
Process-Variation-Tolerant Clock Skew Minimization

Shen Lin and C. K. Wong
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

Abstract
In this paper, we propose a novel hierarchical multiple-merge
zero skew clock routing algorithm. The routing results pro-
duced by our approach will have zero skew in the nominal
case and minimal skew increase in the presence of worst
process variations. In order to construct such a clock rout-
ing, we formulate the linear placement with maximum spread
problem and provide an O(nminfn; Pg logn logP) algo-
rithm for optimally solving this problem, where n is the num-
ber of cells to be placed and P is the maximum spread.
Experimental results show that our algorithm can indeed
reduce the skew in various manufacturing variations effec-
tively.

1 Introduction.
Skew is defined as the maximum difference among the de-
lays from the clock source to clock pins (destinations). In
synchronous circuit design, skew sets the lower bound of
clock cycle time; therefore, minimizing clock skew is a very
important problem in the design of high performance VLSI
systems. The zero skew clock routing problem is to con-
struct a routing to connect all clock pins with the same delay
from the clock source to each clock pin. Besides the clock
pin locations, the capacitive loading of each clock pin, and
the per unit wire length resistance (R) and capacitance (C)
parameters are also given as inputs for estimating delays.

Many heuristics for clock routing have been proposed in
the past. H-tree structures [7] [6] are the most widely used.
A generalization of an H-tree that hierarchically connects the
median points is proposed in [8]. These H-tree approaches
will have difficulty handling the design with clock pins un-
evenly distributed. To cope with this difficulty, a bottom-up
pairwise merge approach [5] and a top-down max-min ap-
proach [4] have been proposed. However, these heuristics
focus only on wire length balancing, rather than the real
objective of balancing clock delay.

Ren-Song Tsay first proposed a bottom-up binary-merge
zero skew routing algorithm [1, 2]. His approach recursively
merges two zero skew subtrees to form a bigger zero skew
subtree until the resulting zero skew subtree contains all clock
pins as its leaves. The root of this tree also determines the
location of the clock source. Fig. 1 shows an example. A,
B, C are three clock pins to be routed. At the first step, A and
B are merged. Based on the Elmore RC delay model, we can
determine a tapping point D giving the same delay from D to

A B C

D

E
Figure 1: Binary Merge.

A and from D to B. At the next step, the subtree containing
the single pin C and the subtree A-D-B are merged as shown
in the figure. The tapping point E giving the same delay
from E to C and from E to D then A (or B) is the location
of the clock source. Later, the work of [3] was proposed to
improve the merging sequence in order to minimize the total
wire length.

However, there are two drawbacks in this type of ap-
proach:

1. It is vulnerable to process variation. The routing result
produced by [1] is guided by estimated delays, which
depend on the R C parameters and the capacitive load-
ing of each clock pin. During the chip fabrication, any
change of these parameters will cause severe skew in-
crease. Take Fig. 1 as an example. Assume the actual R
is larger than expected. Since the wire length from E to
C is longer than that from E to A, the increase in delay
at pin C will be larger, resulting in nonzero skew. How-
ever, this kind of process variation frequently occurs
because those parameters are based solely on design-
ers’ prediction.

2. It lacks in design flexibility. If designers want to modify
the location of any clock pin, the entire clock routing
needs to be redone to avoid skew. The effect of modi-
fication is not local and will change the delays to most
of the clock pins. However, modifications commonly
occur because designers cannot know the exact clock
pin locations until the very last stage of physical design
process, yet clock routing cannot wait until then.

As digital VLSI technology and design techniques have
advanced in recent years, the system clock cycle has been
reduced to the range of a couple of nano-seconds. A
process-variation clock skew of a few hundred pico-seconds
will make these state-of-the-art designs fail. The process-
variation tolerant clock design, therefore, becomes more and
more important. Empirically in our advanced system de-
sign, the process-variation skew can be as large as 10% of
the clock delay. In order to minimize the worst case skew,

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0284 $3.50

clock pin

center chunk

A

A1

B

B1

C

C1

D

D1

E

E1

a b

Figure 2: Center Tree.

DEC’s Alpha processor would rather dedicate almost a whole
metal plane for the clock network and one-fifth of the chip
area for the clock driver [10]. However, this approach makes
the Alpha chip consume too much power (about one half the
power is actually consumed by the clock network).

The zero skew algorithm introduced in this paper is, there-
fore, aiming at overcoming the two drawbacks mentioned
above, while avoiding overkilling the problem. We propose
an hierarchical two-stage multiple-merge approach, which
will be discussed in the next section. Our algorithm may
use more wiring resources than the binary merge approach
mentioned above but the increase is insignificant, unlike the
Alpha design.

2 Our Approach.
Unlike the binary merge of [1], we merge multiple pins (e.g.
15 or 16 pins) at one time to form a zero skew subrouting
(which is not a tree and will be discussed later). The routing
process is hierarchical. At the bottom level, we identify
the group of clock pins to be merged together and merge
them using our two-stage multiple merge algorithm. For
example, the clock pins on a macro boundary or a set of
clock pins which are close to each other can be merged
together. Recursively, at a higher level of the hierarchy, we
merge those closer roots of the subroutings constructed one
level below until the resulting subrouting covers all the clock
pins.

Each multiple merge is composed of two stages: at the
first stage, each clock pin is connected to a center chunk
separately with the same delay as shown in Fig. 2, and at
the second stage, N points of the chunk are routed using a
balanced length binary tree (to be defined in section 4), where
N is a power of two. Fig. 3 shows a balanced length binary
tree with N being four. Fig. 4 shows the result combining
these two stages. Separate layers are used forx and y routing.
We call the first stage routing the center tree routing.

The center chunk is a fat wire. The determination of
its length, width, and location will be discussed in the next
section and so is that of the number N . We assume this
center chunk has zero skew everywhere and will discuss how
to accomplish this later. Therefore, if we let the interconnect
from each clock pin to the center chunk have the same RC
delay based on the Elmore model, the clock signal will arrive
at each clock pin at the same time after the signal goes to the
center chunk. Fig. 2 shows five clock pins A, B, C, D and

L

F G H I

J

K
center chunk

driving point

root
Figure 3: Balanced Length Binary Tree.

A

B

C

D

E

L

Figure 4: Multiple Merge.

E, connected to the center chunk a-b. The delays of A-A1,
B-B1, C-C1, D-D1, and E-E1 are the same. A1, B1, C1, D1,
and E1 are called the branching points of the center chunk
for each clock pin. The routing of this center tree will be
introduced in the next section. This first stage routing shields
the effect of any local modification from affecting the rest
of the zero skew routing. If later, designers want to move
the clock pin A to the right, they can just shift A-A1 to the
right. Or, later, if the capacitive loading of B is different from
expected, only the delay of B-B1 will be different but not the
rest. Furthermore, since the connection from each pin to the
center is short, only minimal skew will be introduced even
when the R C parameters vary.

At the second stage routing, we let the clock signal arrive
at N different points (the driving points) of the center chunk
simultaneously to ensure that the center chunk has zero skew
everywhere. As shown in Fig. 3, F, G, H and I are the
four driving points of the center chunk. Since we route them
using a balanced length binary tree, the wire length of F-J
is equal to that of G-J, H-K, or, I-K; and the wire length of
J-L is equal to that of K-L. Therefore, the clock signal will
arrive at F, G, H and I at the same time. Moreover, the clock
signal will arrive at F, G, H and I at the same time even
when the R C parameters vary, because the same amount of
delay change will be introduced to F-J, G-J, H-K, and I-K;
and the same amount of delay change will be introduced to
J-L and K-L. Hence, our approach is much less vulnerable to
process variation. The determination of the number N and
the locations of those N driving points will be given in the
next section.

3 Center Tree Construction.
In this section, the electrical backgrounds making our zero-
skew-chunk assumption valid and the center tree routing

algorithm will be presented. It is the wire resistance that
causes skew on a wire segment. If the wire is a perfect
conductor, voltage will rise at the same speed everywhere on
the wire. Since the chunk is a fat metal wire, the resistance
is small. The width of the wire is determined to give the
RC delay between adjacent two driving points less than a
predetermined threshold value. Secondly, the clock signal
comes to this fat wire fromN different places simultaneously,
hence shortening the signal propagation latency. Besides
these, there are another two supporting factors. They are
(1) the locations of the N driving points are determined so
that each driving point needs to drive the same amount of
capacitive load; (2) the branching points (e.g. A1, B1, C1,
D1 and E1 of Fig. 2) are located on the center chunk as evenly
distributed as possible. For the first factor, we assume each
driving point needs to charge up the capacitive load of half
the distance to its neighbors. For example, in Fig 3, F is
supposed to charge up all the capacitive loads from the left
end of the chunk to the middle point of F-G. G is supposed
to charge up the loads between the middle point of F-G and
the middle point of G-H.

In order to let each driving point drive the same amount
of capacitive load, we add up all the capacitive load at the
chunk, which includes the load of the chunk itself, that of
each connection from a pin to the chunk, and that of each pin.
Let us denote the total amount by CL. Then, starting from
one end of the chunk to the other, we scan through every
position of the chunk. The N driving points will be located
at the positions where the capacitive load sums up to 1

2N
CL,

3

2N
CL, 5

2N
CL, � � � and 2N�1

2N
CL. Therefore, each driving

point drives one N th of CL.
The center tree is constructed in the following steps.

1. To keep the interconnect from each clock pin to its
branching point short, the center chunk is routed along
the larger dimension of the enclosing box of all the
clock pins. For example, let the enclosing box have
the x dimension L and the y dimension W . If L is
larger, then the center chunk is routed in x direction. To
illustrate our discussion, in the steps below we assume
that the chunk is routed in x direction as shown in Fig.
2. Only axis swap is needed for the discussion if the
chunk is routed in y direction.

2. Pick the clock pin with the largest y coordinate (e.g. B
of Fig. 2) and the one with the smallest y coordinate
(e.g. D of Fig. 2). The center chunk will be located in
between these two pins. The location is determined to
give the same RC delays from the center chunk to the
two pins. Let us denote this delay by �.

3. For the remaining pins to have this delay� to the center
chunk, snakings are necessary (e.g. A, C and E of Fig.
2). The amount of snaking for pin i is given by

Si =

r
cli

C
�
cli

C
+ 2 �

�

RC
�
cli

C
� jyi � ycj; (1)

where cli is pin i’s capacitance and yi and yc are the
y coordinates of pin i and the center chunk, respec-
tively. Therefore, pin i’s branching point on the center
chunk can have the x coordinate anywhere in the in-
terval [li; ui], where li = xi � Si and ui = xi + Si.
[li; ui] is defined as the permissible interval of pin i’s
branching point.

4. In order to minimize the signal skew on the center
chunk, its length should be as short as possible. By
exploiting branching points’ permissible intervals, the
left boundary coordinate Lc (e.g. A1 of Fig. 2) of the
chunk and the right boundary Rc (e.g. E1 of Fig. 2)
can be determined by

Lc = min
i
(ui); Rc = max

i
(li) 8i: (2)

A1 and E1 of Fig. 2 are the boundary points determining
Lc and Rc, respectively.

5. Rc � Lc gives the length of the center chunk. The
width of the center chunk is determined to give the RC
delay between any two adjacent driving points less than
a predetermined threshold value (3 pico-seconds in our
algorithm). If the chunk is very long, there is a trade-off
between choosing largeN or increasing the width of the
chunk to save the wiring resources. Since practicallyN
is 4, 8 or 16, it does not take too much computation to
figure out the best choice.

6. The permissible intervals of the branching points need
to be updated to

li = max(Lc; li); ui = min(Rc; ui) 8i: (3)

We can exploit the permissible interval to place the
branching points on the center chunk as evenly distrib-
uted as possible. The situation with many branching
points placed in a small interval of the center chunk
should be avoided. The distance between adjacent
points should be maximized. We introduce the linear
placement with maximum spread problem to determine
the location of each branching point xi.

Definition: The linear placement with maximum
spread problem is defined as

MAXIMIZE min
ij

(jxi � xj j) 1 � i 6= j � n

s:t: li � xi � ui i = 1:::n; (4)

where li, xi, and ui are integers and the objective
functionminij(jxi�xjj) is defined as the spread.

We have developed an O(nminfn; Pg logn logP) al-
gorithm for solving this problem optimally, where n is
the number of branching points and P is the maximum
spread. This algorithm will be introduced in section 6.

Therefore, we have constructed the center tree, and are now
ready to construct the balanced length binary tree.

4 Balanced Length Binary Tree Con-
struction.

We consider a balanced binary tree with N = 2M leaves
and height M . We can assign levels to the nodes in the tree,
letting the leaves be the M -th level nodes and the root of
the binary tree the 0-th level node. And, let the immediate
children of the i-th level nodes be the (i+ 1)-st level nodes.
A balanced length binary tree is defined as follows.

Definition: A balanced length binary tree is a balanced bi-
nary tree that has the edges from the i-th level nodes
to the (i + 1)-st level nodes of the same length for
i = 0:::M � 1.

For example, in Fig. 3 the length of J-L is equal to that of
K-L and the lengths of F-J, G-J, H-K and I-K are the same.

In the previous section, we have determined N and the
locations of the N driving points, which are now the N

leaves of the balanced length binary tree to be constructed.
There are many solutions for a balanced length binary tree
connecting these leaves. The desired one is the one with the
minimal wire length. When we make connections from the
(i + 1)-st level nodes to their i-th level parents, one half of
the distance between the two farthest-apart children of the
same parent sets the lower bound for each edge’s length.
For example, in Fig. 3 the points H and I are farther apart
from each other than the points F and G, then one half of
the distance between H and I sets the lower bound for the
edge F-J and G-J. However, H-K is larger than this lower
bound because a connection between H and K of the length
equal to this lower bound will overlap with the center chunk.
Therefore, the actual edge length is the lower bound added
by a small number, e.g. a safe pitch. After determining the
edge length, we can uniquely determine the i-th level nodes’
locations. This process is continued recursively to the root.

5 Moving Up the Hierarchy.
A buffer is placed at the root of the balanced length binary
tree to repower the resulting zero skew subrouting of Fig. 4
and to block the capacitive loads from affecting the upper
levels of the hierarchy. In the merge of one level up, we
will merge those buffers together as if they were the clock
pins at the bottom level. At the bottom level, the clock pins
do not have any delay but now at this level, there is delay
associated with each buffer, namely, the delay from the buffer
input to any clock pin in its own subrouting (the delay to any
clock pin is the same since the skew is zero). This delay
can be determined through circuit simulation. Therefore, in
the merge of one level up, not only the capacitive loading of
each pin is different but also its delay. Based on the Elmore
delay model, we can use different wire length and wire width
to give the same delay from the center chunk of this level to
the clock pins of the bottom level. Then, the balanced length
binary tree routing and the center tree routing are performed
in the same way as described above. This recursion can
be continued until all the clock pins in the chip have been

covered. In practice, two levels will be sufficient. The
bottom level connects the clock pins within a macro and the
top level connects all the bottom level subroutings.

6 Linear Placement with Maximum
Spread.

We transform the problem, defined in Eq.(4), into a series
of single processor scheduling problems. The single process
scheduling problem is defined as follows.

Definition: We are given a single processor and a set S of
n jobs. For each job X there is a release time rX and
a deadline dX , with rX and dX nonnegative integers.
A schedule is feasible if there is no time at which more
than one job is being run and if every job in the schedule
is begun no earlier than its release time and is completed
by its deadline. The single processor scheduling prob-
lem is to find a feasible schedule if one exists in which
each job is run for the same amount of time p or to
determine that none exists.

Lemma: The single processor scheduling problem can be
solved in O(mn logn) time, where m = minfn; pg.

The proof of this lemma and the corresponding algorithm
are given in [9].

Theorem 1: Given a linear placement with maximum
spread problem, we create a set of single processor
scheduling problems with n jobs by letting ri = li and
di = ui + p, where p is a nonnegative integer and is
assigned to be each job’s execution time. If P is the
maximum spread of the linear placement with maxi-
mum spread problem, then the subset of single proces-
sor scheduling problems with p � P are feasible and
the subset of single processor scheduling problems with
p > P are infeasible.

Proof: It is clear that for each problem of the feasible subset,
li � xi � ui, where xi is the starting time for job i

because xi + p � di = ui + p. We are going to first
prove that if the single processor scheduling problem
thus created with p = � is feasible for some integer
�, then the single processor scheduling problems thus
created with p < � are also feasible. Let each job of
the problem with p = � start at xi. Without loss of
generality, we assume x1 < x2 < x3 < � � � < xn.
Then, xi can also be a feasible schedule for job i for the
problems with p < � because 1) xi + p � ui + p and
2) xi + p < xi + � � xi+1, fori = 1:::n� 1.

Secondly, we are going to prove that the scheduling
problem thus created with p = P is feasible. Let xi be
the position of cell i in the placement. Again, without
loss of generality, we assume x1 < x2 < x3 < � � � <
xn. Then, xi+P � xi+1; i = 1:::n� 1. Therefore, xi
can be a feasible schedule for the scheduling problem
with p = P .

Finally, we are going to prove that the scheduling prob-
lem thus created with p = P + 1 is not feasible by
employing contradiction. Suppose it is feasible and let
xi be the start time of job i. Without loss of general-
ity, we assume x1 < x2 < x3 < � � � < xn. Hence,
xi + P + 1 � xi+1, which along with the fact that
li � xi � ui shows that the maximum spread should
be P + 1 instead of P . It is a contradiction. We also
know that there will be no feasible scheduling with
p > P + 1 because if yes, then the scheduling with
p = P + 1 would be feasible. Therefore, we have
proved the theorem. 2.

By employing theorem 1, we develop the following algo-
rithm to solve for the linear placement with maximum spread
problem. Starting from 1, we try different p in the power of 2
until the scheduling is infeasible, say this p = 2h. Then, we
can find the maximum spread by answering the scheduling
problem and by using binary search of p in-between 2h�1

and 2h. Therefore, we have

Theorem 2: The linear placement with maximum spread
problem can be solved in O(mn logn logP) time,
where P is the maximum spread and m = minfn; Pg.

7 Experimental Results.
We implemented and tested our algorithm on an industry
floating point unit with 18 clock pins. The routing result
generated from our algorithm is shown in Fig. 5. Each
unfilled square in the figure is a clock pin. The filled square
is the root of this zero skew subrouting. This root is driven by
a CMOS inverter, not shown in the figure, occupying 550�2

area . The balanced length binary tree rooted at the filled
square has eight leaves, providing eight driving points to the
center chunk. The wire of the tree is 2:7� wide. The center
chunk is 6:3� wide and about 7mm long. The connection
from the center chunk to each pin is 0:9� wide. This clock
network was simulated on the IBM ASTAP circuit simulator.
We observed 3 pico-second (ps) skew out of 370 ps clock
delay.

To model the worst process variation situation, we per-
formed the following three experiments. In the first case, R,
C and the pin capacitances all all increased by 25%. The
skew is 6 ps out of 520 ps delay. In the second, R, C and
the pin capacitances are all decreased by 25%. The skew is
4 ps out of 270 ps delay. In the third, the leftmost driving
point (point a in Fig. 5) is disconnected due to possible
metal-migration. The skew is 8 ps out of 380 ps delay.

This floating point unit was also routed by using the Zero
Skew apporach of [2]. In the nominal case, the skew is
4 ps out of 456 ps delay. We analyzed the first two cases
on that routing result. The skew increases to 16 ps (out of
600 ps delay) and 12ps (out of 322 ps delay), respectively.
These results show that our algorithm indeed achieves better
process-variation tolerance.

a

Figure 5: Clock routing for an industry floating point unit. (In
reality, the vertical thin and thick lines do not overlap. They appear
so due to lack of resolution in the figure.)

8 Conclusions.
As clock skew requirement gets more and more stringent in
high performance chip designs, the process-variation toler-
ance becomes more and more important. In this paper, we
have presented a novel process-variation-tolerant zero skew
clock routing algorithm. The experimental results show its
being very effective. We expect this clock routing algorithm
to be widely used to enhance the performance of synchronous
VLSI digital systems.

References
[1] Ren-Song Tsay, “Exact Zero Skew,” Proc. ICCAD, pp. 336-

339, Nov. 1991.

[2] Ren-Song Tsay, “An Exact Zero-Skew Clock Routing Algo-
rithm,” IEEE Trans. on Computer Aided Design, pp. 242-249,
Feb. 1993.

[3] T. Chao, Y. Hsu, J. Ho, K. Boose, and A. Kahng, “Zero Skew
Clock Routing with Minimum Wirelength,” IEEE Trans. on
Circuit and Systems, pp. 799-814, Nov. 1992.

[4] Qing Zhu and Wayne Dai, “Perfect-balance Planar Clock Rout-
ing with Minimal Path-length,” Proc. ICCAD, pp. 473-476, Nov.
1992.

[5] A. Kahng, J. Cong, and G. Robins, “High-Performance clock
routing based on recursive geometric matching,” Proc.DAC, pp.
322-327, June 1991.

[6] A. L. Fisher and H. T. Kung, “Synchronous large systolic ar-
rays,” Proc. SPIE, pp. 44-52, 1982.

[7] S. Dhar, M. A. Franklin and D. F. Wann, “Reduction of clock
delays in VLSI structures,” Proc. ICCD, pp. 778-783, 1984.

[8] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “Clock routing
for high-performance IC’s,” Proc.DAC, pp. 573-579, June 1990.

[9] Barbara Simons, “A Fast Algorithm for Single Processor
Scheduling,” 19-th Annual Symp. on Foundations of Computer
Science, pp. 246-252, Oct. 1978.

[10] Daniel W. Dobberpuhl, et. al. “A 200-MHz 64-b Dual-Issue
CMOS Microprocessor”, IEEE J. of Solid-State Circuits, pp.
1555-1567, Nov. 1992.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

