
Optimal Latch Mapping and Retiming within a Tree

Joel Grodstein, Eric Lehman, Heather Harkness, Herve Touati, and Bill Grundmann

Digital Equipment Corporation, Hudson, MA

Abstract. We propose a technology mapping
algorithm that takes existing structural tech-
nology-mapping algorithms based on dynam-
ic programming [1,3,4] and extends them to
retime pipelined circuits. If the circuit to be
mapped has a tree structure, our algorithm
generates an optimal solution compatible
with that structure. The algorithm takes into
account gate delays and capacitive loads as
latches are moved across the logic. It also
supports latches with embedded logic: i.e.,
cells that combine a D latch with a combin-
ational gate at little extra cost in latch delay.

simple transparent latch and a gate (denoted
f(x1,x2,...,xn)) for only little more delay and
area than the latch itself. These cell libraries
are often incomplete; e.g., a typical cell lib-
rary based on tristate latches may embed only
D, AND2, AND3, and OR2 gates in latches,
disallowing larger gates and inverting gates.
For such asymmetric libraries, a simple
change of latch polarity (i.e., retiming across
an inverter) may enable or disable the embed-
ding of a gate within the latch. Such effects
are not modeled by previous work.

Furthermore, the application of existing re-
timing algorithms [5,6,7] after technology
mapping is suboptimal. The smallest possible
latch movement is a movement across a
single mapped gate. But this ignores the pos-
sibility of breaking a large gate into smaller
pieces and placing the latch between them to
meet a delay constraint.

1. Introduction. The problem of retiming for
minimal area under delay constraints using
transparent latches and reasonably accurate
delay models is still unsolved. Leiserson and
Saxe[5] developed an optimal solution for
edge-triggered D flip-flops, under the as-
sumption that capacitive loads and gate
delays are not modified when latches are
moved. Ishii et. al. [6] gave an optimal algo-
rithm that also handles transparent D latches.
Locklear et. al. [7] extended this solution to
take clock skew into account.

As a consequence, existing global retiming
algorithms cannot fine-tune latch placements.
By contrast, our algorithm performs retiming
during technology mapping, which provides
more control on latch placement and leads to
a more efficient use of latch-embedded logic.

All the above algorithms are globally
optimal; but they achieve this by
compromising their local accuracy. None
model load-dependent delays; moving latches
changes node loads and thus gate delays.
Furthermore, all are restricted to the use of D
latches. Many cell libraries contain not only
D latches but also latches with embedded
logic. Such latches, whose function is of the
form Q=latch(clk,f(x1,x2,..,xn)) combine a

Tree mapping [1,3,4] provides technology-
dependent local optimization in linear-time.
For a given cell library and initial tree de-
composition of a circuit, tree mapping is op-
timal. However, standard tree mapping does
not handle latches; they are considered as tree
roots only [9].

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0242 $3.50

We extend tree mapping to networks that are
trees, but can contain latches at interior
points. We allow these latches to be moved
anywhere within a tree, but not across trees.
We preserve the tree mapping algorithm's op-
timality properties and its linear-time com-
plexity, and handle both edge-triggered and
level-sensitive latches. This has several gains:

to the appropriate global clock. The fol-
lowing algorithm provides retiming:

set all solutions to high-cost;
for each node N in the tree, inputs to outputs
{

if N is a leaf
 N.sol[weight(N)] = 0; continue;
for each match M from the comb. library

• Critical paths are reduced not only by
moving latches but also by embedding
logic within latches.

for w=0..MAX_WEIGHT
N.sol[w] = MIN (itself,

calculate_match(M,w));
• Areas and loads are correctly modeled as

latches move within a tree.
for each match M from the latch library

for w=0..MAX_WEIGHT
• We retime at the level of a tree-matching

primitive (a 2-input NAND gate or an in-
verter), which is finer than the gate level.

N.sol[w] = MIN(itself,
 calculate_match(M,w+1));

}
calculate_match (match, weight)

The rest of the paper is organized as follows.
In Section 2 we extend tree mapping to allow
latches and retiming within trees. In Section
3, we deal with level-sensitive and
conditional latches. We give results and
conclusions in Section 4.

{
area = area of the gate from match;
for each input pin IP of match

area += area of IP.sol[weight];
return (area);

}

2. Latch mapping and retiming algorithm.
For ease of illustration, we describe our re-
timing algorithm in terms of a min-area tree
mapper [4]. It can easily be adapted to min-
imize delay [1] or area under delay con-
straints [2].

We start by tabulating, at each leaf node n,
the number of latches weight(n) between n
and the tree root. Assume for now that we
use edge-triggered flip-flops. Then any re-
timing which preserves weight(n) for each
leaf n is legal. We next extend our data struc-
ture. Instead of having one solution per node,
we store a solution for each retiming weight
per node. A node implementation has a re-
timing weight of w if, under this implemen-
tation, there must be exactly w latches bet-
ween the output of the node and the root of
the tree. At any node, only one of these solu-
tions will be used in the final mapping. For
each leaf n, we initialize n.sol[weight(n)]
with zero area. We then perform tree map-
ping. For each internal tree node I, we com-
pute the best solution for each retiming
weight. For a given weight w we can:

The algorithm starts with a decomposition of
the subject tree into 2-input NANDs and in-
verters [3,4]. Any node in the tree can be
marked as a latching point. We have a stan-
dard target library of combinational gates,
predecomposed into two-input NAND gates
and inverters. We have an additional library
of latches, of the form Q=latch(φφ,
F(x1,x2,...xn)). This library is pre-decom-
posed based on F, exactly as if there were no
latching involved. We then implement basic
latch mapping simply: if we wish to place a
latch on a node, we merely restrict ourselves
to using matches from the latch library in-
stead of the gate library, and connect its clock

1. implement I with a gate; at each gate
input, use input.sol[w] as the input cost.

Cells with reconvergent embedded logic
(e.g., multiplexors or JK flops) can only be
used by a tree mapper at tree boundaries. Our
algorithm retains this limitation. However, if
a tree has a mux at its leaves, we can retime a
downstream latch back toward the leaves to
use a mux-embedded latch, no matter where
the latching point originally was.

2. implement I with a latch; use
input.sol[w+1] as the input pin cost at
each latch input.

When we reach the root of the tree, the
optimal implementation is in root.sol[0].

Consider the NAND-inverter tree in Figure 1,
with a single phase-1 latch at G. There is one
latch between each of I1,I2 and the tree root
D. Thus any solution for E.sol[0] needs to
contain a latch on each path between I1 or I2
and E. For example, E.sol[0] could consist of
a phase-1 AND2 latch driven by I1.sol[1] and
I2.sol[1] (Figure 2). Any tree implementation
that uses E.sol[0] will not contain any latches
downstream of E.

4. Results. We have incorporated these
algorithms into a new technology mapper,
SynFul, built over SIS [8]. We map for
minimal area under a delay constraint using
an algorithm based on [1,2]. Our library has
transparent non-inverting latches only, with
D latches, embedded AND2, AND3, and
OR2 latches. We have taken several large
examples and mapped them first with no re-
timing (column marked original). Then, we
have remapped them allowing retiming only
across a single inverter. Finally, we have
allowed arbitrary retimings. A * indicates
that delay constraints were not met. The net
results are geometric means of the improve-
ments relative to the original unretimed map-
ping. Execution times were insignificant;
tree mapping is a linear-time algorithm.

At node F, we could store in F.sol[0] an
implementation made of E.sol[0] followed by
an inverter (Figure 3).

At node G, we could implement G.sol[0]
with a NOR2 gate and drive the gate with
weight 0 inputs (Figure 4). By using weight 0
inputs on F and J, we assume that latches are
placed before F and J. Alternatively, we
could implement G with a latch, driven by
weight-1 implementations (Figure 5). In this
example the algorithm would examine both
solutions and select the one with minimal
area.

#
gate

#
lat

orig
area

INV
area

ret.
area

ret.
#lat

e_lu0 83 26 33* 322 29 20

c_baf 77 22 25* 23 21 19

ipe1c 121 67 239 213 196 653. Complex latches. Edge-triggered latches
are the simplest case. The algorithm can also
handle level-sensitive and conditional latches.
We must now preserve not only the number
of latches between the inputs and the root,
but also the correct sequence; this avoids
arbitrary swappings of latch positions. In this
case, the simple array of solutions is replaced
by an array where each entry represents a
prefix of the correct sequence of latches.
Furthermore, simple flow-through latch
calculations must be performed at each latch.

ipe2c 102 65 197 180 141 43

aadc1 83 34 124 118 121 38

e_shf 25 6 344 298 303 7

immc 64 24 122 113 114 26

NET 1.0 1.0 .91 .84 .92

Allowing retiming across an inverter im-
proves area in every example (an average of
9%) while also eliminating delay-constraint

violations. Allowing arbitrary retimings re-
duces area an additional 7%. Furthermore, by
pushing latches forward when possible, it
reduces latch count by 8%.

Note that SynFul performs area recovery
during mapping; i.e., the added slack intro-
duced by latch movement is heuristically
used to reclaim combinational area. The non-
optimality of this heuristic explains the few
cases where arbitrary retiming yields
increased area.

In conclusion, we have improved tree
mapping in several ways. By allowing
latching points in the interior of trees, we
allow trees to span several phases and thus to
be larger. Furthermore, we allow the
technology mapper to perform retiming
within a tree. This retiming is optimal for a
tree, for a given initial decomposition of a
network and ignoring reconvergence at tree
leaf nodes. Finally, for many libraries, we
obtain significant advantage using latches
with a logic function embedded within them.

References:

1. Touati, H., "Performance-Oriented Tech. Map-
ping," PhD Thesis, UCB/ERL M90/109, U.C.
Berkeley 1990.

2. K.Chaudhary et. al., "A Near-Optimal Algorithm
for Technology Mapping Minimizing Area under
Delay Constraints," DAC-92.

3. E. Detjens et. al., "Technology Mapping in MIS,"
1987 ICCAD, pp. 116-119.

4. R. Rudell, "Logic Synthesis for VLSI Design,"
Ph.D. thesis, UCB/ERL M89/49, U.C. Berkeley,
1989.

5. Leiserson and Saxe, "Retiming Synchronous
Circuitry," Algorithmica, 6(1) 1991.

6. Ishii,et al, "Optimizing Two-Phase, Level-clocked
Circuitry," in Adv. Research in VLSI: Proc 1992
Brown/MIT Conference.

7. Locklear,B, et al, "The Practical Application of
Retiming to High-Perf. Systems," ICCAD 1993.

8. Sentovich et al "SIS: A System for Sequential
Circuit Synthesis," ICCD-92, pp.328.

9. C. Moon et al, "Technology Mapping for Sequential
Logic Synthesis," Proc. Intl. Workshop on Logic
Synthesis, North Carolina, 1989.

For GRODSTEIN. File ’one.ps’. At Fri Aug 5 08:43:54 1994

G.sol[0] = NOR2 (F.sol[0], J.sol[0])

(I1.sol[1], I2.sol[1])

G.sol[0] = LATCH (I1.sol[0],

I1

I2

E.sol[0] = LATCH

I2.sol[0], H.sol[0])

F.sol[0] = INV (E.sol[0])

maps into

maps into

Figure 4

Figure 5

phi-1

phi-1

phi-1

I3_L

I2

I1

I2
I2

I1
phi-1

I1
phi-1

maps into
maps into

I1

I2 I2

I1

Figure 2 Figure 3

I5_L

I4_L phi-1

I3_L

I2

I1

Figure 1

H

G

GA

H

F
G

J

A G
F

H

E
E

F

E FE

CB

G
D

A

H

FE

J

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

