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Abstract

 

†

 

We describe a synthesis system that takes operating range
constraints and inter- and intra- circuit parametric
manufacturing variations into account while designing a
sized and biased analog circuit. Previous approaches to
CAD for analog circuit synthesis have concentrated on
nominal analog circuit design, and subsequent
optimization of these circuits for statistical fluctuations
and operating point ranges. Our approach simultaneously
synthesizes and optimizes for operating and
manufacturing variations by mapping the circuit design
problem into an Infinite Programming problem and
solving it using an annealing within annealing
formulation. We present circuits designed by this
integrated synthesis system, and show that they indeed
meet their operating range and parametric manufacturing
constraints.

 

1 Introduction

 

Improvements in performance and level of integration
have led to the replacement of printed circuit boards by a
single IC, in many cases, and to an increase in the presence
of analog functionality in traditionally digital application
specific integrated circuits (ASICs). A wide range of ana-
log synthesis strategies has emerged to design these cir-
cuits. These strategies range from solving both the topolo-
gy selection and device sizing/biasing problems simulta-
neously to solving them in tandem; from using circuit
simulators for evaluating circuit performance, to behavior-
al equations predicting circuit performance; from searching
the design space with optimization, to using a set of invert-
ed behavioral equations with a restricted search space.   The
problem with these approaches is that most of them synthe-
size circuits considering only a nominal operating point
and a nominal process point. At best, existing approaches
allow the expert synthesis tool creator to pre-select specific
operating and process points for performance evaluation.

Because integrated circuits are sensitive to parametric
fluctuations in the manufacturing process, design with a
nominal set of manufacturing process parameters is insuf-
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ficient. In addition, all circuits are sensitive to fluctuations
in their operating conditions (

 

e.g.

 

, power supply voltages
and temperature). Traditionally, designers first generate a
nominal design using topologies known to be relatively tol-
erant of operating range and parametric manufacturing
variations, then improve the design’s manufacturability us-
ing worst-case methods. These methods evaluate the de-
sign at other sets of values for the process and operating
point. The circuit is redesigned (

 

i.e.

 

, sizing and bias point
is modified) to increase the number of sets at which all the
performance specifications are met.

The advent of computer-based circuit simulation led to
the first studies of computer-based circuit design, 

 

e.g.

 

, [31].
Since then we have seen approaches to optimization-based
nominal circuit design [24], and even analog circuit synthe-
sis [4][11][12][13][18][21][26]. We have also seen ap-
proaches to statistical IC design [6][8][15][33] and even
some recent approaches that include operating ranges
[1][5]. The goal of analog circuit synthesis tools is to elim-
inate many of the circuit designer’s most tedious tasks. The
goal of yield optimization tools is to improve an already
well-designed circuit prior to fabrication. While both sets
of tools were aimed at helping the designer, they both
solved just half the problem. The analog circuit synthesis
tools often create designs that are at the edge of the perfor-
mance space, whereas a good human designer using a fa-
miliar topology knows exactly how to over-design to en-
sure adequate yield. The yield optimization tools signifi-
cantly improve the yields of good manual designs but the
automatically synthesized circuit is often a bad starting
point for the gradient-based post-synthesis yield optimiza-
tion tools. As will be demonstrated in the results section,
device sizing is frequently driven by manufacturing or op-
erating variations. Synthesis based only on the nominal op-
erating and manufacturing point can result in dramatically
different device sizes/biasing. This may be incompatible
with the assumptions of most yield optimization tools.

In Figure 1 we show an example of the dc gain perfor-
mance of a manual operational amplifier and one synthe-
sized by [25] (marked OBLX). The synthesis was done at
the nominal power supply level of , and the
circuit definitely meets the design specification of
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, at that nominal operating point. How-
ever, several devices are biased near the edge of saturation
and a small decrease in power supply voltage dramatically
decreases the gain. The circuit is highly sensitive to that op-
erating point variable, and therefore provides poor initial
yields and yield gradients needed for the post-design yield
optimization phase.

We present a unified design framework in which inter-
chip and intra-chip statistical parametric fluctuations in the
fabrication line, operating point fluctuations, and analog
circuit synthesis strategies are combined to form a system
that can synthesize realistically manufacturable analog cir-
cuits. This is the first integration of intra-chip fluctuations
and operating point fluctuations in the same algorithm of
which we are aware. It is also the first integration of prac-
tical manufacturability concerns into an analog circuit syn-
thesis tool of which we are aware. In this paper we first dis-
cuss earlier approaches to analog circuit synthesis, then in-
troduce the concept of using an Infinite Programming
formulation for the analog circuit synthesis problem. We
review some approaches to solving the Infinite Program-
ming problem, and present an annealing-based approach.
We then present three circuits designed using the annealing
approach to Infinite Programming, and finally offer some
concluding remarks.

 

2 Review of Analog Circuit Synthesis

 

The system presented in this paper is based on ASTRX/
OBLX [26]. In this section we will briefly review the main
characteristics of the ASTRX/OBLX synthesis strategy.
The primary assumption of this strategy is that the comput-
er’s time is less valuable than the designer’s time. So the
goal is to force the computer rather than the designer to do
the bulk of the synthesis work. ASTRX/OBLX therefore
can determine the ac performance of the circuit without re-
quiring designer-supplied equations, thus it can perform
“equation-free” synthesis of linear circuits [25]. A con-

4.0 4.4 4.8 5.2 5.6 6.0
Vdd (V)

40.00

60.00

80.00

100.00

D
C

 G
ai

n 
(d

B
)

OBLX design

Manual design

Figure 1 Variation of dc gain of Manual and Synthesized 
Design with Vdd

DCgain 70dB=

 

straint language [26] is used by ASTRX/OBLX to support
arbitrary large-signal and transient specifications such as
output swing and slew rate. Since the acac equations in the
earlier synthesis strategies tended to be both more cumber-
some and more numerous than the non-linear performance
equations, this trade-off of “equation-free” linear design
and “equation-based” non-linear design has been success-
ful at designing the widest range of analog circuits to date
[26][27][28]. 

The key ideas in the ASTRX/OBLX synthesis strategy
are described below:

 

Synthesis via Optimization

 

: the synthesis problem is
mapped onto a constrained

 

 

 

optimization formulation that is
solved in an unconstrained fashion. As in [18][21][24], the
circuit design problem is mapped to the non-linear con-
strained optimization problem (NLP) of equation (1),
where  is the vector of independent variables—geome-
tries of semiconductor devices or values of passive circuit
components—we wish to change to determine circuit per-
formance, and  is the vector of state variables;  is
a set of objective functions that codify performance speci-
fications the designer wishes to optimize, 

 

e.g.

 

, area or pow-
er; and  and  are each a set of con-
straint functions that codify specifications that must be be-
yond a specific goal, 

 

e.g.

 

, . Scalar
weights, 

 

w

 

i

 

, balance competing objectives. The decision
variables can be described as a set , where  is the
set of allowable values for .

 

(1)

 

To allow the use of simulated annealing, in ASTRX/
OBLX this constrained optimization problem is converted
to an unconstrained optimization problem with the use of
additional scalar weights. 

 

 (2)

 

As a result, the goal becomes minimization of a scalar
cost function, , defined by equation (2). The key to
this formulation is that the minimum of  corresponds
to the circuit design that best matches the given specifica-
tions. Thus, the synthesis task is divided into two sub-tasks:
evaluating  and searching for its minimum.

 

Asymptotic Waveform Evaluation

 

: AWE [30] is aug-
mented with some simple, automatically generated analyt-
ical analyses to convert AWE transfer functions into circuit
performances. AWE is a robust, efficient approach to anal-
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ysis of arbitrary linear RLC circuits that for many applica-
tions is several orders of magnitude faster than SPICE. By
matching the initial boundary conditions and the first

 moments of the actual RLC circuit transient re-
sponse to a reduced 

 

q

 

-pole model, AWE can predict ac cir-
cuit response using a reduced complexity model valid for
frequencies below a specifiable limit. AWE is a general-
purpose simulation technique that can be applied to any lin-
ear(ized) circuit and yields accurate results without manual
analysis.

 

Simulated annealing

 

 [17] is the optimization engine
which will drive the search for a circuit solution; it provides
robustness and the potential for global optimization in the
face of many local minima. Because annealing incorpo-
rates controlled 

 

hill-climbing

 

 it can escape local minima
and is essentially starting-point independent. Annealing
also has other appealing properties including: the inherent
robustness of the algorithm in the face of discontinuous
cost functions, and the ability to optimize without deriva-
tives. Further, with the increasing research effort on an-
nealing control mechanisms, it is now achieving competi-
tive run-times on problems for which tuned heuristic meth-
ods exist [19].

 

Encapsulated device evaluators

 

, comprise a compiled
database of industrial models for active devices that pro-
vides the accuracy of a general-purpose simulator while
making the synthesis tool completely independent of low-
level device modelling concerns [20]. Unfortunately, there
is no longer any alternative to using industrial-strength de-
vice models in a practical circuit synthesis system. High-
performance circuits rely on the device performance char-
acteristics achievable in aggressive technologies. Simpli-
fied models of the current-voltage relationships at the ter-
minals of these devices fail to capture many of these impor-
tant characteristics. The ASTRX/OBLX synthesis strategy
has a library of encapsulated device evaluators which hides
all aspects of the device’s representation and performance
and provides a query interface for standard device large and
small-signal information. In this manner, the models are
completely independent of the synthesis system and can be
easily replaced or altered.

 

A relaxed dc-formulation

 

 [20] which avoids a CPU-in-
tensive dc operating point solution after each perturbation
of the circuit design variables. Since encapsulated models
must be treated numerically, as in circuit simulation, an it-
erative algorithm such as Newton Raphson is required. For
synthesis, such an approach has two important pitfalls:
First, it is a well-known source of convergence problems;
and second, it consumes a substantial amount of CPU time
that would be wasted on intermediate circuit designs that
are later discarded. Instead, the Kirchhoff laws that are im-
plicitly solved during dc biasing in a circuit simulator are
explicitly formulated and included in the constraint func-
tions in the optimization problem. Just as optimization
goals are formulated, such as meeting gain or bandwidth
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constraints, now dc-correctness is formulated as yet anoth-
er goal that needs to be met. This relaxed approach allows
the optimizer to visit many more circuits within a given
time, modelling each a little less accurately.

In ASTRX/OBLX, these ideas are combined to create
an architecture that provides a fully automated path from an
un-sized analog circuit topology and a set of performance
specifications to a completed, synthesized circuit. This
path is comprised of two phases: 

 

Compilation by ASTRX:

 

 Compilation generates a
performance prediction module that maps , the compo-
nent and dc bias values in the circuit, to the performance
metrics specified by the user. In effect, ASTRX generates
code that implements a cost function, , carefully con-
structed so that its minimum value occurs when  specifies
a circuit design that best meets the input specifications. To
evaluate this cost function, ASTRX will compile in the ap-
propriate links to the encapsulated device evaluators and
AWE. Because of the relaxed dc-formulation, ASTRX
must also derive the dc correctness constraints that will en-
force Kirchhoff’s laws for the input topology and encode
them in the cost function.

 

Solution by OBLX:

 

 This cost function code is then
compiled and linked to OBLX, the solution library, which
uses simulated annealing to numerically solve for the min-
imum of , thereby designing the circuit. The vari-
ables in  are mapped directly to aspects of the evolving
circuit design, such as device sizes and node voltages.
However, because node voltage values must clearly be
continuous to determine an accurate bias point while de-
vice sizes can reasonably be regarded as discrete quantities,
OBLX manipulates a mix of continuous and discrete vari-
ables. Because of this mix, the annealer’s 

 

move-set

 

, the set
of allowable perturbations on the present state, is quite
complex. In addition the conventional annealing moves
where the discrete variables are 

 

atomically

 

 perturbed, we
employ 

 

gradient-based

 

 moves in which the entire vector of
continuous node voltages is perturbed (using the Newton
Raphson algorithm [26]). To dynamically determine the
correct mix of move sizes throughout the annealing pro-
cess, an adaptation of a method from Hustin [16] originally
developed for discrete annealing problems is used. OBLX
also employs other sophisticated control mechanisms to
provide reliable solutions over varying circuits and specifi-
cations: A dynamic weighting system automatically adjusts
the weights on the terms in , freeing the user from
this task and a general purpose cooling schedule derived
from Lam [19] and Swartz [34] controls the overall anneal-
ing process. 

 

3 Infinite Programming approach to Analog 
Circuit Synthesis

 

In this section we will expand the non-linear con-
strained optimization formulation in ASTRX/OBLX to a

u

C u( )
u

C u( )
u
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non-linear infinite programming formulation that considers
operating range and parametric manufacturing variations.
Integrated circuit designers often guess worst-case range
limits from experience for use during the initial design
phase. Once they have generated a sized schematic for the
nominal operating point (

 

i.e.

 

, bias, temperature) and pro-
cess parameters, they test their design across a wide range
of process and operating points (

 

worst-case set

 

). Typically
the initial design meets specifications at several worst-case
sets, but needs to be modified to ensure that the specifica-
tions are met at the rest of the worst-case sets.

Unfortunately, in an optimization-based approach to
circuit design, the optimization will usually find any holes
left open by a poor or incomplete set of constraints. There-
fore the initial design produced by the optimization may be
a bad starting point for the remainder of the design (a com-
plete statistical IC design [6]). Current statistical IC design
algorithms assume that the initial circuit meets all the spec-
ifications at the nominal process point. As operating range
specifications are part of the design problem, circuit syn-
thesis tools need to generate designs that meet the specifi-
cations not only for the nominal set of process parameters,
but also over the entire operating point range.

Most designs have a  range specification on the
power supply voltage, leading to an operating range

 in a 5V process. As we have seen in
Figure 1, the circuit designer considered the sensitivity of
these circuit performance metrics to the operating range
variable . In contrast, the automatic design was blind to

 except at one point, . Similar graphs for
the other performances in many analog circuits (from sim-
ulation, as well as from data books) show that:

 

•

 

Low  designs are the ones most likely to fail to
meet the performance specifications, so there is a
need to consider the additional constraint of

 in the mathematical program used to
design the circuit.

 

•

 

Not all of the performance parameters are mono-
tonic functions of the operating point. Therefore a
mechanism to find the worst-case point in the
range for each performance function is needed.
However, since many are monotonic, the infinite
set of constraints can be replaced by a single con-
straint at a worst-case corner point, although a
mechanism for doing this automatically is needed.

To investigate the effect of introducing operating rang-
es to the NLP model equation (1), let us consider the exam-
ple of dc gain, a circuit performance metric, and the power
supply voltage range, an operating range: the dc gain needs
to be larger than 60dB for every power supply voltage val-
ue in the range . This can be written as in
equation (1), where  is the vector of designable parame-
ters, and  is a new variable (in this example only a scalar),
to represent the operating range: 
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Since every single voltage in the given range needs to
be investigated, this single operating range constraint adds
an 

 

infinite

 

 number of constraints to the mathematical pro-
gram. Heittich, Fiacco and Kortanek present several papers
in [9][14] which discuss non-linear optimization problems
where some constraints need to hold for a given range of an
operating range variable. These problems, and the one just
presented, are called 

 

Semi-Infinite Programs

 

 due to the fi-
nite number of objectives and an infinite number of con-
straints. When there is an infinite number of objective func-
tions (due to the presence of a range variable in the objec-
tive function), the mathematical program is called an

 

Infinite Program

 

. The complete mathematical program can
now be re-written as the 

 

Non-Linear Infinite Program

 

(NLIP) shown in equation (3).

 

(3)

 

where  is the vector set of operating point ranges and
statistical fluctuations. If we let  include the region in the
disturbance space where the probability of the disturbance
is, say, less than  from nominal, then the design problem
NLIP implies that the design has to meet all the specifica-
tions for any disturbance that is less than . Further de-
tails of the formulations can be found in [23], and similar
formulations have been presented in [1][5]. This infinite
programming formulation looks at yield as a constraint,
and device mismatch disturbance [6][29] can also be incor-
porated into this framework, as will be shown by our exam-
ples.

 

4 A Conceptual Infinite Programming Algorithm

 

In this section, we will review the solution of a simple
non-linear infinite program. Since it is easier to discuss a
semi-infinite program, and it illustrates all the critical
points, we will actually consider a simple semi-infinite pro-
gram (an infinite program can be considered to be a mini-
max semi-infinite program, and mini-max problems are
mainstream optimization problems [10]). Linear and non-
linear infinite programs have received significant attention
in the optimization literature [9][14]. Consider the problem

 

P

 

, which is a simplified version of 

 

NLIP

 

 in equation (3)
(without the state variables and equality constraints, and
just a single objective that is independent of the worst-case
variables and a single constraint):

 

(4)

 

Now, let  denote the problem:
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(5)

 

A simple conceptual algorithm begins with a 
and solves

 

(6)

 

to obtain  (note that  has only one constraint, and so
can be solved using standard NLP algorithms). Then,  is
computed by solving ; if , it stops; other-
wise it proceeds to solve 

 

(7)

 

for a , etc. We can generalize this sequence of “outer
problems”, labelled as , in which there are only 
constraints; they can be written as:

 

(8)

 

Consider the feasible set of the problems :

 

(9)

 

and Problem P:

 

(10)

 

The sequence of feasible sets satisfy

 

(11)

 

thus the sequence of objective function values have the fol-
lowing property (since more and more constraints are add-
ed as 

 

k

 

 increases):

 

(12)

 

where  is any solution to Problem 

 

P

 

. Eaves and Zang-
will, in [7], develop a theory to show that any accumulation
point  of  is in 

 

F

 

, and solves Problem 

 

P

 

. They
also show the constraint  can be dropped from
Problem  if:

 

•

 

 and  is sufficiently larger
than , and

 

•

 

the next solution  satisfies .

This constraint-dropping scheme suggests that the
growth of complexity of Problem  can be slowed, but in
the absence of convexity, the solution of  is only a local
minima, so the sequence  is not necessarily mono-
tonically increasing, so the Eaves and Zangwill constraint-
dropping scheme cannot be applied. In the domain of cir-
cuit synthesis, complicated combinations of nonlinear de-
vice equations make it extremely difficult, if not impossi-
ble, to make any statements about convexity. Hence we use
a simulated annealing optimization method, and exploit its
hill-climbing abilities in the solution of both  and .
Annealing has been shown to be empirically robust on
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many problems with complex non-convex cost surfaces
[32].

 

5 Infinite Programming in ASTRX/OBLX

 

In this section we extend the NLP formulation in
ASTSX/OBLX to a non-linear infinite programming for-
mulation. First let us consider a direct implementation of
the conceptual algorithm into ASTRX/OBLX. OBLX cur-
rently solves the problem , and can easily be extended to
solve the outer optimization problems . Each OBLX run
takes from a few minutes to a few hours, making it prohib-
itive to consider this alternative.

Instead, we solve for the worst-case constraints in the
middle of the annealing run, specifically, at each point
when the annealing temperature related to the outer prob-
lem is reduced. This leads to a single annealing run to solve
all the outer optimization problems  (albeit slightly long-
er). Inside this single annealing run, at every change in the
temperature, the number of worst-case sets increases de-
pending on the worst-case inner optimization. This ap-
proach is the middle ground between solving the inner op-
timization problems ( ) at each perturbation of the out-
er annealing problem ( ), and solving the inner
optimization between each annealing runs as suggested by
the direct implementation of the conceptual scheme pre-
sented in the previous section.

Figure 1 shows that it is not always necessary to do an
inner optimization, since the function  is often a
one-dimensionally monotonic function of . Thus the first
part of the solution of  should involve a test for mono-
tonicity. We use a large-scale sensitivity computation to
determine monotonicity, and pick the appropriate corner of
the worst-case range from there. This test can be applied to
operating point variables which have box constraints on
them ( , where  is the lower bound and

 is the upper bound for the dimension in which
 is one dimensionally monotonic). Applying such

bounds to the statistical variables will lead to conservative
designs. It will be left up to the user to trade-off between
applying these bounds and getting conservative designs
quickly, or actually doing an inner optimization over the
space of statistical design variables to get a less conserva-
tive design.

 

6 Results

 

We applied the above annealing approach to solving the
non-linear infinite programming formulation of the analog
circuit synthesis problem to a small operational transcon-
ductance amplifier (OTA) cell, and to a large folded cas-
code amplifier cell. We compare these results with the orig-
inal ASTRX/OBLX [26] designs to show that it is indeed
important to take parametric manufacturing variations and
operating point variations into account during analog cir-
cuit synthesis. In both circuits, we first added the  op-
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erating range as the only worst-case variable to consider. In
addition, we also considered global variations in transistor
geometries, global parametric variations in threshold volt-
ages, and intra-chip parametric variations in the threshold
voltages of matched devices on the OTA to show that the
NLIP formulation can incorporate both inter- and intra-
chip statistical fluctuations in the form of yield as a con-
straint.

Figure 2 shows the Simple OTA circuit and the test-jig
used to simulate the circuit in HSPICE [22] for the results
presented below. There are 6 design variables: the width
and length of the differential-pair transistors (M1 and M2),
the width and length of the current mirror transistors (M3
and M4), the width and length of the tail current source
transistor (M5), and the Vbias voltage. For the NLIP for-
mulation, we added the  operating point variable as a
worst-case variable. We compare the designs generated by
looking at the performance graphs across the

 operating range. Figure 3 shows the dc
gain performance of the ASTRX/OBLX and NLIP formu-
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lation design, simulated at  (labeled Nominal)
and , the specified output high voltage
(3.75V). Note that at the nominal operating point
( , ) the dc gain of the ASTRX/
OBLX design is no more sensitive to the operating point
than is the nominal NLIP design. This illustrates that even
adding small-change sensitivity constraints at the nominal
operating point would not improve the design. The actual
worst-case gain of this circuit will occur when the common
mode of the input voltage (called  here) is at its highest
specified value, in this case the highest output voltage
( ) since the test-jig is configured for unity-gain feed-
back and  is at its lowest value. It is clear from the graph
that it is necessary to use the NLIP formulation to ensure
that the dc gain is relatively insensitive to the operating
range. Since the worst-case point is an operating range cor-
ner, the designer can actually ask ASTRX/OBLX to design
for that corner by pre-specifying , and

 instead of their nominal values. However, it
is not always possible 

 

apriori

 

 to identify the worst-case
corner in a larger example (with more worst-case vari-
ables), and in some cases, the worst-case point can occur
within the operating range (

 

e.g.

 

, variation in output voltage
with temperature for a temperature-compensated band-gap
reference).

The same experiment was repeated with the folded cas-
code amplifier shown in Figure 4. In this design there are
twelve designable widths and lengths, a designable com-
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pensation capacitance and two dc bias voltages. Again the
single operating point variable  was used. We simulat-
ed the ASTRX/OBLX and the NLIP designs’ output swing
across the  operating range (shown in Figure 5). The
output swing of the amplifier is a strong function of the re-
gion of operation of the output transistors (M3, M4, M5
and M6). The output swing is obtained by using a large-sig-
nal ac input, and determining the output voltage at which
the output transistors move out of saturation (which will
cause clipping in the output waveform). Compared to the
OTA, this is a much more difficult design, hence the output
swing specification of 2.0V is just met by both the ASTRX/
OBLX design (at the nominal power supply voltage of
5.0V) and the NLIP design (across the entire operating
range).

The ASTRX/OBLX design fails to meet the output
swing specification for the lower half of the operating
range ( ). This is a common problem of synthe-
sis tools. For an optimal design, it biased the circuit so that
the output transistors were at the edge of saturation, and a
slight decrease in the  voltage resulted in their moving
out of saturation, hence the output swing falls below the
2.0V specification.

In our final experiment we again reconsider the OTA
circuit of Figure 2. This time we introduce global variations
in transistor geometries (

 

e.g.

 

,  of the p and n devices);
global parametric variations in threshold voltages ( ,
the flat-band voltage of the p and n devices); and intra-chip
parametric variations in the threshold voltages of matched
devices (  of the p and n devices, using a simple mis-
match model proposed by [29]). Note, the intra-chip para-
metric variations are particularly challenging because their
amplitude depends on the design variables — these varia-
tions are roughly proportional to .

In this run there were 6 circuit design variables, and 6
worst-case variables. We expect to see that the device sizes
will be larger to minimize the effect of the mismatch in ge-
ometry and threshold voltage. It should be obvious that
larger geometries reduce the sensitivity to the  varia-
tion. In addition, larger devices are less sensitive to the

Vdd
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Figure 5 Folded Cascode Output Swing across Vdd
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 mismatch than are smaller devices [29], again push-
ing for larger designs.

Figure 6 shows the random component of the input re-
ferred offset voltage (the systematic component of both de-
signs is less than 0.5mV), at the 64 worst-case corners of
the 6 variables used in the design. The ASTRX/OBLX de-
sign can have a random offset voltage of up to 4mV. The
non-linear infinite programming formulation of the analog
circuit synthesis problem was set up with a random offset
voltage specification of 2mV. In the graph we have sorted
the corners by the size of the random offset voltage in the
ASTRX/OBLX design. From the graph it is clear that about
half of the 64 corners need to be considered by the formu-
lation. It is also clear that the optimization has reduced the
random offset voltage only as much as was needed to meet
the specification. For the half of the worst-case corners that
are not active constraints, the NLIP optimization returns a
design whose random offsets are actually greater than that
of the ASTRX/OBLX design for that corner. While these
corners are currently inactive, at a different sizing and bi-
asing for the circuit, those corners can easily become ac-
tive. This prevents the designer using ASTRX/OBLX from

 

apriori

 

 defining the list of worst-case points. In an incom-
pletely specified problem, the optimization will find a so-
lution that might violate a constraint that was not specified. 

 

Table 1 

 

Device sizes (in microns) of the OTA and 

 

parametric manufacturing variations

 

Design ASTRX/
OBLX
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26 71
2.7 3.3
4.8 15
4.6 8.6
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2.1 15
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Our approach can dynamically determine the actual
worst-case points, using the inner annealing and the large-
scale sensitivity of the cost function terms to the worst-case
variables, hence it limits the designer’s responsibility to
just providing the worst-case ranges. Note that the execu-
tion time of this run for this prototype implementation is
only 90 times more than the nominal design done by AS-
TRX/OBLX. This is driven because we are evaluating 64
times as many circuits (so each move is longer), and be-
cause the annealer needs to do more moves to efficiently
search the search space.

 

7 Conclusions

 

In this paper we have integrated analog circuit synthesis
with worst-case analysis of both parametric manufacturing
and operating point variations. This integration has been
used to design circuits that are manufacturable. By show-
ing that an automated system can generate circuits that can
meet some of the critical concerns of designers (operating
ranges and inter- and intra-chip parametric variations), we
believe that we have taken a significant step towards the
routine use of analog synthesis tools in an industrial envi-
ronment.
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