving stages,
whenever the nodes are driven to non-equal values.
IDDQ -based testability is almost guaranteed.

n1
n2

n3 n4

n5

n6

n7

n8

non-feedback
bridge

Fig. 2: Global bridging fault condition
without feedback

 Also a voltage-based testing approach, which tries
to excite and to propagate "false" logic values, is of
practical interest. Then the objective is to generate a
fault condition, where the "stronger" driver distinctly
drives the "weaker" node to a logic fault via the
bridge. The propagation will then be possible via the
loading network of the "weaker" driver. Here the
objective was to define realistic logic strengths
based on gate-level information only.
It is possible to define a hierarchy of logic strengths
for gate-level elements at least for basic logic gates.
1. primary inputs
2. driver cells

3. output drivers of non-inverting gates
4. inverting gates where the state is driven by parallel

"on" transistors (e. g. a NAND driving a
"high" condition)

5. inverting gates where the state is driven via series
"on" transistors (e. g. a NAND driving a "low"
condition).

Implicitly this assumption is realistic if a constant
width over length-ratio for all p- and n- channel
transistors in logic gates, respectively, is applied,
except for driver stages. At present we still identify a
"strong" driver from one of the first four classes
versus a "weak" driver from class 5. Based on such
an evaluation scheme, we can distinguish between
bridging faults that are likely to be tested via false
logic levels and those which are not. Hence the
distinction into testable versus untestable bridges is
rather leaning towards a pessimistic view.
Based on an initial list of global fault conditions, we
first excite the "wrong" condition on the "weaker"
node and try to propagate it.

3.3 Testing Under Feedback Loop
Conditions

If a feedback condition is excited via an odd number
of inverting stages, this may result in circuit
oscillations, depending on the input conditions of
logic gates in the loop.

feedback bridge

n1
n2

n3
n4

n5

n6

n7

n8

Fig. 3: Global bridging fault condition
causing feedback

Assume a feedback condition between nodes n1
and n4. For propagating the false logic state in node
1 to the primary output via node 4, inputs of gates on
the path will be assigned states to have their
"controlling" input in the path. Hence the conditions
for an oscillation are met, if the number of gates in
the feedback loop is odd and at least 3. Using the
oscillation effect itself for testing is attractive, but not
really safe. Very fast oscillations will not certainly be
propagated to a primary output, but may yield
increased supply currents. For long feedback paths

and oscillations below the test clock rate, detection
is not safe either.
Safely testing faults via functional effects is possible,
if we interrupt the feedback loop (Fig. 3) and
surpress the oscillation. If n1 is known to dominate,
we can safely propagate the fault effect to node n6.
However, if n4 dominates, we cannot use the path
from the "faulty" node n1 to n6 via n4.
Then the procedure to be followed is:
1: Detect the nodes in the path affected by the
feedback. 2: Starting at the second node (e. g. n2),
find a fan-out node which allows to propagate the
faulty value of n1 to a primary output via an
alternative path. 3: Starting at the second but last
node (e. g. n3), try to interrupt the loop by setting
the input (n3) to non-controlling via other inputs. 4:
The last gate in the branch affected by step 3 can be
the one fed by the fan-out node detected in step 2.

4 Results for Benchmark Circuits

Available results are based on ISCAS 85 benchmark
circuits [8]. For IDDQ testing we used the layouts
available from MCNC (including complex gates).
The fault list contains all possible bridges of lines
outside such macros, hence essentially all global
wiring.

Tab. II: ATPG results for global bridging
faults, based on complete
fault lists, IDDQ-test only

circ. faults patt. flts. flts. cov. CPU-s mem
mc tot. red. abt. M B
17 66 7 0 0 100% <1 0.1
 432 17578 34 0 72 99.59% <1 0.35
 499 52650 42 0 1 99.99% 38 1
 880 43660 66 0 2 99.99% <1 0.87
1355 82621 59 0 4 99.99% 27 1.6
1908 98346 54 0 63 99.93% 4 2.0
2670 289180 144 65 110 99.93% 37 5.8
3540 353220 81 0 69 99.98% 5 7.0
5315 1073845 209 4 161 99.98% 1m:38 21.5
6288 1768140 57 3 27 99.99% 7m:10 35.4
7552 2001000 197 42 294 99.98%1m:17 40.0

These results show that, even without a previous
layout analysis and a corresponding high number of
faults, the computing times are acceptably low and
resulting test patterns are relatively few. The
bottleneck is set by the exploding memory demand.
Results indicate that for workstations with state-of-
the-art memory a circuit size of about 10 000 gates
presents a practical limit for fast bridging fault ATPG
without layout information. (Results in Tab II and III
for SPARC 10, 1000 backtracks limit).
Tab. III shows the comparative results for a reduced
fault list based on layout information.

Tab. III: ATPG results for global bridging
faults, based on a reduced
fault list using layout information,
IDDQ-test only

circ. flts patt. faults cov. CPU
mc total ab. red. s
17 9 3 0 0 100% <1
432 211 12 0 1 99.52% <1
499 262 9 0 0 100% 8
880 334 18 0 0 100% <1
1355 371 17 0 0 100% 8
1908 381 12 0 1 99.73% <1
2670 657 34 0 0 100% 1
3540 784 20 0 0 100% <1
5315 1722 49 0 1 99.94% 1
6288 1272 17 0 0 100% 48
7552 2049 65 0 1 99.95% 3

The memory requirements for the largest circuits are
in the area of 20-30 kB. The number of tests is
typically down to 1/3 to 1/5 from the previous list.
For comparison we performed ATPG for bridging
faults based on an exhaustive fault list for gate-level
benchmark circuits. Bridging faults are excited and
propagated where possible, based on the
evaluation of signal strengths described in the
previous chapter (Tab. IV).

Tab. IV: MILEF performance on ISCAS 85
benchmark circuits, bridging fault test via
propagation of false logic values

circ. faults patt. flts cov. CPU mem.
c total n abort. % s MB.
17 55 10 0 80 <1 kB
432 19110 24 193 54 1m:45 0.22
880 97903 556 0 50 14s 1.0
1355 171991 1911 57 89 12m:34 3.2
1908 416328 1145 15 64 5m:46 5.5
2670 1016025 4229 1868 33 30m:50 6.8
3540 1476621 2240 235 32 39m:37 11
5315 3086370 2047 472 33 28m:19 21
6288 2995128 313 2 98 5m:17 59
7552 6913621 5064 1119 48 143m:10 68

Results obtained here show that in most cases the
number of test patterns exceeds the numbers
necessary for IDDQ-based bridging fault test by far.
Results also indicate a practical complexity limit of
about 10 000 gates for global bridging fault test
without layout proximity information.

5 Summary

We presented a comprehensive approach to
bridging fault ATPG on interconnects, which is
alternatively based on signal propagation or on static
overcurrent testing.

As expected, an overcurrent-based test is superior
with respect to fault coverage and test generation
efficiency. Layout knowledge reduces the number
of patterns by a factor of about 3 to 5. Voltage-based
testing clearly has only a limited coverage potential,
which is, however, far better than expected in some
cases.

6 Acknowledgements

This work was partly funded within the ESPRIT Basic
Research Action under the ATSEC (6575) contract.

7 References

[1] F. J. Ferguson and P. J. Larrabee, "Test Pattern
Generation for Realistic Bridge Faults in CMOS
Circuits", Proc. IEEE Int. Test Conf. 1991, pp.
492-499

[2] S. W. Bollinger and S. F. Midkiff, "On Test
Generation for IDDQ Testing of Bridging
Faults in CMOS Circuits", Proc. IEEE Int. Test
Conf. 1991, pp. 598-607

[3] E. Isern and J. Figueras, "Test Generation with
High Coverage for Quiescent Current Test of
Bridging Faults in Combinational Circuits", Proc.
IEEE Int. Test Conf. 1993, pp. 73-82

[4] H. T. Vierhaus, W. Meyer, U. Gläser, "CMOS

Bridges and Resistive Transistor Faults: IDDQ
versus Delay Effects", Proc. IEEE Int. Test Conf.
1993, Baltimore

[5] W. Maly, P. Nigh, "Built-In Current Testing, a
Feasibility Study", Proc. IEEE ICCAD´88, pp.
340-343

[6] U. Gläser, U. Hübner, H. T. Vierhaus, "Mixed
Level Hierarchical Test Generation for Tran-
sition Faults and Overcurrent Related De-
fects", Proc. Int. Test Conf. 1992, pp. 21-29

[7] G. Spiegel, "Optimized Test Cost using Fault
Probabilities", Proc. 3rd European Test Conf.,

 ETC 93, Rotterdam, pp. 188-193, 1993

[8] V. Henkel and U. Golze, "RISCE- A Reduced
Instruction Set Circuit Extractor for Hierarchical
VLSI Layout Verification", Proc. 25th ACM/IEEE
Design Autom. Conf, 1988, pp. 465-470

[9] F. Brglez, H. Fujiwara, " A Neutral List of 10
Combinational Benchmark Circuits and a Target
Translator in FORTRAN" , Proc. 1985 Int. Symp.

Circ. and Systems, pp. 671-674, 1985

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

