
Extracting RTL Models from Transistor Netlists

K. J. Singh and P. A. Subrahmanyam

AT&T Bell Laboratories, Holmdel, NJ 07733

Abstract

This paper addresses the problem of deriving a register-
transfer level (RTL) model from a transistor-level circuit.
Using existing techniques, the transistor-level circuit is con-
verted into a relation that describes the evolution of the
signals in the circuit with respect to the simulator clock.
This simulation relation is then manipulated to derive the
stable behavior of the circuit. Given this stable behavior
and information about the clocking scheme, we determine if
the circuit is combinational, asynchronous or synchronous.
For combinational and synchronous circuits we derive an
equivalent register-transfer level model. This development
enables full-custom circuit designers to use tools that were
till now available only to designers working at the gate-
level. The algorithm has been successfully used to charac-
terize several custom designs, as well as the entire AT&T
standard-cell library.

1 Introduction

Circuits that can be described at the register-transfer level
constitute a large percentage of digital designs, and analy-
sis and optimization tools are widely available for such cir-
cuits. In contrast, fewer tools support higher level reasoning
abouttransistor levelintegrated circuit designs. This pa-
per describes a technique that, given a netlist of transistors,
derives an equivalent register-transfer level description; the
technique first identifies if a given circuit is combinational
or synchronous before attempting to derive an equivalent
model.

This research was initially motivated in the context
of developing formal verification techniques for custom
VLSI designs, where there was a need to reason about
transistor-level circuit descriptions. Fortuitously, the abil-
ity to perform such circuit extraction additionally enabled
full-custom designers to use commercial EDA tools devel-
oped for gate-level ASIC design (like fast logic-simulation,
fault-simulation, test pattern generation, timing analysis).
Furthermore, logic simulation is at least an order of mag-
nitude faster than switch level simulation. Having an au-
tomatically extracted gate-level equivalent circuit from a
transistor representation allows simulation based validation
to be sped up considerably, reducing design time.

In Section 2 we review some previous work on devel-
oping logic models for transistor circuits and contrast them
with the current approach. In Section 3, we then describe
our algorithm for extracting logic models from transistor
circuits. The algorithm has been used to derive the func-
tionality of gates in a standard-cell library and fragments of
full-custom designs used in production. These experimen-
tal results are presented in Section 4. Finally, in Section 5
we present conclusions and comments.

2 Background

Pattern matching has been proposed [4] as an ap-
proach for extracting equivalent logic circuits from tran-
sistor netlists. This technique is effective when there is
a restricted style of designing circuits. However, since
it is difficult to capture all the different circuit variations
and optimization tricks employed by designers, pattern-
matching techniques are not very effective for full-custom
design styles. Our extraction approach is based on the cir-
cuit functionality and not on the structure of the netlist and
consequently does not suffer from this limitation. Our ap-
proach can complement pattern-matching: modules that are
not recognized by template matching may be input to the
abstraction tool we have developed.

There has been prior work [1, 3, 2] in transforming tran-
sistor netlists into equivalent logic netlists for improving the
speed of switch-level simulation. Switch-level simulators
differ in the effects that are modeled (transistor strengths,
directionality, charge storage, etc.), the delay assumptions
for the transistors, as well as the accuracy to which the node
voltages are represented (binary, ternary, four-valued, etc.).
However they all use models that describe the evolution of
the circuit from one time instant to the next. We call such
modelssimulation models. Each simulation cycle is rep-
resented by one occurrence of thesimulation clock which
is used by the simulator to schedule different parts of the
circuit for evaluation. When a computation is indicated to
be of unit-delay type, it produces the logic value for a node
at the next simulation cycle while if a computation is of
zero-delay type, it determines the node value to be used in
the current simulation cycle. During each simulation cycle
the relevant equations are evaluated to determine the node
voltages. Unit-delay elements are associated with feedback

RTL Model

Binary
valued
logic

In Out

CK

PS NS

CK

Sim Clk
δ

T

Simulation Model

Sim Clk

OutIn
CK

NCPC

Multi
valued
logic

Figure 1: Simulation model vs. RTL model

arcs and charge-storage nodes in the circuit. The set of sig-
nal values associated with unit-delay elements is called the
circuit configuration.

Synchronous digital circuits are described using areg-
ister transfer level model(RTL model) and our goal is to
derive such a model, if possible, from a transistor netlist.
An RTL model describes the circuit behavior as an inter-
connection of logic gates and memory devices, latches and
flip-flops, whose behavior is pre-defined. Thestateof the
circuit is set of values stored in the memory devices. The
state changes in response to input values and the previous
state when theclock signalschange. When using an RTL
model the user is concerned mainly with the evolution of
the state of the system and a clockcycle-by-clockcycle
description of the outputs.

Even though both the simulation model and the RTL
model represent the circuit behavior as finite-state ma-
chines, the FSMs differ in their interpretation. Thecon-
figuration in the simulation model is a microscopic repre-
sentation of circuit state, while thestatein an RTL model is
a macroscopic representation. It is important to understand
the distinction between the simulation model and the RTL
model in order to appreciate how our logic extraction differs
from that of [3, 2]. This difference is illustrated in Figure 1.
In the simulation model, a new configuration is computed
by evaluating the logic at every simulation tick, denoted
by a time interval�, till the circuit response is unchanged.
Due to the fine granularity of time, the simulation model
can model the transient values at the nodes in the circuit
in addition to their final values. Also, since events on all
signals (clock and data inputs) are processed in the same
manner the simulation model can model both synchronous
and asynchronous circuits. On the other hand, in an RTL
model the clocks have a special status since the equations
describing the circuit state are evaluated only when the clock
inputs change. This evaluation computes the new state of
the circuit which is stored in the registers for use during the
next clock cycle. Since the circuit behavior is described in
terms of state changes, there is no modeling of the transient
voltages in the circuit. RTL models represent synchronous
circuits and the interpretation of the RTL model depends on

the clocking scheme. Thus to derive an RTL model from
a simulation model, the clocking scheme must be specified
so that the appropriate analysis can be performed.

A previous attempt to address the extraction is described
in [5]. The simulation relation was manipulated to ab-
stract the transient behavior and the resulting description
was mapped to edge-triggered flip-flops. This work could
not recognize level-sensitive latches; further, it was the
user’s responsibility to determine if the extracted function-
ality was a complete description of the circuit. In our cur-
rent method we first propose conditions to check for syn-
chronous and combinational behavior, and only when the
simulation model fits these conditions do we derive equiv-
alent RTL models based on level-sensitive latches.

2.1 Terminology and notation

Thecharacteristic functionof a set A is a Boolean func-
tion A(x) such thatA(x) = 1 if and only inx 2 A. Sets
will be represented by their characteristic functions. Since
a relation is a set ofn-tuples, it is represented by its char-
acteristic function as well.

Thesubstitution, within a Boolean functionF , of a set
of variablesX by a corresponding set of variablesY , is
denoted by[X ! Y]F .

The cofactorof a Boolean functionF with respect to
a literal xi (respectivelyxi), denoted byFxi (respectively
Fxi), is a new function obtained by substituting 1 (respec-
tively, 0) forxi in F.

The existential quantificationor smoothingof F over
a variablexi is denoted bySxi = Fxi + Fxi . The new
function SxiF is independent of the variablexi. When
existential quantification is required over a set of variables,
the smoothing operator is applied once for each variable.

A 4-valued signalxi can assume a value in the set
f0; 1; X; Zg. It is encoded by two binary variables
(xHi ; x

L
i). Symbols 1 and 0 are thebinary valuesand are

encoded as (10) and (01) respectively, while symbolsX and
Z represent thenon-binary valuesand are encoded as (11)
and (00) respectively.

Thebinary restrictionof a functionT over a setV , de-
notedBV (T), is a new function which is defined only over
all the binary values of the 4-valued signals in the setV .
This function is computed as

BV (T) = T:
Y
xi2V

(xHi � xLi)

where� denotes the exclusive-or of Boolean variables.
BV (1) denotes all the possible binary values that the 4-
valued signals in the setV can take on.

3 Extracting RTL models
The overall approach we adopt is shown in Figure 2 and

details of the operations and the various tests suggested in
Figure 2 are discussed in this section. The transistor netlist

Transistor netlist

Oscillatory
or

Non-Boolean ?

Yes

No

Yes

Yes

Yes

No

No

No

Generate
Logic Circuit

Equivalent RTL modelNo equivalent RTL model

Is
combinational ?

Is
synchronous ?

Build stable
unit-step relation

Build
unit-step relation

Are clock signals defined ?

Figure 2: Outline of the abstraction procedure

is processed to obtain a unit-step relation that describes the
evolution of the circuit configuration (Section 3.1). We stop
the analysis if this relation represents an oscillatory circuit
or a circuit whose output is not binary valued for some bi-
nary input condition (Section 3.2). For stable circuits, we
then derive astable unit-step relationthat abstracts away
the transient behavior (Section 3.3). We examine the stable
unit-step relation to determine if the circuit is combinational
or sequential (Sections 3.4 and 3.5). Combinational cir-
cuits are converted into an acyclic interconnection of logic
gates. Sequential circuits may be either synchronous or
asynchronous. If a designer wants to distinguish between
these, he/she can define a clocking scheme for the circuit to
constrain the circuit behavior. If the circuit is synchronous
under the clocking scheme, an equivalent RTL model is
derived.

3.1 Deriving a unit-step relation

We useTranalyze [2] as a pre-processor to derive the
simulation model. Tranalyze uses a 4-valued represen-
tation for the signals and produces an interconnection of
zero-delay logic functions and unit-delay elements. Unit-
delay elements represent feedback arcs or charge-storage
nodes in the circuit. Associated with each unit-delay ele-
mentni, are 4-valued variablesxi andyi — xi represents
the value at the output ofni and yi represents the value
at the input ofni. Variablesxi and yi are represented
using pairs of Boolean variables,(xHi ; x

L
i) and (yHi ; y

L
i)

respectively. Thepresent-configuration, denotedPC, is
the setfx1; : : : ; xmg and thenext-configuration, denoted
NC, is the setfy1; : : : ; ymg. Tranalyzealso generates two
Boolean functionsfHi andfLi for each output and unit-delay

element. These determine the value of the variablesyHi and
yLi based on the present-configuration and the circuit inputs,
I.

Theunit-step relation,R(I;X; Y), is derived from the
simulation model to describe the global behavior of the cir-
cuit. It describes a circuit whose configurationX changes
toY when an inputI is applied. The characteristic function
of the unit-step relation is obtained by setting the variables
yi to be equal to the function that determines them. For the
case whenfHi andfLi both evaluate to 0, the signal is not
driven and retains its old value,i.e.yi � xi.

R(I;X; Y) =
Y

yi2NC

0
BBB@

yLi :y
H
i :f

L
i (I;X):fHi (I;X) +

yLi :y
H
i :f

L
i (I;X):fHi (I;X) +

yLi :y
H
i :f

L
i (I;X):fHi (I;X) +

(yi � xi):fLi (I;X):fHi (I;X)

1
CCCA

The unit-step relation describes the circuit response to
inputs that are 4-valued. In practice we are interested in
the response of the circuit to a digital input stream. The
binary unit-step relation , denotedRb, is simply the unit-
step relationR, with the input variables restricted to binary
values.

Rb = BI(R)

A transition from configurationx to y under inputi is
denoted[i; x; y]. The transition represents valid circuit be-
havior ifRb(i; x; y) = 1.

A steady transition is of the form[i; x; x]. It denotes
that the circuit configuration remains unchanged, equal to
x, as long the input is held constant ati. Such a circuit
configuration is called astable configuration. Formally,
the set of stable configurations,SC can be described as

SC = fxj9i; Rb(i; x; x) = 1g

The set ofstable binary configurations, SBC, represents
the stable configurations that have binary values for all com-
ponents. This represents the set of stable configurations of
the circuit where all nodes have attained either a high or
low voltage value.

SBC = BPC(SC)

The steady binary transitions, SBT , associated with a
binary unit-step relation,Rb, are the self-loops at the stable
binary configurations.

SBT = f[i; x; x]j(Rb(i; x; x) = 1) ^ (x 2 SBC)g

We next identify therelevant circuit behavior that we
will extract. Starting from a stable configuration where all
the components have binary values, the circuit behavior is
the stable response of the circuit to binary valued inputs that
are consistent with the clocking scheme. This definition of
circuit behavior means that we first have to determine if the
circuit is stable or not.

(a) (b) (c)

i1

i2

A

B

C

D

i1

i2

A

C

D

A

D

i1

i2

i2

i2 i2 i2
i2

i2

3.2 Stability Test
After building the unit-step relation we determine if the

circuit is stable or oscillatory.We assume that if there ex-
ists a stable binary configuration corresponding to an input
condition, then the circuit will settle in that configuration
when the corresponding input is applied. This gives us an
easy way to check if the circuit is stable — all we need to
check is that there is a stable binary configuration corre-
sponding to every input.

A binary unit-step relation,Rb, represents a non-
oscillatory circuit ifSPC;NC(SBT) � BI(1), whereSBT
represent the steady boolean transitions ofRb andBI(1)
represents the set of all possible binary input conditions.

Circuits that have oscillations will not have a stable con-
figuration corresponding to some input and will fail this test.
The algorithm we describe here will not derive equivalent
RTL descriptions for oscillatory circuits.

3.3 Computing a stable unit-step relation
The next step in the extraction is to abstract the transient

behavior. Consider the fragment of a simulation relation
shown in Figure 3(a). ConfigurationsA andD are stable
binary configurations, i.e. there is some input for which
the circuit will remain in these configuration till the input
changes. Thus as long as the input isi1 and the circuit con-
figuration isA, the circuit configuration remainsA. Now
assume that the circuit input changes toi2. The circuit
goes through intermediate configurationsB andC before
stabilizing at configurationD. Since we are not concerned
with modeling the transient behavior in the RTL model (we
assumed that the circuit has time to settle after every in-
put change), we replace the configuration space with the
reduced configuration space shown in Figure 3(c) where
there is a direct transition from one stable configuration to
the other on the given input. This mimics the analysis that
a human performs when trying to understand the circuit
operation — they simulate it till they get a stable circuit
configuration in response to an input change.

The stable unit-step relation, denotedRs, represents
the transition structure obtained by eliminating the transient
configurations from the unit-step relationRb. To compute
Rs, which represents the steady-state response of the circuit
to an input, we use the algorithm described in Figure 4. The
basic idea is to replace consecutive transitions by a single
transition and repeat the process till all transitions occur
between stable binary configurations. A similar technique
was proposed in [5].

A stable transitionoriginates at a stable binary configu-
ration and terminates at a stable binary configuration under
the input condition for which the terminating configuration
is stable. [i; x; y] is a stable transition ifx 2 SBC and
[i; y; y] 2 SBT . We denote the set of stable transitions
derived from a relationN asTsN .

Figure 3: Notion of stable unit-step relation

An unstable transitionoriginates at a configuration that
is not a binary stable configuration. A transition[i; x; y]
is unstable ifx 62 SBC. The set of unstable transitions
obtained from a relationN , is denoted asTuN .

The algorithm starts by computing the set of transitions
inRb that will form part of the final stable unit-step relation
Rs (line 1). It then computes the set of transitions that orig-
inate at stable configurations but are not part of the steady
transitions (line 2). This set is denoted asRsu (transitions
from stable tounstable configurations). We then iteratively
compute the consecutive transitions (line 4) and the initial
transition of the two-step transition (line 5). We partition
the set of consecutive transitionsA, into the transitions that
will be part of the final relation,TsA and the set of tran-
sitions that end at unstable configurationsA0 (line 6). We
terminate the iteration when no new transitions are added
toRs (line 7). If there are new transitions we add them to
the resultRs (line 8) and update the setRsu (line 9). Fig-
ure 3 shows the different types of transitions — dashed arcs
denote the starting transitions, those inRsu; the bold arcs
denote the unstable transitions, those inRu; while normal
arcs are part of the stable unit-step relationRs.

The classification of the circuits is based on characteris-
tics of the stable unit-step relation as well as the clocking
scheme. Whether we perform the synchronous test or the
combinational test depends on whether a clocking scheme
has been specified for the circuit. These tests are described
next.

3.4 Identifying Combinational Circuits

A relationRs represents a combinational circuit if there
is a unique, binary output value for every binary input ap-
plied to the primary inputs. If there exists an input configu-
ration that can produce two or more distinct output config-
urations, then the output is not determined uniquely by the
circuit inputs and must also depend some signal that is not
a circuit input. This indicates sequential behavior.

For outputoj , denote byIj(a; b) the set of input con-

stableunit-steprelation(Rb, SBT , SBC)
1 Rs = TsRb; : Initialize the stable unit-step relation
2 Rsu = Rb:SBC:SBT : Starting transitions
3 while (TRUE)
4 A = SZ (Rsu(I;X; Z):TuRb(I; Z; Y)) : Consecutive transitions on same input
5 B = [Z ! Y]SY (Rsu(I;X; Z):TuRb(I; Z; Y)) : Initial transition of above pair
6 A0 = A� TsA : New set of starting transitions
7 if (TsA � Rs) break; : Terminate if no new transitions
8 Rs = Rs + TsA : Update stable unit-step relation
9 Rsu = (Rsu �B) + A0 : Update set of starting transitions
10 end while
11 return Rs

Figure 4: Algorithm to compute the stable unit-step relation

ditions for which the output variables(oHj ; o
L
j) evaluate to

(a; b). This is computed from the stable unit-step relation.

Ij(a; b) = SXY (Rs(I;X; Y):(oHj � a):(oLj � b))

We first check that the setsIj(0; 0) and Ij(1; 1) are
empty, i.e., that there is no input condition for which the
outputoj is non-binary. We then apply two checks — the
completenesscheck and theuniquenesscheck for output
oj . We say that an outputoj passes thecompleteness test
if Ij(1; 0) + Ij(0; 1) � BI1, i.e., the output must evaluate
to a binary value for all binary inputs. Theuniqueness test
verifies thatIj(1; 0):Ij(0; 1) � ;, i.e. the input patterns
producing a binary 1 and 0 at the output are mutually ex-
clusive. If both these checks are satisfied the outputoj is
declared combinational. The logic function for outputoj is
the Boolean function whose on-set isIj(1; 0) and offset is
Ij(0; 1). Note that this function is defined only in terms of
the primary inputs of the circuit.

The classification procedure makes no assumption re-
garding the circuit topology as it operates only on the sta-
ble unit-step relation. It is the pre-processorTranalyze that
handles cyclic combinational circuits by introducing unit-
delay elements to break the feedback edges. It is an inter-
esting problem to compare our approach with the condition
stated in [6] for determining if a cyclic circuit is combina-
tional.

When a relationRs fails the combinational test, the anal-
ysis may be repeated after specifying the clock signals, if
any. The next section discusses how we handle sequential
circuits.

3.5 Identifying Synchronous Circuits

There are two categories of sequential circuits — syn-
chronous and asynchronous. Synchronous operation is de-
fined in terms of a set of distinguished “clock” signals.
Hence it is necessary for the designer to identify the clock
signals and specify their relationship to one another.

For ease of exposition we assume that circuits have two-
phase clocking (two distinct configurations of the clock sig-
nals repeated indefinitely). The set of clock inputs,C, is
a subset of the circuit inputs,I. The clock signals take on
two distinct configurations,phase1andphase2. The two
clock phases are represented by their characteristic func-
tions,�1 and�2 respectively, which are obtained by form-
ing a product (with the appropriate polarity) of the clock
signals during that phase. As an example, in a master-slave
clocking scheme, where the master-clock,MCK, and the
slave-clock,SCK, are complementary,�1 = MCK:SCK

and�2 = MCK:SCK.

Our approach classifies the signals that comprise the cir-
cuit configuration as eitherwell-definedorundefined. A sig-
nal iswell-definedif it is a combinational or level-sensitive
function of other signals. A combinational signal is inde-
pendent of the clock phase, while a signal is level-sensitive
if its value remains unchanged during one clock phase. All
other behavior cannot be represented in an RTL model and
we call the signals that exhibit such behaviorundefined.

When all circuit outputs arewell-definedfunctions of
signals that are themselveswell-defined, we get a represen-
tation of the output that is equivalent to an RTL model. By
using a constructive algorithm, we are assured that circuits
for which an RTL model is derived do embody the extracted
behavior.

The stable unit-step relation,Rs(I;X; Y), for the cir-
cuit was computed earlier. We focus on a single compo-
nentyi in the next-configuration space,NC. The relation
Ri
s = S(NC�yi)Rs describes the value of the signalyi as a

function of the circuit inputs (data and clock signals) and
the present configuration. FromRi

s we obtain two rela-
tionsA�1

i = SC(R
i
s:�1) andA�2

i = SC(R
i
s:�2). Relation

A
�1
i (A�2

i) describes the behavior of nodeni during phase1
(respectively, during phase2). The setsSBC�1 andSBC�2

represent the stable binary configurations during phase1 and

phase2 respectively.
By examining the relationsA�1

i andA�2
i we are able to

determine if nodeni is well-defined. The test for a node
being well-defined consists of first checking whether the
node represents a combinational function, failing which we
check if the node represents level-sensitive behavior.
Combinational test: For a signalyi to be represented as
a combinational function, its value must be independent of
the clock configuration. Since the domains over whichA

�1
i

andA�2
i are defined (SBC�1 andSBC�2 respectively) may

differ, we check for equivalence only on the common part
of the domains. Nodeni is combinational if the following
equality holds.

A
�1
i \ SBC�1 \ SBC�2 � A

�2
i \ SBC�1 \ SBC�2

If this test is satisfied, we derive the logic functionfi for
this node. A relation that captures the node value at all
configurations of interest is minimized with respect to the
total set of stable binary configurations.

A0 = (A�1
i :SBC

�1) + (A�2
i :SBC

�2)
fi = min(A0; (SBC�1 + SBC�2))

Level-sensitive test: When a nodeni fails the combina-
tional test we check if it is level-sensitive. In a level-
sensitive latch, the output value is allowed to change during
one clock phase and is held constant during the rest of the
clock cycle. For nodeni to be classified as level-sensitive,
exactly oneofA�1

i andA�2
i must exhibit this behavior. Sup-

pose that
A
�1
i :(yi 6= xi) � ;

This implies that during phase1, there is no condition for
which (yi 6= xi). Alternately, it means that the value ofni
does not change during phase1 and so it is inactive during
phase1. This allows us to classify nodeni as level-sensitive,
active during phase2 (the other phase). The functionfi that
computesyi during phase2 is derived by minimizingA�2

i

with respect to the care set of stable binary configurations,
fi = min(A�2

i ; SBC). A similar test, applied toA�2
i can

be used to see if nodeni is level-sensitive, active during
phase1. Note that if the nodeni is inactive during both
phases then there is no equivalent memory device that can
model it and so the node isundefined.

Once all the components have been classified, we per-
form a structural check on the netlist to ensure that no output
depends on a component that has been classified asunde-
fined. When all outputs are independent of theundefined
nodes, we substitute for each component the appropriate
functional block (complex logic followed optionally by a
level-sensitive latch of the appropriate clocking) to generate
the RTL model.

4 Implementation and Results
The algorithm described in Section 3 has been imple-

mented in a program calledSmelt. Smelt invokesTrana-

lyze to perform the pre-processing of the transistor netlist
to derive the unit-step relation. All the sets and relations are
represented as BDDs and the computations in the algorithm
are performed using the procedural interface to a BDD li-
brary. The result of the extraction is a circuit composed
of logic gates and latches.The run-times reported in this
section are on a SPARC20 with 512MB of RAM.

4.1 Characterizing a cell library

The first set of experiments we undertook was to see
if Smelt is able to extract the functionality of the cells in
the AT&T standard-cell library [7]. The cells have tran-
sistor netlists that have been extracted from their layout
as well as logical descriptions provided by the library de-
signer. Our goal was to extract the functionality from the
transistor netlist. The diversity in the cell library provides
a rich set of examples for the extraction algorithm. This is
viewed as check for both the abstraction algorithm and for
the implementation of the algorithm inSmelt.

Combinational cellsin the cell library are implemented
in a static CMOS style, with the PMOS network being the
dual of the NMOS network. UsingSmelt, we were able to
correctly recover the functionality for all 207 combinational
cells in the standard-cell library. A majority of the exam-
ples (169 cells) are extracted in less than a couple of seconds
each, the total time for these examples is 200 seconds. For
these small cells,Tranalyze produces descriptions that are
acyclic and that have no unit-delay elements. Performing
abstraction on such descriptions is trivial.

For the remaining 38 examples, the descriptions pro-
duced bytranalyzehad more than 9 unit-delay elements.
These are introduced to model charge sharing among the
transistors. In particular, for the cell AOI4444,Tranalyze
produces a description containing 16 unit-delay elements
and 235 2-input primitives (see [2] for a description of
the primitives). Clearly, such gate-level models are un-
acceptable, both in terms of their structure and complex-
ity. When we apply our abstraction procedure, the charge-
sharing transients are removed in the computation of the
stable unit-delay relation, and we do indeed recover the
correct functionality for these gates. However, due to the
large number of BDD variables (each unit-delay element
requires six BDD variables) the run times for these 38 ex-
amples totaled 54,000 seconds.

Sequential cellsin the cell library include level-sensitive
latches, edge-triggered flip-flops, master-slave latches as
well as set-reset (RS) latches. Of the 130 sequential cells,
60 cells have either asynchronous inputs (asynchronous pre-
set and/or asynchronous clear) or have no clocks (like RS
latches).Smelt was able to correctly identify all cells that
had asynchronous behavior. This accomplishment is im-
portant since it gives us confidence that the tool is able
to correctly distinguish between synchronous and asyn-

Example Transistors Modules Time(sec)
PE 1183 9 266
POLUNIT 4114 26 281
CPONTROL 4908 16 239

Table 1: Results of abstraction of full-custom designs

chronous circuits. For the remaining 70 synchronous cells,
we extract an equivalent RTL description. The abstracted
functionality has been automatically checked for consis-
tency with the independently provided RTL descriptions
that are contained in the cell library. The total time required
to process all the 130 cells was only 170 seconds.

4.2 Characterizing full-custom modules

The library-characterization experiment was a success
but it does not exploit the power of the extraction algorithm
since the cell library design follows a rigid design discipline.
Furthermore, a pattern-matching techniques can easily be
constructed to match the cells in a given library. We there-
fore tested the abstraction on custom-designed cells.

The 6-transistor XOR gate ([8] Figure 8.11) presents
problems to many switch-level simulators.Tranalyze pro-
duces a description which has one unit-delay element.
Smelt extracts the XOR functionality for this circuit. We
also derive the correct functionality for transmission-gate
based adder structures ([8] Figure 8.13). Cyclic combina-
tional circuits presented in [6] were also correctly extracted
by Smelt.

For large circuits it is impractical to perform extraction
on the entire circuit. We exploit the design hierarchy to
overcome this limitation. We have developed a heuristic
to determine the modules that need to be characterized.
Using this divide-and-conquer approach we have charac-
terized parts of commercial full-custom designs. These
include: PE which is one of the processing elements that
make up an 8x8 array which performs motion-estimation in
a video-encoder,POLUNIT which is composed of arith-
metic functions and implements a leaky-bucket algorithm
for rate control in Asynchronous Transfer Mode (ATM) traf-
fic management, andCPONTROL which is the controller
of a SPARC microprocessor core.

Table 1 shows data on the full-custom designs described
above, as well as the run-time. Even though these circuits
are of moderate size, their functionality can be described in
terms of a fairly small set of modules. The run-time includes
all of the processing — reading in the designs, determining
which modules to characterize, performing the abstraction
and finally writing out an equivalent logic description in
terms of logic gates and latches.

5 Conclusions
We have presented a technique for deriving register-

transfer models from transistor netlists that is based on ex-
amining the switch-level relation. Before deriving RTL
models we first apply tests to determine whether the cir-
cuit is combinational or synchronous. For these circuits an
equivalent RTL model is derived based on the functionality
that is captured by a switch-level simulator. To the best of
our knowledge, tests for determining if a circuit has an RTL
model have not been available in the past. Consequently,
existing techniques could not guarantee the correctness of
the extracted models. The technique described here is con-
structive, and the extracted circuits capture the behavior
modeled by the switch-level relation.We emphasize that
our contribution in this paper is the algorithm that clas-
sifies the switch-level relations and not the pre-processing
required to generate the switch-level relation from the tran-
sistor netlist.

References
[1] P. Agrawal, S. H. Robinson, and T. G. Szymanski. Au-

tomatic Modeling of Switch-Level Networks using Par-
tial Orders. InIEEE Transactions on Computer-Aided
Design, pages 696–707, July 1990.

[2] R. E. Bryant. Extraction of Gate Level Models from
Transistor Circuits by Four-Valued Symbolic Analy-
sis. InProceedings of the International Conference on
Computer-Aided Design, pages 350–353, 1991.

[3] R. E. Bryant. Boolean analysis of MOS circuits. In
IEEE Transactions on Computer-Aided Design, pages
434–469, July 1992.

[4] P. Deverchere, J. C. Madre, J. B. Guignet, and M. Cur-
rat. Functional Abstraction and Formal Proof of Digital
Circuits. InThe Proceedings of the European Confer-
ence on Design Automation, pages 458–462, March
1992.

[5] T. Kam and P. A. Subrahmanyam. Comparing Layouts
with HDL models: A Formal Verification Technique. In
IEEE Transactions on Computer-Aided Design, pages
503–509, April 1995.

[6] S. Malik. Analysis of Cyclic Combinational Circuits.
In Proceedings of the International Conference on
Computer-Aided Design, pages 618–625, 1993.

[7] AT&T Microelectronics.Standard Cells and Function
Blocks (0.9 micron CMOS). AT&T, 1990.

[8] Neil H. E. Weste and Kamran Eshraghian.Principles
of CMOS VLSI design. Addison-Wesley, 1992.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

