
Efficient and Accurate Transient Simulation in Charge-Voltage Plane

Anirudh Devgan
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598.
devgan@watson.ibm.com

Abstract
Transient simulation has traditionally been performed in current-

voltage plane (with current and voltage as variables) for verification
of integrated circuits and systems. This paper introduces techniques
for efficient and accurate transient simulation in charge-voltage
plane (with charge and voltage as variables). For integrated cir-
cuits, both simulation cost and overhead to increase accuracy are
drastically reduced by performing simulations in charge-voltage
plane. Adaptively controlled explicit simulation in charge-voltage
plane is used to demonstrate the feasibility of the approach. Solution
of circuit equations in charge-voltage plane is 10-20 times more effi-
cient than in current-voltage plane. Furthermore, simulation accu-
racy can be increased at an incremental cost. As a result, ACES in
charge-voltage plane provides speedups of 300x-5000x or more over
traditional circuit simulators with little or no loss in circuit timing
accuracy.

1. Introduction

Traditionally, transient simulation has been performed in current-
voltage plane (i.e. by considering current and voltages as variables
of interest). Circuit equations are formulated in terms of currents and
voltages leading to nonlinear ordinary differential equations. Once
the circuit equations are formulated, transient simulation is per-
formed by repeated evaluations of the circuit (or part of the circuit
for multirate/event driven simulations). Solution of these nonlinear
differential equations, along with model evaluation, constitutes the
bulk of the simulation cost. Simulation accuracy is generally con-
trolled by solution accuracy (local truncation error, etc.) and model
accuracy (complexity of the device models). Both efficiency and
accuracy are critically important in verification of complex inte-
grated circuits. Lower feature sizes, advanced and sophisticated cir-
cuit design techniques and growing “analog” nature of integrated
circuit behavior demand high levels of accuracy from a transient
simulator. On the other hand, ever increasing circuit size and com-
plexity (need to simulate circuits for larger and longer input vectors)
contribute to increased efficiency and capacity requirements.
Speedup factors of 100x-1000x compared to conventional simula-
tors coupled with acceptable accuracy are required to be able to
design today’s and future’s large integrated circuits in acceptable
time.

This paper presents techniques for improving efficiency and
accuracy by performing transient simulation in charge-voltage
plane. Prevalent modeling techniques [3,4,5,6,7,etc.] model the tran-
sistor as nonlinear dissipative element (i.e. i-v relations are nonlin-
ear, piecewise linear, piecewise constant, etc.) and linear energy
storage elements (i.e capacitors are linear). Transformation of such a
circuit into charge-voltage plane yields a circuit with nonlinear
energy-storage elements and linear dissipative elements. Solutions
of these circuits in charge-voltage plane using source-based integra-
tion methods yields significant advantage in computational effi-

ciency. Example of source-based integration methods are Forward
Euler integration, Adaptively controlled explicit integration [7],
Asymptotic Waveform Evaluation [8](AWE-based piecewise linear
methods [6,9]), etc. Charge-voltage plane simulations using adap-
tively controlled explicit integration is used to demonstrate advan-
tages of such an approach.

2. Circuit Transformation

Nonlinear coupled-ordinary differential circuit equations are
obtained by applying Kirchoff current law, Kirchoff voltage law and
by the branch constitutive relations. The circuit’s differential equa-
tions can be formulated in any independent set of basis variables (i.e.
different from i-v) provided the new basis variable set is sufficient to
describes the circuit’s operation. The basis variable (charge) in the
transformed circuit is an integral of the basis variable (current) in the
original circuit.

(1)

The connectivity relations (i.e. KVL and KCL) remain the same
in the charge-voltage plane. KCL, in the charge voltage plane, is
written in its integral form indicating the conservation of charge at
every node and cutset of the transformed circuit. Most branch con-
stitutive relations (BCRs) are changed in the transformed circuit. For
example, a conductance in the original circuit is transformed as fol-
lows,

(2)

Hence, a conductance in the original circuit is transformed to a
inductance in the transformed circuit. Transformation of some repre-
sentative circuit elements are shown in Figure 1. Consider a linear
(or linearized) circuit with nodal equations in the original (current-
voltage) plane as

(3)

In the above equations,  matrix represents the energy storage por-
tion of the circuit and  matrix represents the dissipative portion of
the circuit. In the transformed circuit in charge-voltage plane, the
matrix represents the energy storage portion of the circuit and
matrix represents the dissipative portion of the circuit.

Motivation for Circuit Transformation

Transient simulation of a nonlinear circuit is performed by suc-
cessive solutions of the circuit (or part of the circuit in case of event
driven or multirate simulations) at various timepoints of interest.
The solution of simultaneous equations  is performed at the
inner loop of the simulation process. At each “evaluation” of the cir-
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cuit, the circuit equations  change requiring a new solution
of the simultaneous equations. A change in  requires a new LU-
factorization of the matrix, where as a change in  requires a new
forward and backward solve (FBS). The execution of the LU-factor-
ization of the  linearized simultaneous equations is said empirically
to be proportional to  for integrated circuits, where  is the
dimensionality of  matrix. Whereas, the forward and backward
solve is empirically proportional to  for integrated circuit matrices.

Traditionally, in current-voltage plane, both  matrix and  vec-
tor change at each circuit “evaluation” requiring a new LU-factoriza-
tion and a new FBS. Circuit equations are bound to change during a
transient simulation of a nonlinear (or piecewise linear) circuit. How-
ever, it is computationally very attractive to concentrate most (or all)
of the change in circuit equations in vector . Hence, each solution
of circuit equations will mostly (only) require a FBS (order ) com-
pared to a matrix LU-factorization and FBS. Consider a simulation of
the circuit which requires  solutions of simultaneous equations

. In the current voltage plane, the cost of solution portion of
the simulation will be proportional to . Whereas, if all the
changes are concentrated on vector  the solution portion of the sim-
ulation will be proportional to . Transformation of circuit
equations into charge-voltage plane can provide us with such a trans-
formation such that the change in reflected in vector  most (or all)
of the time.

Integrated circuits obtained by highly prevalent modeling tech-
niques [3,4,5,6,7,etc.] have nonlinear dissipative characteristics and
linear energy storage characteristics in the current-voltage plane. Cir-
cuit equations, so obtained, can be solved using a variety of integra-
tion methods and techniques. Transforming the original circuit to
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Figure  1  Transformation of circuit elements from Current-Voltage
(I-V) to Charge-Voltage (Q-V) plane.
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charge-voltage plane (Figure 2) is particularly attractive for tech-
niques that use source-based solution methods. Source based solu-
tion methods is used to denote techniques that replace the energy
storage elements by either independent voltage sources or indepen-
dent current sources or both. Examples of such source based meth-
ods are Forward Euler integration, Adaptively Controlled Explicit
Simulation (ACES)[7], Asymptotic Waveform Evaluation
[8](AWE-based methods [6,9]), etc.

During a transient simulation, the circuit equations change at
each “evaluation” due to both the nonlinearity and the integration of
the differential equations. If an energy storage element is replaced by
a time-varying independent source, these varying independent
sources will account for both the numerical solution and nonlinearity
of the circuit in charge-voltage plane. This can be seen in Figure 3.
The changing independent source concentrates the circuit equation
changes to the right hand side of the circuit equations. The dissipa-
tive part (or the matrix portion) of the circuit does not change from
one timestep to another and hence circuit “evaluation” only requires
a forward and backward solves (FBS).

If the original circuit in  plane consists of mostly nonlinear
dissipative elements and linear inductors, it might be advantageous
to transform the circuit to current-flux ( ) plane. For most inte-
grated circuits, transformation to  plane is most beneficial. Fur-
thermore, different portions of the circuit in ,  or
planes can be combined in a single transient simulation. For exam-
ple, a portion of the integrated circuit consisting of inductors can
either be simulated with an inductor as a double derivative element
in  plane or as an inductor in  or as a conductance in
plane.

Figure  2  Affect of charge-voltage plane transformation on dissipa-
tive and energy storage elements.

Figure  3  Solution of integrated circuits in current-voltage (i-v) and
charge-voltage (q-v) planes.

3. Solution in Charge-Voltage Plane

The differential equations in charge-voltage plane are solved
using adaptively controlled explicit simulation. Multi-dimensional
continuous piecewise linear modeling techniques[11] are used to
model the device characteristics.
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3.1.  Adaptively Controlled Explicit Simulation

Adaptively Controlled Explicit Simulation (ACES)[7] is a tran-
sient simulation methodology for integrated circuits and systems.
ACES uses an adaptively controlled explicit numerical integration
procedure which overcomes stability problems in earlier explicit
techniques. The ACES integration approach naturally exploits the
temporal latency in a circuit. Partitioning and event driven simula-
tion[10] are used in ACES to exploit the spatial latency and multirate
behavior of integrated circuits. For a state variable , the ACES inte-
gration formula is written as follows,

(4)

where  and  are values of state variable at time
and  respectively,  is the timestep for integration,  is the
update derivative for the integration.  is the time derivative of
the state variable. ACES categorizes a state variable as either quies-
cent or nonquiescent. Quiescence is defined as the condition when a
particular state variable has a zero time derivative, . If a state
variable is quiescent,  may not be equal to . ACES com-
putes the response of the circuit as a transition from a condition when
all state variables are nonquiescent to a condition when all state vari-
ables are quiescent. When all state variables are quiescent (i.e. have
zero time derivatives) it is equivalent to steady state of the circuit.
However, at intermediate timepoints during the transition from the
initial condition (all state variables nonquiescent) to steady state (all
state variables quiescent) some state variables are quiescent whereas
others are nonquiescent. At any timepoint in the solution computa-
tion, ACES computes the timesteps that will take a nonquiescent state
variable to quiescence ( ) and maintains in quiescence the state
variables which are already quiescent. Hence, the response of the cir-
cuit gradually approaches steady state as more and more state vari-
ables become quiescent.

3.2.  Circuit Equations in Charge-Voltage Plane

Let all inputs to the circuit to be comprised of combinations of
steps and ramps. Device modeling techniques yield piecewise linear
dissipative elements and linear energy storage elements (in current-
voltage plane). Circuit equations at any time  can be written as,

(5)

where  is a vector of node voltages,  is the conductance matrix,
 is the capacitance matrix, and  is the current source contribu-

tions. Or, in the charge-voltage plane,

(6)

Alternatively,

(7)

where  is the vector of charge at the circuit nodes,  is a vector
of circuit node voltages,  is the contribution of independent
charge-sources. Vector  is divided into two components: vector

, which is a vector of charge at circuit nodes with a path of inde-
pendent voltage sources to ground from that node, and , which is
a vector of charge at capacitive circuit nodes. Independent set of
charge variables (i.e. ) are taken as state variables for numerical
integration. Let  be the number of state variables. Equation (7) can
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be written as,

(8)

The change of integral represents the piecewise linear modeling of
.  is the time for which the piecewise linear

elements remain linear with the present linearizations .  is a
function of  and piecewise linear device characteristics.

 is defined as the time when the next independent input slope
change occurs. Integration period, , , is defined as
the minimum of  and . Until the present integration period,

, the circuit behaves as a linear circuit with same input slopes.
Numerical integration is performed within each . For a new
integration period, the numerical integration procedure starts anew,
with all state variables assuming nonquiescent status.

Let  be the set of quiescent state variables
and  be the set of nonquiescent state
variables. Correspondingly, let  be the vector
of quiescent node voltages and  be the
vector of nonquiescent node voltages. Also, let  be the nodes with
input voltage sources connected from the node. The circuit equations
for the piecewise linear energy storage portion of the circuit in
charge-voltage plane (dissipative in current-voltage plane, i.e. tran-
sistors, diodes, resistances, etc.) is written as follows,

(9)

For a nonquiescent state variable the timestep to quiescence is com-
puted using the equation:

(10)

Using KCL (or conservation of charge in charge-voltage plane),

(11)

where,  is the double time derivative for nonquiescent state vari-
ables,  are independent charge source contributions and  are
contributions due to the piecewise linear elements (e.g., transistors
in current-voltage plane). Since current sources are piecewise linear
(ramps) in the current-voltage plane, and charge sources are time
integral of the current sources,  exists and is nonzero for a non-
zero slope ramp in current-voltage plane.

From Equation (9) and Equation (11):

(12)

For the quiescent state variables, state trajectories , are computed
such that the state variable is maintained in quiescence. To ensure
that, following constraint is imposed on the quiescent state variable,
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Alternatively,

(14)

If the current through a voltage source is desired, the equations for the
current are written as,

(15)

All the variables of interest at any timepoint (i.e.,  for nonquies-
cent state variables,  or  for quiescent state variables and inde-
pendent voltage source currents ) are included in a single matrix
equation:

(16)

As mentioned earlier, all state become nonquiescent when a new inte-
gration period begins. A new integration period begins when any
piecewise linear element has a change in it regions of operation or
when any input source has a change in its slope. When all state vari-
ables are nonquiescent, circuit equations can be rewritten as,

(17)

As seen from Equation (16) and Equation (17), majority (if not all) of
the piecewise linear elements are on the right hand side of the circuit
equations. ACES also uses partitioning and event-driven simulation
for the exploitation of circuit latency. During any timepoint of inter-
est, only “active” partitions are evaluated. The above mentioned pro-
cedure is applied to the solution of circuit equations for each active
partition. Furthermore, if required, simulation can also be performed
with some partitions in current-voltage plane and others in charge-
voltage plane.

4. Results and Analysis

Transient simulation techniques in charge-voltage plane has been
implemented in simulation program ACES(qv). This section presents
ACES(qv) results for both simulation efficiency and accuracy.

4.1.  Efficiency

Transient simulation cost consists of circuit solution, model eval-
uation, circuit parsing and partitioning and simulation overhead.
Solution of circuit equations require repeated matrix solutions each
of which involves, pivot candidate selection, lower-upper factoriza-
tion and forward and backward substitution. Table 1: compares the
circuit solution time in current-voltage (i-v) plane and charge-voltage
(q-v) plane. Table 1: shows the ACES(iv) circuit solution time,
ACES(qv) circuit solution time and ACES(qv) speedup over
ACES(iv) for the various circuits. Circuits of various sizes/configu-
rations are considered. The circuits considered are either MCNC
CircuitSim90 benchmarks or are industrial designs. All run times are
in seconds on an IBM RS/6000. As seen from Table 1, circuit solution
time in charge-voltage plane almost disappears giving a speedup of
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9x-26x over circuit solution in current-voltage plane.

Simulation accuracy can be improved by increasing the number
of segments in the piecewise linear representations[11]. Increasing
simulation accuracy in charge-voltage plane is much less expensive
compared to increasing accuracy in current-voltage plane. Overhead
for enhancing accuracy is the defined as the ratio of simulation cost
for nine region simulation to the simulation cost for four region sim-
ulation. As seen from Figure 4, the overhead is lower in the Q-V
plane compared to the I-V plane. The overhead is relatively small
even in the current voltage plane (1.1-1.42), it is even smaller in
charge-voltage plane (0.91-1.11). It should also be noted that not
only is the overhead lower in charge-voltage plane, even the cost of
a comparable four-region simulation is lower in charge-voltage
plane compared to current-voltage plane.

Table 2 demonstrates ACES(qv) efficiency compared to SPICE3
and AS/X[2]. As seen from the table, ACES(qv) provides extremely
efficient simulations with speedups of 300x-5000x over traditional
circuit simulators. Furthermore, ACES(qv) simulation cost growths
linearly with increase of circuit size (as shown in Figure 5).
ACES(qv) has been used for simulation of circuits consisting of
more than 1,000,000 transistors.

Figure  4Overhead for enhancing accuracy in current-voltage (I-V)
and charge-voltage plane (Q-V) for various circuits. Overhead is
defined as cost of nine region simulation divided by cost of four
region simulation.

Circuit MOSFETs I-V Q-V Speedup

neural net 184 1.55s 0.1s 15.5

counter 220 1.6s .07s 22.8

pchip 942 11.72s 1.05s 11.16

sram 1008 1.88s .07s 26.85

add32 1984 11.94s .82s 14.56

32cct 3328 5.05s .51s 9.9

16alu 5696 23.8s 3.04s 7.82

ram2k 13880 54.16s 2.8s 19.34

256cct 26624 271.25s 21.82s 12.43

Table 1: Speedup of circuit solution time for ACES in current-voltage (I-V)
plane over charge-voltage (Q-V) plane.
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Figure  5 Growth of ACES(qv) runtime (in seconds) for increase in
circuit size for error detection/correct (1664 MOSFETs -13312 MOS-
FETs) and ALU (5696 MOSFETs- 22784 MOSFETs) circuits.

4.2.  Simulation Accuracy

This section illustrates the simulation accuracy of ACES(qv)
through the simulation of a counter circuit (220 MOSFETs). As seen
from Figure 6, ACES(qv) provides simulation waveforms which are
almost indistinguishable from AS/X simulation waveforms.
ACES(qv) accurate captures the glitches in the waveform, as seen in
the close-up in Figure 7. ACES(qv) has been used for accurate simu-
lation of variety of integrated circuits, including dynamic logic cir-
cuits, pass transistor logic circuits, mixed analog-digital circuits,
interconnect circuits along with traditional CMOS circuits.

5. Conclusions

This paper has introduced efficient and accurate simulation tech-
niques in charge-voltage plane. Prevalent modeling techniques model
integrated circuits as nonlinear dissipative elements (transistors) and
linear energy storage elements (capacitors). The original circuit is
transformed to charge-voltage plane yielding integrated circuits
which contain nonlinear energy storage elements and linear dissipa-
tive elements. Transient simulation of integrated circuits in charge-
voltage plane by source-based integration methods yields tremen-
dous advantage in both efficiency and accuracy. ACES in charge-
voltage plane, ACES(qv), was used to demonstrate the advantage of
such an approach. The solution of circuit equations in charge-voltage
plane is 10-20 times more efficient that in current-voltage plane. Fur-
thermore, cost of improving accuracy by adding more regions in the

Circuit MOSFETs ACES(qv) Speedup Over SPICE3

adder5 114 371.2

edc 208 981.3

add20 958 3846.5

Circuit MOSFETs ACES(qv) Speedup Over AS/X

counter 220 853.6

sram 1008 1110.5

4alu 1414 3274.2

64cct 6656 5273.2

Table 2: Speedup of ACES (qv) over SPICE3 and AS/X for various circuits.
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device models is insignificant in the charge-voltage plane. As a
result of techniques presented in this paper, ACES(qv) simulates cir-
cuits of size over one million transistors and provides a speedup of
300x-5000x or more over conventional circuit simulators with little
or no degradation in circuit timing accuracy.

Figure  6 Output waveforms for a counter circuit as obtained by
ACES(qv) and AS/X.

Figure  7 Close-up of output waveforms as obtained by ACES(qv)
and AS/X.
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