
VLSI Timing Simulation with Selective Dynamic Regionization

Meng-Lin Yu
Bryan D. Ackland

AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract
Accurate timing simulations are crucial to the design of
MOS VLSI circuits, but can take prohibitively large
amounts of time. This paper describes dynamic
regionization techniques applied to an event based
simulator for MOS timing simulation that have proven to
be more efficient and as accurate as the static regionization
method. The MOS network is first statically partitioned
into groups of strongly coupled nodes called regions. Big
regions are then incrementally and dynamically partitioned
into and replaced by subregions. Subregions are treated just
like normal regions in the event based simulation process.
This simulator has been used to verify the timing and
functionality of several large VLSI chips. Performance is 3
to 7 times faster than a static regionization method.

1. Introduction
The increasing density and level of integration of VLSI

systems has necessitated a spectrum of simulation tools to
verify large designs. Circuit simulation programs (such as
SPICE) have provided the VLSI designer with an accurate,
detailed waveform of the analog behavior of small (< 1000
transistors) circuits, but the simulation is very
computationally intensive and is normally reserved for
critical subcircuits. Logic and switch level simulators have
been used to show the function and approximate timing
characteristics of very large digital systems, but they
cannot always provide sufficiently accurate timing
information. Growing out of the need for accurate
simulation with timing waveforms of very large circuits
(>100,000 transistors at whole chip level), timing
simulators present an interesting tradeoff between accuracy
and speed. By using specific domain knowledge, i.e.,
making assumptions about the nature of digital MOS
devices that lead to simple device models and allow for
effective decoupling of circuit equations, timing simulators
provide accurate waveform and timing information of MOS
circuits at speed up to two orders of magnitude greater than
circuit simulators.

Early timing simulators [1-3] used the unidirectional
property of the MOS gate terminal to split the circuit up
into subcircuits which were evaluated independently once
each time-step. Subcircuit evaluation consisted of
linearizing device characteristics around the operating point
and integrating circuit equations over the time-step using
simple forward or backward Euler approximations.

Relaxation based simulators [4-6] have used iteration to
improve accuracy and allow simulation of a broader class of
networks (e.g., floating capacitors). They also use a
locally variable time-step to take advantage of the multirate
behavior of MOS circuits and thereby improve efficiency.

The latency and multirate behavior of MOS circuits
can be further exploited by developing algorithms which
are incremental in node voltage, rather than time. A
specified change in node voltage can be viewed as a "circuit
event" and scheduled using an explicit event queue, in
much the same way as logic events are scheduled in a logic
simulator. Circuit evaluation consists of calculating the
time at which these events should occur. Such an approach
has been adopted by many simulators [7, 8, 10]. A very
successful example is Emu2 [10], an MOS timing
simulator offered by AT&T SYSCAD tools. Emu2
provides a more accurate simulation, yet runs 2-5 times
faster than the older time-step based Emu[3] (200-300
times faster than SPICE). Even for large VLSI circuits,
Emu2 offers full chip simulation capability and has been
used successfully in verifying the performance of a number
of VLSI circuits. Note that since Emu2 is widely used in
the custom design community inside AT&T, its capability,
accuracy, and limitations are well understood by the
designers through repeated usage.

While Emu2 is much faster than SPICE, it is still
very slow for simulating large designs. Experiences
indicate that simulating circuits with a large random access
memory (RAM) is particularly slow, even though the level
of circuit activities for the RAM is low. Since large
RAMs are very common in large designs, simulation
efficiency can be further improved if we can speedup RAM
simulation.

This paper describes EMU2D , a simulator with
selective dynamic regionization based on Emu2. While
EMU2D uses the same circuit modeling, solution method,
and event based technique as Emu2, regions with large
numbers of nodes and with certain structural characteristics
(e.g., those found in RAMs) are partitioned dynamically
into subregions such that we can further take advantage of
the multirate behavior of MOS circuits as each subregion
can be evaluated according to its own rate. Further, the
solution method computations for big regions are more
efficient as there are now few nodes participating in the
computation. As a result, EMU2D provides the same
accuracy as Emu2 but runs 3-7 times faster than Emu2.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0195 $3.50

In Section 2 we describe some background on timing
simulation by briefly explaining algorithms and models
used in Emu2. We also explain why dynamic
regionization is worth exploring. This is followed by
detailed descriptions of dynamic region selection criteria and
dynamic region manipulations in Section 3. Results
which demonstrate the speedups over Emu2 are presented in
Section 4.

2. Timing Simulation Basics and Motivation
2.1 Basics of Emu2

Emu2 models an MOS circuit as a collection of
capacitive nodes interconnected by linear resistors and
capacitors and non-linear voltage controlled current sources
(MOS transistors). Prior to simulation, nodes are
(statically) grouped into r e g i o n s of strong
coupling/connected subcircuits connected by a charge
transfer path (resistor, capacitor, transistor channel). An
example of region partitioning is shown in Figure 1.

1

2

3

4

5

.

Figure 1. Region subdivision

Emu2 employs a piecewise linear numerical technique for
circuit evaluation. Based on previous node voltages, the
transistor currents and conductances are computed and
assumed to stay constant for a small time step. Transistor
evaluation is based on a simplified version of the CSIM
model [9], using a mixture of arithmetic calculation and
table look-up. Within regions, nodes are tightly coupled.
Accurate simulation therefore requires that we solve these
nodes simultaneously using newly calculated transistor
currents and conductances. A combination of Backward
Euler integration and a Gauss-Seidel linear relaxation
iterating till convergence method is used to advance the
state of each region over a small time interval (See [10] for
details). A Forward Euler estimate provides an initial
guess for the relaxation process. Between regions, all
interactions occur via MOS gate terminals. The node
coupling is therefore considerably weaker and always
unidirectional. This allows us to evaluate regions
independently using most recently calculated values for

nodes in other regions. Regions interact whenever the
voltage of a node in a region changes by more than a preset
threshold. This is termed an event. Events are predicted,
stored and scheduled on an event queue, using similar
techniques to those employed in logic simulators. The
interactions between regions are thus voltage step based,
rather than time-step based and naturally accommodate
varying circuit activity.
The Emu2 simulation algorithm can be summarized by the
pseudo code in Figure 2.

loop forever until done {
 for (every event <region r, and time t> at current time t) {
 estimate initial solution using forward Euler integration;
 apply iterative relaxation to find a solution for all node
 voltages in the region;
 if (voltage change of node N in r > threshold)
 then evaluate N's fan-out regions recursively;
 }
 for (every region R evaluated above) {
 compute current and conductance for every mosfet in R;
 predict next event time for R using forward Euler
 integration and post the event;
 }
 advance to the next smallest simulation time of all
 outstanding events;
}

Figure 2. Simplified Pseudo Code for Emu2 Timing
Simulation Algorithm

2.2 Motivation
While Emu2 is much faster than SPICE, it is still

very slow for simulating large designs. The problem is
more severe/noticeable when designers do whole chip pre-
fabrication simulation, after-fabrication debugging, or
regression tests. Early study pointed out that there were
some very large regions in most large circuits and that a
large amount of time (70% - 90%) was spent in simulating
these relatively few large regions (less than 1% to 5%.)
Improving the efficiency of evaluating large regions can
thus potentially lead to significant speedup.

Further analysis indicates that large regions are usually
found in highly parallel multipliers, bus structures,
registers, ROMs, RAMs, and switch structures (e.g.,
FPGAs). With the exception of the multiplier, these
structures exhibit a behavior in which very few charge
transfer paths (channels) are conducting at any given time.
Rather than behaving as a single large region, the structure
behaves as a number of small disconnected regions. The
number and boundaries of these smaller regions, however,
changes with the electrical state of the circuit. Many
static connections (by mosfet channels) are effectively "no-
connection" dynamically because the mosfets are cutoff and
non-conducting. This observation implies that in theory
more efficient timing simulation is possible if we can

dynamically define smaller regions and evaluate only those
that are active rather than the original large static region.

The concept of dynamically partitioning the circuit in
timing simulation is not new. In [7], an explicit solution
method is used to solve the linearized nodal equations. A
separate dynamic node connectivity list is kept for each
node. Node connections with negligible electrical
influences to a node are dropped from the node's dynamic
connectivity list. Since equations are solved for each
node, the overhead for dynamic partitioning is in checking
and maintaining the dynamic connectivity list. This
dynamic connectivity change is difficult to use in a region
based simulator as the solution method solves node
voltages for each region and the regions may fragment.
Neither region recognition nor maintaining fragmented
regions is easy in general. A complete dynamic
regionization requires structural analysis after each region
evaluation and its cost can be prohibitively high. Success
of this concept clearly depends on efficient programming
and data structures. In the next section, we will show
techniques and implementations that make dynamic
regionization feasible.

3. Dynamic Regionization
3.1 Techniques

A common feature of large regions that have sparse
dynamic connections is the high static connectivity to a
small number of nodes inside a region. This can be
illustrated by the memory structure in Figure 3.

Vdd

Vss
word
enable 0

word
enable 0 Vdd

Vss
word
enable 1

word
enable 1

Vdd

Vss
word
enable n

word
enable n

bit bit'
a cell
region

the bus
region

Figure 3. A Typical 6-Transistor RAM Region

Memory cells and the bit and bit' busses have been grouped
into one large region by the word enable mosfet transistors.
bit and bit' busses are often grouped together by mosfets in
the write circuitry (not shown). In normal operation, only
two of these word enable mosfets are conducting regardless
of how many memory cells there are in the region. This

means that the original region effectively becomes many
isolated cell regions, (one per memory cell,) and a bus
region connected to one or two memory cells. Memory
cell regions and the bus region operate at a different pace.
Memory cell regions are typically more stable and require
infrequent evaluation until their respective word enable
mosfet is turned on. The current solution method (static
regionization), however, computes all word mosfet states
and reevaluates all nodes including those in the inactive
memory cells. It forces memory cells to be evaluated at a
rate different from their own natural activity rate. Even if
a cutoff check is put in place before the new current and
conductance of a mosfet are computed, just traversing the
data structure of all the word enable mosfets is very costly.

To effectively and efficiently compute dynamic
regions, we developed a technique, known as incremental
selective dynamic regionization. Incremental means we
only examine the currently evaluated regions and test them
to determine if those regions should be split or merged
with others. While this cannot guarantee 100% dynamic
regionization, it avoids the otherwise prohibitively high
cost of examining all regions. Selective means that only
those large regions that we know a priori to have the sparse
dynamic connectivity are selected for applying this
incremental technique. A static recognizer is designed to
screen and select large regions displaying certain known
characteristics. Since these circuits are mostly known
structures, recognition can be achieved with high accuracy.
For new/exotic structures, new recognition procedures can
be added. An important requirement for our recognizer was
that if the recognizer makes a mistake by recognizing some
unknown structures as bus type regions, no simulation
accuracy should be compromised (whereas simulation
efficiency being adversely affected is acceptable.)

3.2 Implementation
In this subsection, details of the algorithms used to

achieve selective and incremental dynamic regionization are
described. For this paper, we concentrate on discussing
recognition of memory regions.

Based on the goal of selective and incremental dynamic
regionization, we devised the following approach. Each
big region displaying memory characteristics is divided into
subregions called bus region (only one) and cell regions.
Dynamic data structures are built for bus region node
structures and big node (bus node) mosfet structures. All
cell regions are connected to the bus region through some
mosfets (connectors) and can be easily attached to or
detached from the bus region by the attach and detach
routines described later in this section. Connectors are
considered as part of the cell regions for memory
recognition applications. Every time an enable word
mosfet is evaluated, we can compute and check if the
mosfet is conducting and if the cell region should
be/remain attached or detached. Once detached, cell regions
can be simulated like other small regions. If attached, a
cell region structure is merged with that of its bus region

and disappears from the simulation list. Simulation
proceeds as if the bus region and the cell region were one.

When a cell region is to be merged with its bus
region, special care is needed to insure that both share a
common simulation time stamp. The reason is as
follows. Decoupled regions each schedule at their own
pace. Two regions (before merging) can have node
voltages, mosfet currents, and conductances calculated with
respect to different time stamps. Such values represent the
circuit status at different times and thus cannot be used
together without causing time warp errors. Scheduling the
bus region to simulate up to the current simulation time of
the cell region solves this problem.

We now outline each of the major procedures to
achieve selective and incremental dynamic regionization.

 I. Recognition:

find all regions larger than a pre-defined threshold;
 find nodes with large connectivity insides these
 regions, and mark them as big nodes.

for every large region R found above{
 for every MOS device m connected to a big node,
 if (removing m generates an isolated region
 bounded only by MOS gate terminals, power
 and/or ground wires)
 then the isolated region is a cell region;
 if (the number of cell regions > threshold)
 then this is a memory region; setup dynamic data
 structures to keep track of cell regions
}

More intelligence can be built into the recognizer. Since it
is only evoked once, efficiency and complexity is not an
issue. We can have a collection of recognition routines and
each performs a more detailed pattern matching for a
specific big region type.

 II. Attach(region r):

set cell region r's flag attached to true;
add nodes and mosfets in r back to its bus region;

 III. Detach(region r):

set cell region r's flag attached to false;
delete nodes and mosfets in r from the bus region;

A routine to_be_attached? is needed to check if a cell region
should be/remain attached to the bus region.
Conceptually, we need to check if the connector mosfets of
a cell region are on or off (by checking if Vgs (= Vg-Vs) >
Vth). If any of them is on, then the cell region should
be/remain attached to the bus region. Otherwise, the cell
region should be/remain detached from the bus region.
However, this implies that whenever the source terminal of
a connector changes voltage (Vs), we should reevaluate the
connector. Unfortunately, in a memory structure there
may be many connector sources connected to a bus node.

This means that every time the bus node (bit line) changes,
we have to reevaluate hundreds or thousands of connectors.
This is a very costly operation and defeats the merit of
dynamic regionization. To solve this problem, we use the
more conservative check Vg>Vth. A limitation with this
checking method is that there cannot be any floating
capacitors in the big region. The reason is that floating
capacitors connected to the bus may cause the bus to go
below Vss at transient and thus invalidate the checking.

 IV. to_be_attached(region r):

if gate voltage Vg of every connector in the cell
 region r is smaller than Vth
then return false;
else return true;

We can now describe the algorithm of EMU2D in Figure 4
in simplified pseudo code after region recognition.

loop until done {
 for (every event <region r, and time t> at current time t) {
 if (r is not a cell region) {
 estimate initial solution;
 apply iterative relaxation to find a solution;
 } else { /* r is a cell region*/ let r's bus region be rb;
 if (r's attached flag is true)
 evaluate rb instead;
 else {
 estimate initial solution;
 apply iterative relaxation to find a solution;
 if (to_be_attached?(r) is true) /*resynchronize*/
 evaluate rb;
 }
 }
 if (voltage change of node N in r > threshold)
 then evaluate N's fan-out regions recursively;
 }
 for every region R evaluated above{
 if (R is a detached cell region && to_be_attached?(R))
 attach R to its bus region;
 else if (R is an attached cell && ¬to_be_attached?(R))
 detach R from its bus region;
 compute current and conductance for every mosfet in R;
 predict next event time for R and post an event;
 }
 advance to the next smallest simulation time ;
}

Figure 4. Simplified Pseudo Code for EMU2D

Note that there is no change of accuracy with dynamic
regionization as the solution method and the effective
simulation granularity are not changed.

4. Experiments and Results
EMU2D has been implemented in C and C++ under

UNIX and is widely used. Data from some experiments,
most of them real designs, are presented in Tables 1-3.

Several examples are fairly large, as shown in Table 1.
Emu2 could simulate the entire decoder (the largest in
Table 1) for over 2100 vectors in about two weeks.
(While two weeks is a long time, Emu2 is at least capable
of delivering timing check before fabrication.) EMU2D
greatly extends that capability as it reduces the simulation
time to about 3 days and makes such simulation more
affordable. It also shows that our recognizer geared toward
recognizing memory structures has successfully avoided
selecting large regions in mult16, which is a parallel
multiplier. Table 2 shows the times for Emu2 and
EMU2D respectively and the speedup. For mult16 circuit,
since there are no dynamic regions at all, we actually see a
reduction of speed by about 6%, indicating that the amount
of overhead is very modest. For all the other cases, we see
speedups of 3 to 7, depending on the amounts of memory
in the circuits. Last column of Table 3 shows that the
times spent on big regions have reduced by 80-90% in
most cases, which indicates that this implementation is
close to optimal (limits) in what we can achieve by
selective dynamic regionization. Also in Table 3, the
event ratios are the ratios of dynamic region events counts
vs normal region events counts. The time ratios are the
ratios of the estimated time spent for processing dynamic
region events vs. the estimated time for processing normal
region events. If we divide the time ratio by the event
ratio, we can observe that the results stay within a tight
range with the exception of example acm. Example acm
is a content-addressable memory. While it is a memory
dominant circuit and has a lot of cell regions, nearly one
third of them are always connected to the bus at any given
time because of its special functionality. The highly
concurrent nature of this circuit makes its speedup modest.

5. Conclusions
A dynamic regionization method that uses knowledge about
common circuit structures and behaviors to selectively and
incrementally apply dynamic regionization is described and
proved effective and efficient in this paper. While the
simulation accuracy remains the same as that of a static
regionization method, speedups between 3 to 7 have been
observed. The techniques used in the prototype has
become a standard in our local timing simulation tool.

Circuit Node Devices Regions Cell
Regions

Bus
Regions

block 12874 19198 4672 5912 128
fsmem 37958 166223 4174 29376 192
vle 41243 124063 7119 12576 292
decoder 368165 956172 64671 197640 1205
mult16 2576 7109 415 0 0
acm 14539 41781 1172 12738 33

Table 1 Characteristics of Examples Used in the
Experiments

Circuit # of
vectors

period
(ns)

EMU2
(sec)

EMU2D
(sec)

Speedup

block 130 4.0 1491 443 3.36
fsmem 153 20.0 31631 4512 7.01
vle 5630 16.0 48.7hrs 11.2hrs 4.35
decoder 2109 22.2 336.5hrs 74.5hrs 4.51
mult16 9 75.0 165 176 0.94
acm 12 40.0 2712 922 2.94

Table 2. Performance Comparisons of the Examples

Circuit Normal
Region

Bus
Region

Cell
Region

Event
Ratio

Time
Ratio

Reduc-
tion

block 6738 163 31 0.029 0.12 92.4%
fsmem 19026 5920 5062 0.58 1.67 87.3%
vle 399542 79735 14751 0.24 0.79 84.5%
acm 513 147 411 1.09 18.3 60.0%

Table 3. Event Ratios and Time Ratios of Dynamic
Regions vs. Normal Regions

The first three columns are event counts in thousands.

References
[1] Chawla, B., Gummel, H. and Kozak, P. "MOTIS - an
MOS timing simulator", IEEE Trans. Circuits and
Systems, Vol 22, pp. 901-909, 1975.

[2] Fan, S. et al. "MOTIS-C: A New Circuit Simulator for
MOS LSI.", ISCAS, pp. 700-703, 1977.

[3] Ackland, B. and Weste, N. "Functional Verification in
an Interactive Symbolic IC Design Environment", 2nd.
Caltech Conf. on VLSI, Jan. 1981, pp. 285-298.

[4] Saleh, R., Kleckner, J. and Newton, R. "Iterated
Timing Analysis in Splice1", ICCAD'83 Digest, pp. 139-
140, Sept. 1983.

[5] Chen, C. and Subramaniam, P. "The Second
Generation MOTIS Timing Simulator -- An Efficient and
Accurate Approach for General MOS Circuits", ISCAS,,
pp. 538-542, 1984.

[6] Lelarasmee, E. and Sangiovanni-Vincentelli, A.
"RELAX: A New Circuit Simulator for Large Scale Mos
Integrated Circuits", Proc. 19th DAC, pp. 682-690, 1982.

[7] Vidigal, L., Nassif, S. and Director, S., "CINNAMON:
Coupled Integration and Nodal Analysis of MOS
Networks", Proc. 23rd DAC, pp. 179-185, 1986.

[8] Odyrna, P. and Nassif, S. "The ADEPT Timing
Simulator Algorithm", VLSI SYSTEMS DESIGN, pp.
24-34, March 1986.

Bauer R. et al., "XPSim: A MOS VLSI Simulator",
ICCAD'88, pp. 66-69, Aug. 1988.

[9] Carelli, J. "An Improved Transistor Model for EMU
and an Associated Parameter Extraction Tool: EMUFIT",
52156-851213-01TM.

[10] Ackland. B. and Clark, R. "Event-EMU: An Event
Driven Timing Simulator for MOS VLSI Circuits",
ICCAD'89 Proceedings, pp. 80-83, Nov. 1989.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

