
Adaptation of Partitioning and High-Level Synthesis in
Hardware/Software Co–Synthesis

Jörg Henkel, Rolf Ernst, Ullrich Holtmann, Thomas Benner
Institut für Datenverarbeitungsanlagen
Technische Universität Braunschweig

Hans–Sommer–Str. 66
D–38106 Braunschweig
Henkel@ida.ing.tu–bs.de

GERMANY

Abstract

Previously, we had presented the system COSYMA for
hardware/software co-synthesis of small embedded con-
trollers [ErHeBe93]. Target system of COSYMA is a core
processor with application specific co–processors. The
system speedup for standard programs compared to a sin-
gle 33MHz RISC processor solution with fast, single cy-
cle access RAM was typically less than 2 due to restric-
tions in high-level co–processor synthesis, and incorrectly
estimated back end tool performance, such as hardware
synthesis, compiler optimization and communication opti-
mization. Meanwhile, a high-level synthesis tool for high-
performance co–processors in co-synthesis has been devel-
oped. This paper explains the requirements and the main
features of the high-level synthesis system and its integra-
tion into COSYMA. The results show a speedup of 10 in
most cases. Compared to the speedup, the co–processor
size is very small.

1 Introduction – the COSYMA system

This paper presents a significant improvement of the
hardware/software co-synthesis system COSYMA by us-
ing a specialized high-level synthesis system. COSYMA
has been developed for the design of small embedded con-
trollers (COSYnthesis of eMbedded Architectures), and
first results have been published in [ErHeBe93].

While this section gives an overview, section 2 describes
the features of the high–level synthesis system BSS. Section
3 summarizes the results gained by automated partitioning
with COSYMA and synthesis by BSS. Finally section 4
gives a conclusion.

COSYMA is an experimental system for the co–design

CoProcessorRISC
Processor memory

peripheral
units

automatic partitioning
and synthesis

Figure 1: Target architecture of COSYMA

of small embedded real–time systems. The target archi-
tecture (figure 1) consists of a standard RISC processor
core (we use the SPARC architecture with 33MHz clock
and floating point co–processor as implemented by LSI
Logic), fast RAM with single clock cycle access time and an
automatically generated application specific co–processor.
Processor and co–processor communicate through shared
memory using a CSP type protocol (communicating se-
quential processes). The COSYMA design flow is shown
in figure 2. The input is a real–time system description
in Cx, a superset of the C language, which is enhanced
by time constraints, communication, processes and some
user directives to the co–synthesis process. This input de-
scription is translated to an extended syntax graph (ESG).
The syntax graph is extended by a data flow graph for
each basic block and the global control flow. An auto-
mated partitioning process is one of the key problems in
hardware/software co–synthesis as opposed to co–design.
COSYMA can partition functions or basic blocks including
basic blocks with function calls. The hardware/software-
partitioning in COSYMA is solved with simulated anneal-
ing ([OG89]). The approach is software–oriented, i.e. the
simulated annealing starts with an all software solution and

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0096 $3.50

C compilerx

C

 CDFG

system
description

ES graph

partitioning

cost-
estimation

description

ES graph -> C

C description

object
code

C compiler
(GNU)

Outer
Partitioning
Loop

ES-graph-> CDFG

x

simulator

comunication
protocol comunication

protocol

run time
analysis

hta

high-level-synthesis
with BSS

Inner
Partitioning
Loop

Figure 2: The design flow of the COSYMA experimental
system

"extracts" hardware iteratively [ErHeBe93] until all time
constraints can be met. This process is called the inner
partitioning (loop). There is just one other comparable
co–synthesis approach [GuCoMi92]which starts from the
opposite point with mainly an all hardware solution and
then uses a constructive rather than a stochastic algorithm.
Because the partitioning cost criteria – circuit performance
and area – are not known before synthesis and compilation
have been executed, cost estimation is used instead. This
estimation considers the potential speedup and communi-
cation costs. Circuit overhead is implicitly encoded by the
optimization goal to implement as few as possible system
functions (basic blocks, functions) in hardware.
The incremental speedup of a basic block (function) b ex-
tracted to hardware is estimated as:

∆c(b) = w�(tHW (b)�tSW (b)+tcom(Z)�tcom(Z[b))�It(b)
(1)

where ∆c(b) is the estimated decrease in execution time,
w is the weight factor to control simulated annealing
[ErHeBe93], tHW (b) is the estimated co–processor exe-
cution time of b, tSW (b) is the estimated execution time of
b on the processor and tcom(Z) is the estimated processor–
coprocesor communication time, given the current set Z
of basic blocks on the co–processor. It(b) is the number
of iterations on b. All estimations are desired previous to

d

a

b c

List Scheduling

with estimated
operator execution
time on
source level

- + *

* +

read

read

block-to-block
communication
overhead
estimation ccd

Figure 3: Estimation for partitioning

partitioning because simulated annealing needs fast cost
function computation.

� tSW (b) is estimated with a local source code timing
estimation. Estimation inaccuracy results from data
dependent instruction execution times (SPARC: e.g.
mult, div), optimization and register allocation in the
compiler. Alternatively, trace data from processor
simulation could be used (not in this paper).

� tHW (b) is estimated with a local list scheduling (figure
3) on b using the execution time (number of clock
cycles) for each operator in high–level synthesis. The
number of function units to be used is restricted by the
user.

� tcom(Z [b) is estimated by data flow analysis of ad-
jacent basic blocks in the control flow. A global data
flow analysis for each Z and b is too computation in-
tensive. For shared memory, communication costs are
proportional to the number of variables to be com-
municated: Let Ca;b the number of variables flowing
from a to b for the case that a and b are adjacent
blocks, and 0 otherwise. At fixed transfer costs ttrans
the communication costs tcom(Z [b) are:

tcom(Z[b) = tcom(Z)�(
X

a2Z

Ca;b�
X

d2[:Z

Cd;b)�ttrans

(2)
Here :Z is the set of blocks which are not on the
co–processor.

� The weight w is choosen such that it drives the esti-
mated system execution time TS towards the required
execution time Tc with a minimum number of basic
blocks in the co–processor:

w = sign(TC � TS)e
TC�TS

T (3)

path-based operator
and loop pipelining,
multiple branch prediction,
force directed list
scheduling (no chaining)

Scheduling

execution-time
Interface to COSYMA

CDFG

Interface from COSYMA
hardware description +

trace data

(tight upper bound)
Allocation and
Controller Generation
(pipeleined)

fixed clock cycle

Synopsys module
lib

Figure 4: The design flow of the BSS HL-synthesis system

Those parts which are selected to be implemented in
software are translated to a C program (using the GNU
compiler) thereby inserting statements for communication
with the co–processor. To minimize overhead, communi-
cation is now based on a global data flow analysis rather
than a local analysis as used for estimation. The rest is
translated to the input language of the high–level synthesis
system, again inserting communication statements, and an
application specific hardware is automatically generated.
Last step in the design flow is a fast timing analysis of the
whole system [YErBeHe93]. If the time constraints are
not fulfilled the design process is executed once more with
changed parameters. We call this the outer partitioning
loop. It is not automated yet, but requires user interaction.
The outer loop is not considered in this paper. For more
details of COSYMA see [ErHeBe93].

2 A Synthesis System for Co–Processor Gen-
eration

So far COSYMA has reached system speedups of typ-
ically less than 2 due to restrictions in the high-level syn-
thesis system and incorrectly estimated back-end tool op-
timization, such as hardware synthesis, compiler optimiza-
tion and communication optimization. Also, the synthesis
times were in the order of several hours of CPU time on a
SPARC 10/41. Iteration over synthesis in the outer loop was
hardly practical under these circumstances. After the tim-

ing analysis had been cut to a few seconds [YErBeHe93],
synthesis time is the co–synthesis bottleneck.

As a first step towards higher performance, a specialized
co–processor synthesis system was developed. These were
the requirements:

� High speedup
It should exploit parallelism over loop boundaries, be-
cause most of the system parts moved to hardware are
loops or contain functions with loops. It should accept
hardware restrictions.

� Short synthesis turnaround time in the outer partition-
ing loop
Short turnaround can not be achieved when RT–level
or logic synthesis is included in the loop. Still, tim-
ing accuracy is required, otherwise the co–processor
might need a longer clock cycle after implementa-
tion which would destroy the overall performance and
force the processor to a slower speed, as well, synchro-
nization. This could be achieved, if the clock timing is
predictable during scheduling. To avoid synchroniza-
tion the clock rate should be adapted to the clock rate of
embedded RISC processors, which is 30-50 MHz. As
we know from logic synthesis, controller timing can
not be guaranteed at this speed. So, besides data path
pipelining for complex operations, controller pipelin-
ing is useful. Operation chaining is too difficult to
estimate, so it is omitted.

The co–processor synthesis system BSS (Braunschweig
Synthesis System) is developed to fulfill these require-
ments. It performs operator pipelining, loop pipelining
and speculative computation with multiple branch predic-
tion ([HoEr93a]). The Scheduling is path–based with force
directed scheduling along (predicted) paths [Ho93]. Be-
cause this is very fast, scheduling results are available after
a few seconds of CPU time.
An upper bound for the run time is provided, because in
exceptional cases, where several loops are executed in par-
allel, scheduling changes dynamically.
Input description of BSS is a CDFG. Trace data is required
for timing analysis and speculative computation. A sim-
ple allocation follows scheduling (see figure 4). Currently,
BSS only supports operations on 32 bit operands. Con-
troller architecture was a major issue, and the solution is
presented in ([HoEr93a]). The controller is optimized with
the Synopsys logic synthesis system.

In our experiments, BSS always created co–processors
with the desired clock rate of 33 MHz (the clock rate of
the SPARC) for a 1:0�m standard cell technology (ES2).
It should be pointed out that the high clock rate seems to
be possible because the co–processor implements a small
part of the C code only and because of controller pipelining.

Benchm. loC BSBs constr. moves time (sec)

smooth 95 5 2.0 436700 41
7 5.0 343500 35
9 10.0 500000 52

trick 240 5 10.0 523900 74
key 1421 11 2.0 625500 304

Table 1: Partitioning procedure

BSS has been integrated in COSYMA. In the following, we
will give results for the use of BSS showing that the speedup
has reached a level, where it is economically interesting.

3 Results

The experiments investigated the system speedup1 and
performance of BSS, the properties and suitability of sim-
ulated annealing and cost function for partitioning, and the
relevance and accuracy of cost estimation. We selected
typical benchmarks for small embedded systems

The smooth–benchmark implements a filter that
smoothes the edges of a digital image. The benchmark
key is part of an HDTV studio equipment and computes the
parameters for an HDTV chromakey mixer. Trick is a small
part of a program for professional online trick animation,
which has been implemented in a rack–size system. These
benchmarks have been selected because of their hard real–
time constraints and their manageable size of about 100 to
1500 lines of C code (loC in tables).

Table 1 shows the size of the benchmark (loC), the num-
ber of basic blocks (BSB: basic scheduling block) moved
to hardware, the user defined time constraint (constr.), the
number of moves performed by simulated annealing and the
computation time on a SPARC 10/41. First, the smooth–
benchmark has been partitioned for 3 design points: re-
quired speedups of 2:0, 5:0 and 10:0. Intuitively, the num-
ber of moves of the simulated annealing for a 2:0 speedup
should be less than for a 5:0 speedup but this is not the case
(436700 moves for a 2:0 speedup and only 343500 for a
5:0 speedup). An investigation revealed that the annealing
could not find a number of BSB, such that TS is close to
TC (see equation 3), and because the number of blocks is
small, each move changes costs significantly because of
the step at TS = TC and cooling was slow. This effect is
the larger the more the individual blocks contribute to the
system speed, i.e. the smaller the benchmark is.
This can also be seen from the results of the partition-
ing process of the benchmarks trick and key: it should

1The system speedup is defined as the relation between the execution
time of an all–software–solution and the execution time of the complete
hardware/software solution including also communication time.

Benchm. loC BSBs geq constr. speedup

smooth 95 5 18320 2.0 4.39
7 20260 5.0 6.50
9 22160 10.0 9.65

trick 240 5 24070 10.0 9.59
key 1421 11 11900 2.0 2.66

Table 2: Automatically gained partitioning results

be expected that the number of moves increases with the
complexity of the benchmark (95 lines of C code for the
smooth–benchmark and 240 and 1421 lines for trick and
key). That is not the case because, here, it is much more
easier for the annealing algorithm to find a set of BSB’s such
that TS is close to TC and then cool down. In all cases, only
a few BSBs, mostly loops operating on arrays, have been
moved to the co–processor. The speedup shows that simu-
lated annealing has selected a few time critical parts. As a
consequence, the co–processor controller is small, which is
fovorable to BSS’ hierarchical controller structure, which
is basically a magic extension of [KuMi91]. The total ex-
ecution times for the partitioning algorithm is at most 5
minutes.
The estimations are rather close to the actual results. Table
2 shows that for half of the benchmarks the deviation is less
than 25 % and no actual circuit is significantly slower than
estimated [ErHeBe93]. Before BSS, we typically found
that the actual circuit was much slower than estimated. The
table shows the size of the co–processor in gate equivalents
for the ES2 1:0�m standard cell library, without controller
size, which is 10 - 20 % of the overall size and depends on
Synopsys performance (for controller size see [HoEr93a]).
The last column shows the actual speedup. The smooth ex-
ample shows the effect of "reusing" the co–processor func-
tion units for different blocks: Even though the speedup
rises by a factor of more than 2, the co–processors size
increases only by about 20%.

As seen in table 2, we can reach speedups up to 10 –
including the communication overhead between hardware
and software. The co–processor size is in all cases less than
25k gate equivalents (geq), not including the controller.

The estimated speedup is almost always less than the ac-
tual speedup and never significantly larger. There are two
reasons. First, list scheduling only considers basic blocks
and, therefore, is inferior to the path based (force directed)
list scheduling approach in BSS, which considers poten-
tial parallelism on paths through adjacent blocks. Second,
communication estimation only considers adjacent blocks.
In the key benchmark, a speedup of 2.0 was estimated (ta-
ble 2) and 2.66 was obtained. Looking at the code, we
found that loops were separated.

system execution time [10 cycles]6

area [geq]

15.000

20.000

25.000

X

X

X

1 2 3 4

Figure 5: Design space of the smooth–benchmark

So, communication estimation which only analyzes ad-
jacent blocks, did not recognize that there is a reduction in
communication overhead if both loops are moved to hard-
ware as one segment and the block stayed in software.

Figure 5 shows the area/runtime tradeoff for the smooth–
benchmark. Here, the user performed a what-if analysis by
changing the desired system speedup.

The turnaround times through the whole system are very
small: for almost all benchmarks less than one hour could
be reached.

Looking at the schedule, we found that, for higher
speedups, the co–processor performance was limited by the
memory bandwidth (2 cycle read/write i.e. 67MByte/sec).
So, chaining does not seem to be a major issue for the
benchmark cases, unless memory bandwidth can be in-
creased. We conclude that memory design is the key topic
for further speedups.

4 Conclusion

To improve hardware/software co-synthesis, a co–pro-
cessor synthesis system, BSS, has been developed that is
tailored to the requirements of the co-synthesis process.
The results show a much higher speedup than achieved with
a general purpose synthesis system while BSS consumes
much less computation time in an iterative partitioning pro-
cess. Realistic benchmarks helped to interpret the relation
of estimation and actual results. In particular, the execu-
tion time of a BSS–generated co–processor is known very
early in the synthesis process and turned out to be smaller
than the estimations, such that the hardware/software sys-
tem fulfills the time constraints. BSS speedup is typically
constrained by the 67MByte/s memory bandwidth of the
system. Having studied the "inner" partitioning process
which is based on estimations, we currently work on the
"outer" partitioning loop where the partitioning shall be au-
tomatically adapted to the actual speedup. The problem

here is the convergence of the overall partitioning process
and the cost parameter adaptation.

References

[ErHeBe93] R. Ernst, J. Henkel, Th. Benner,
Hardware-Software Cosynthesis for Microcon-
trollers,
IEEE Design & Test of Computers, pp. 64–75,
Dec. 1993.

[GuCoMi92] R.K. Gupta, C.N. Coelho, G.D. Micheli,
Synthesis and Simulation of Digital Systems Con-
taining Interacting Hardware and Software Com-
ponents,
Proc. of DAC’92, pp. 225–230, 1992.

[GuMi92] R.K. Gupta, G.D. Micheli,
System-level Synthesis using Re-programmable
Components,
Proc. of EDAC’92, pp. 2–7, 1992.

[Ho93] U. Holtmann,
High–Level Synthese mit BSS für den Einsatz im
Hardware/Software Codesign (High–Level Syn-
thesis with BSS for Usage in Hardware/Software
Codesign),
Internal Report 931126-1, Institut f. Entwurf In-
tegrierter Schaltungen, Technical University of
Braunschweig, Germany, 1993.

[HoEr93a] U. Holtmann, R. Ernst,
Experiments with Low-Level Speculative Compu-
tation Based on Multiple Branch Prediction,
IEEE Trans on VLSI, Vol. 1, No. 3, Sep. 1993.

[KuMi91] D.C. Ku, D. De Micheli,
Constrained resource sharing and conflict resolu-
tion in Hebe,
Elsevier, INTEGRATION, the VLSI journal 12,
pp. 131–165, 1991.

[OG89] R. Otten, P. van Ginneken,
The Annealing Algorithm,
Kluwer, 1989.

[YErBeHe93] W. Ye, R. Ernst, Th. Benner, J. Henkel,
Fast Timing Analysis for Hardware-Software Co-
Synthesis,
Proc. of ICCD 1993, IEEE Society Press, pp. 452–
457, 1993.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

