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Abstract| In this paper, a Fiduccia-Mattheyses (FM)

algorithm incorporating a novel initial partition gen-

erating method is proposed. The proposed algorithm

applies to both bipartitioning and multi-way partition-

ing problems with or without replication. The initial

partition generating method is based on a gradient de-

cent algorithm. On partitioning without replication,

our algorithm achieves an average of 17% improve-

ment over the analytical method, PARABOLI, on bi-

partitioning, 10% better than Primal � Dual method

on 4-way partitioning and 51% better than net-based

method. On partitioning allowing replication, our al-

gorithm achieves an average of 23% improvement over

the directed Fiduccia-Mattheyses algorithm on Repli-

cation Graph (FMRG) method on bipartitioning.

1 Introduction

Many approaches [1, 3, 4, 5, 6, 7, 9, 14, 17, 18, 19, 20]
have been proposed to solve the partitioning problem with
size constraints. Among them, the Kernighan-Lin [9]
based algorithms are most widely used due to its simplic-
ity. An e�cient variant was later proposed by Fiduccia
and Mattheyses [6]. Sanchis [15] adapted the two-way
Fiduccia-Mattheyses (FM) algorithm to deal with multi-
way partitioning problems.

In practice, a given cell can be replicated to reduce the
inter-chip connection. Kring and Newton [10] extended the
FM algorithm to allow nodes to be duplicated explicitly
during partitioning. Hwang and El Gamal [8] formulated
the replication problem as a problem to determine opti-
mum replication sets for an existing partitioning. Later,
Liu et. al. [12] devised a replication graph to consider the
combined e�ect of partitioning and replication. Then, a
directed FM algorithm was applied on the proposed repli-
cation graph.

FM based algorithms are highly sensitive to the choices
of the initial partition. Therefore, a good initial partition
is critical for the success of an FM based algorithm. In this
paper, we utilize a gradient decent algorithm [16] to gener-
ate an initial partition of the FM based algorithm. Given
a circuit, we formulate the partitioning problem (with or
without replication) as an integer mathematical program-
ming problem with quadratic objective function and linear
constraints. By removing the constraints, the partitioning
problem becomes an unconstrained minimization problem.
Then, a gradient decent approach is applied to solve the
unconstrained problem. Based on the solution generated

by the gradient decent algorithm, we construct a feasi-
ble solution of the partitioning problem (i.e., satisfying all
constraints) by solving an assignment problem. Finally, an
FM based algorithm is applied to improve the solution.

2 Problem Statements

2.1 Models and De�nitions

The directions of nets have to be imposed in partition-
ing with replication. Therefore, we introduce a directed
hypergraph and a directed graph to model a circuit.

Directed Hypergraph Model: Given a circuit, we for-

mulate its netlist as a directed hypergraph bH = (V; bEH),
where set V consists of nodes i (i = 1; : : : ; n) with size si
and set bEH consists of nets eu (u = 1; : : : ;m) with weight
cu. A multiple-pin net eu is characterized by (au; bu) where
au � V are the source nodes and bu � V are the sink nodes.
We assume that jau [ buj � 2, jauj � 1 and jbuj � 1.

Directed Cut Set: For two disjoint node sets X and Y ,
we use (X  Y ) to denote the directed cutset from Y to
X. Therefore, (X  Y ) contains all the nets eu = (au; bu)
such that Y intersects source node set au and X intersects
sink node set bu. We use function c(X  Y ) to denote the
total weight of the nets in (X  Y ).

Directed Graph Model: Given a hypergraph, hyper-
edges in the netlist can be transformed into graph edges
based on a complete bipartite graph model, where each di-
rected net eu = (au; bu) contributes a set of graph edges
f(i; j) j i 2 au; j 2 bug with weight

cu
jbuj

on each edge (i; j).

Given a directed hypergraph bH = (V; bEH ), let bG = (V; bE)
denote the corresponding directed graph of bH, where bE
consists of edges (i; j) with weight ci;j.

The graph model is used to simplify the derivation of
the gradient function. Once the gradient function is formu-
lated, we extend the derivation to the hypergraph model.

Multi-Way Partitioning: Let K denote the number of
blocks. Given a set of nodes V , a K-way partition P =
(V1; V2; : : : ; VK) maps V into K blocks, such that V1[V2[
: : :[VK = V . We use function size(X) to denote the total
size of a node set X. The upper and lower size limits of
each partition are denoted by CU and CL, respectively. CL

and CU are de�ned as follows:

CL =
size(V )

K
(1�

�

100
); CU =

size(V )

K
(1 +

�

100
);



where � is a user-speci�ed parameter to control the size
constraints. We call � the size overhead parameter.

2.2 Objective Functions of Multi-Way Parti-
tioning Problem

There are four di�erent objective functions used in the
partitioning literature.
Obj 1: Minimize the maximum number of I/O pins of
each blocks.
Obj 2: Minimize the number of crossing nets.
Obj 3: Minimize the total number of I/O pins on all
blocks.
Obj 4: Minimize the total number of input pins on all
blocks.

In this paper, the gradient decent approach uses Obj
4 as an objective function to derive the initial partition.
Once the initial partition is derived, we adopt the FM
method to improve the result using the objective function
speci�ed by the user.

2.3 Problem Formulation

K-way Partitioning Problem without Replication:

Given a directed hypergraph bH = (V; bEH ), �nd a parti-

tion P = (V1; V2; : : : ; VK) with an objective of minimizing

the total number of input pins, i.e. min
P

1�i�K c(Vi  
�Vi), subject to the size constraints, CL � size(Vi) �
CU 8 block i 2 f1; 2; : : : ;Kg, the feasible condition,

V1 [ V2 [ : : : [ VK = V , and the disjoint condition,

Vi \ Vj = ; 8i; j 2 f1; 2; : : :;Kg and i 6= j.

The feasible condition expresses that all nodes should be
assigned into blocks. When replication is not allowed, the
disjoint condition restricts each node to be placed into only
one block.

K-way Partitioning Problem with Replication: The
de�nition of the K-way partitioning problem with replica-
tion is the same as that of the partitioning problem without
replication except the disjoint condition is excluded.

Although replication may change the netlist of the orig-
inal circuit, the objective function above remains valid for
the problem.

Lemma 1: The objective function
P

1�i�K c(Vi  �Vi)
represents the total number of input pins on all blocks after

replication.

3 Heuristic Algorithm for Partitioning
Problems

In this section, we �rst formulate the partitioning
problems as integer mathematical programming problems.
Then, we outline the heuristic algorithm based on the gra-
dient decent approach to tackle the partitioning problems.
Finally, a two-phase partitioning method is introduced.

3.1 Integer Mathematical Programming For-
mulation

We use a vector of boolean variables to represent a
multi-way partition so the partitioning problems can be

formulated as integer mathematical programming prob-
lems. For simplicity, we formulate the partitioning prob-
lems based on the graph model. The extension to the hy-
pergraph model will follow.

Boolean Vector: For a node i and a block b, let xb;i
denote a boolean variable, where xb;i is 1 if node i is
assigned to block b, otherwise xb;i is 0. Then a vector
x = (x1;1; : : : ; x1;n; : : : ; xK;1; : : : ; xK;n) can present a
K-way partition.

Partitioning without Replication: Given a directed

graph bG = (V; bE), the partitioning problem is formulated
as follows:

min f(x) =
X

1�b�K

X

1�i�n

X

(j;i)2bE
cj;ixb;i(1 � xb;j) (1)

Subject to the following constraints:

CL �
nX

i=1

xb;isi � CU 8 block b 2 f1; 2; : : :;Kg: (2)

KX

b=1

xb;i = 1 8 node i 2 V: (3)

The objective function is to minimize the total number
of input pins on all blocks. Constraint (2) states that the
total node size of each block should be within the speci�ed
bounds. Constraint (3) states that each node is placed
into only one block. In the sequel, we use S � f0; 1gKn

to denote the set of feasible integer solutions satisfying
equations (2) and (3).

Partitioning with Replication: The mathematical for-
mulation of the multi-way partitioning problem with repli-
cation has the same objective function and size constraint
as those of the partitioning problem without replication.
However, the equality constraint (3) is replaced by an in-
equality expression,

KX

b=1

xb;i � 1 8 node i 2 V: (4)

3.2 Outline of the Heuristic Algorithm for
Partitioning Problem

The gradient decent approach is �rst introduced, fol-
lowed by the initial partition generating method based on
this approach. Finally, we outline the heuristic algorithm
for the partitioning problem.

3.2.1 Gradient Decent Approach

The gradient decent algorithm ( [16] pp.226) can tackle the
unconstrained minimization problem. Given a continuous
and di�erentiable function f de�ned over Rd, the approach
generates a vector sequence fthg1h=1 given by

th+1 = th �
rf(th)

wh
; (5)



where th 2 Rd, rf(th) represents the �rst partial deriva-
tive of function f at point th, and wh is a step function
to normalize the search direction rf(th) from point th.
The generated sequence will converge to a local minima of
function f .

3.2.2 Initial Partition Generating Scheme

The gradient decent algorithm cannot apply to partition-
ing problems which are de�ned over an integer domain and
have linear constraints. In subsection 3.1, the partitioning
problems have the following generic formulation:

min f(x) s.t. x 2 S � f0; 1gKn;

whereK and n denote the numbers of partitions and nodes,
respectively.

By removing the constraint x 2 S � f0; 1gKn of the
partitioning problems, the gradient decent algorithm will
generate a sequence of points which eventually converges
to a local minima.

Step Function: In equation (5), a step function is re-
quired to calculate the next point in the sequence. Given
a point th, we set the step function equal to the value of
the objective function, i.e. wh = f(th), to normalize the
search direction.

Maximization Problem for Generating Feasible So-
lution: Let th denote a point generated by the gra-
dient decent algorithm at the h-th step, where th =
(th1;1; : : : ; t

h
1;n; : : : ; t

h
K;1; : : : ; thK;n). We can construct

a feasible solution xh of the partitioning problem from th.
The intuition is that the value thb;i represents the likelihood
of assigning a node i to a block b. We intend to obtain a
solution xh with the following property: xhi is equal to
1 if the value thi is large; xhi is equal to 0 if thi is small.
Thus, given a point th, the following maximization prob-
lem is solved in order to generate a feasible solution of the
partitioning problem:

max
X

1�i�n

xit
h
i s.t. x 2 S:

Initial Partition Generating Scheme: Given a parti-
tioning problem, the gradient decent approach can be ap-
plied to generate a result which may not be in the solution
space S. In that case, we can produce a feasible solution
by solving a maximization problem based on the infeasi-
ble result. The generated feasible solution can be further
re�ned by adopting an iterative improvement algorithm.

3.2.3 Outline of Algorithm

We show the outline of the heuristic algorithm for tackling
the partitioning problem.

1. Initially, h = 1; t0 = x0 2 S;

2. th = th�1 � rf(xh�1)

f(xh�1)
;

3. Solve the following maximization problem to generate
yh;
max

P
1�i�n yit

h
i s:t: y 2 S;

4. Apply an FM based method on yh to generate a better
solution xh;

5. Record xh, if xh is so-far best;

6. h = h+ 1; If h � Iter, then goto 2; otherwise, stop.

Initially, we randomly choose a point from S. In each iter-
ation, Step 2 generates a new point based on the gradient
decent method. Then, a maximization problem is solved
to produce a new feasible solution yh 2 S in Step 3. In
Step 4, an FM based iterative improvement algorithm us-
ing yh as an initial partition is applied to generate a better
result xh. The iteration stops if the number of iterations
reaches the limit.

3.3 Algorithm for Partitioning Problem
without Replication

Based on the outline of the heuristic algorithm in sub-
section 3.2.3, the detailed algorithm for the partitioning
problem without replication is presented.

Partial Derivative: We calculate the �rst partial deriva-
tive of the objective function in Step 2 of the algorithm
outline as follows. Given a directed graph bG = (V; bE),
the objective function f of the partitioning problem with-
out replication is equal to equation (1). Given a vector
of boolean values xh, let vector zh denote the derivative

rf(xh) of function f , i.e. zhb;i =
@f(xh)

@xb;i
. The value zhb;i is

equal to
P

(j;i)2bE cj;i(1�x
h
b;j) �

P
(i;j)2bE ci;jx

h
b;j: Given a

block b and node i, if i has input signal from node j (i.e.,

(j; i) is in bE) and j is not in block b, the term cj;i(1�xhb;j)

will contribute a value cj;i to zhb;i. Therefore, the termP
(j;i)2bE cj;i(1�x

h
b;j) denotes the total weight of the edges

(j; i) of which node j is not in block b. Similarly, the termP
(i;j)2bE ci;jx

h
b;j represents the total weight of the edges

(i; j) of which node j is in block b.

Extension to Directed Hypergraph Model: Given a
directed hypergraph bH = (V; bEH) and a vector of boolean
values xh, the value zhb;i for the directed hypergraph is

de�ned as c(feu = (au; bu) j i 2 bu; V
h
b \ au 6= aug) �

c(feu = (au; bu) j i 2 au; V
h
b \bu 6= ;g); where V

h
b denotes

the set of nodes assigned to block b with respect to vector
xh.

Assignment Problem: Let th denote the vector gener-
ated by the gradient decent approach at the h-th iteration.
The maximization problem described in Step 3 of the al-
gorithm outline is de�ned as follows for the partitioning
problem without replication:

max
X

1�b�K

X

1�i�n

xb;it
h
b;i (6)

Subject to the following constraints:

CL �
nX

i=1

xb;isi � CU 8 block b 2 f1; 2; : : :;Kg: (7)



KX

b=1

xb;i = 1 8 node i 2 V: (8)

The above maximization problem is a classic assignment
problem. Let thb;i be interpreted as the gain by assigning
node i to block b. The assignment problem is to �nd a
node assignment with a maximumgain subject to the con-
straints that each node is assigned to only one block and
the total node size of each block is within the size bounds.
The assignment problem is NP-Hard [13]. We adopt the
heuristic algorithm described in [13] to solve the assign-
ment problem.

Multi-Way Fiduccia-Mattheyses Algorithm: We
adopt the multi-way Fiduccia-Mattheyses (FMk) algo-
rithm [15] as the iterative improvement method for the
partitioning problem without replication. In this paper,
we do not incorporate the higher level gain computation
in our FMk algorithm. Note that FMk algorithm can be
adjusted to handle di�erent objective functions as speci�ed
by the user.

3.4 Algorithm for Partitioning Problem with
Replication

The heuristic algorithm for partitioning with replication
has the same outline as the problem without replication.
However, the assignment problem and the iterative im-
provement algorithm are extended for replication.

Assignment Problem Allowing Replication: The
maximization problem for the partitioning problem with
replication has the same objective function and size con-
straint as those of the partitioning problem without repli-
cation. However, we use the following constraint to replace
constraint (8).

KX

b=1

xb;i � 1 8 node i 2 V: (9)

We call the above problem as the Assignment Problem with

Replication, since constraint (9) allows node replication.
For the solvability of the problem, we have the following
two theorems.

Theorem 1: The assignment problem with replication

can be solved in polynomial time, if every node has unit

size.

Theorem 2: The assignment problem with replication is

NP-Hard, if the problem has non-unit node size.

Algorithm for Assignment Problem with Replica-
tion: Given n nodes and K blocks, let tb;i denote the gain
that node i is assigned into block b. The following shows
the outline of the heuristic algorithm to solve the assign-
ment problem with replication.

1. Solve assignment problem without replication;
2. Sort list (t1;1; : : : ; tK;1; : : : ; t1;n; : : : ; tK;n) in descend-

ing order into (t01; : : : ; t
0
Kn);

3. For i = 1 to Kn

if ( t0i � 0 ) stop;
else if ( having enough space ) do duplication;

We �rst adopt the heuristic algorithm for the assignment
problem without replication to generate an initial assign-
ment. Then, we consider additional node assignments in
Step 3 for duplication in the descending order of their
gains. Only those assignments with positive gains are ex-
amined since they will increase the total gain of the re-
sulted assignment. Therefore, if the current node assign-
ment has negative gain, the algorithm stops. Otherwise,
we check if the duplication will violate the size constraint.
If not, we perform the node duplication.

Directed Multi-Way Fiduccia-Mattheyses: The di-
rected two-way Fiduccia-Mattheyses algorithm in [8] is ex-
tended to perform the multi-way partitioning with repli-
cation. We use FMkr to denote the K-way Directed
Fiduccia-Mattheyses algorithm.

3.5 Two-Phase Partitioning

A two-phase partitioning approach [4, 2] can reduce the
computational complexity of huge circuits. Given a circuit,
we �rst do clustering. In the �rst phase, the partition-
ing algorithm is applied to the condensed circuit induced
from the clustering. Then, in the second phase, we use
the expanded partition from the �rst phase as the starting
point for the partitioning algorithm on the 
at circuit. We
recursively apply the two-way ratio-cut partitioning algo-
rithm [4] to divide into highly connected group.

4 Experiments

The algorithm for the partitioning problem without
replication on the 
at circuit is called the Gradient de-

cent based Fiduccia-Mattheyses (GFM ) algorithm. We use
the subscript k as in GFMk to represent the version for
multi-way partitioning. For partitioning with replication,
we use subscript r as in GFMr to denote the algorithm
that allows cell replication. The subscript t as in GFMt

represents the partitioning algorithm on clustered circuits.
In the experiments, all algorithms adopted Obj 2 as the

objective function. Therefore, subcolumn cut in each table
denotes the crossing net count. Subcolumn exe lists the
execution time on a Sun Sparc 10 and measured in seconds.

4.1 Partitioning without Replication

4.1.1 Bipartitioning

Comparison with Cheng and Wei's stable algo-
rithm [4]: In this experiment, each cell was given the
actual area size. We also followed [4] to set each I/O pads
with the minimum area size of all cells. The experiment
was based on the size overhead parameter 50%. Table 1
shows the experimental results. Column RCII denotes
the results from [4]. FM and GFM run on 
at circuits.
Column FM lists the best results from 1600 iterations.
GFM reports the best results from the experiments with
the number of iterations 60 (i.e., totally call two-way FM
to perform iterative improvement 60 times during the exe-
cution of GFM ) and 80, respectively. The execution time
exe of FM and GFM reports the average running time for



each iteration. RCII and GFMt are two-phase based al-
gorithm. RCII and GFMt report the best results from 20
runs where each run call FM 20 times on clustered circuits.
The subcolumn exe in GFMt lists the average execution
time for each run. Overall, the two-phase algorithmGFMt

achieves the best improvement over RCII.

RCII FM GFM GFMt

cut cut exe cut cut exe cut exe

cir. 1600 60 80

T4 42 44 0.7 44 44 0.7 42 19
T6 55 52 1.0 49 49 1.5 48 48
19ks 80 97 3.0 79 78 2.5 76 56
26K 65 76 149 70 70 54.8 49 593

Table 1: Comparison with FM approach and stable algorithm.

Comparison with analytical method PARABOLI
[14]: We used the test cases from the authors of [14]. In
this experiment, each cell was given an unit size. The size
overhead was set to 10% of the total cell size. Table 2
reports the comparison results. We use PA to denote the
analytical method PARABOLI. The results of GFMt

are from one run only. On the average, the GFM algo-
rithm with the number of iterations 80 and the two-phase
GFMt algorithm achieve 15% and 17% improvements over
PARABOLI, respectively.

PA FM GFM GFMt

cut cut exe cut cut exe cut exe

cir. 1600 60 80

s1423 16 15 0.1 16 16 0.1 15 14
sioo 45 28 0.2 25 25 0.2 28 22
s1488 50 43 0.2 46 46 0.3 51 26
balu 41 27 0.5 27 27 0.3 28 25
p1 53 47 0.3 47 47 0.2 51 25

struct 40 42 1.2 43 41 1.0 36 32
p2 146 161 3.7 139 139 2.8 139 61

s9234 74 47 11 42 41 8.4 44 186
biomed 135 83 21 84 84 18 92 371
s13207 91 77 30 67 66 24 61 397
s15850 91 84 47 63 63 32 46 530
ind2 193 298 73 211 211 54 175 819
ind3 267 241 77 241 241 50 244 861
s35932 62 99 277 48 41 127 44 1088
s38584 55 59 488 50 47 121 54 3463
s38417 49 135 588 85 81 141 62 1062

Table 2: Comparison with FM approach and analytical method
PARABOLI.

4.1.2 Multi-Way Partitioning

Comparison with Primal-Dual method: In this exper-
iment, each cell was given the actual area size. The size
overhead was limited to 50% of the total cell size. Table 3
shows the experimental data. The GFMk algorithm was
performed with the number of iterations 40. Subcolumn
PD denotes the data of the Primal �Dual algorithm re-
ported in [20]. Note that exe lists the total running time of

GFMk. On the average, the GFMk algorithm achieves 7%
and 10% improvements on 3-way and 4-way partitioning,
respectively, compared with the PD algorithm.

3-way 4-way
cir. PD GFMk PD GFMk

cut cut exe cut cut exe

T2 81 81 158 217 182 183
T3 108 101 92 170 162 204
T4 100 104 127 154 138 147
T5 80 85 276 213 208 372
T6 157 104 101 189 145 196

PGA1 56 74 30 102 107 54
PGA2 377 259 222 459 335 396
PSC1 77 76 36 107 110 63
PSC2 370 261 211 426 354 443

Table 3: Comparison with Primal-Dual approach.

Comparison with HGCEP algorithm: The hierar-
chical gradual constraint-enforced partitioning algorithm
(HGCEP ) [18] is based on the two-phase approach. In
the HGCEP algorithm, the size constraints on the sub-
sets are relaxed at the beginning and gradually enforced
in later passes. In this experiment, the size of each cell
was set to the real area size and the size overhead param-
eter was set to 20%. Table 4 lists the comparison results.
The results of the GFMkt algorithm are from one run only
while the algorithm applied the GFMk algorithm with the
number of iterations 40 on clustered circuits. The GFMkt

algorithm achieves an average of 10% reduction.

HGCEP GFMkt

cir. cut cut exe

T2 161 154 42
T3 132 117 34
T4 137 134 40
T5 201 144 51
T6 182 98 55

PGA1 96 100 21
PGA2 296 261 103
PSC1 89 100 24
PSC2 286 271 83

Table 4: Comparison with HGCEP method.

Comparison with net-based algorithm: The net-
based algorithm [5] performs partitioning on a dual netlist
representation. We used the test cases from the authors
of [5]. The size overhead parameter was set to 10%. How-
ever, there are a few test cases where the area of the largest
cell over the size upper bound. For these cases, the size
overhead parameter needs to be relaxed. Since we were not
able to get the exact size overhead parameter used in [5],
we followed the suggestion in [11] that each large cell with
size over the size upper bound will occupy a block and the
rest of cells are partitioned into the remaining blocks un-
der the size constraints (calculated from the total size of
remaining cells and the number of remaining blocks). In
this experiment, the number of iterations of the GFMk



algorithm was set to 20. Table 5 shows the experimental
results. We use DF to denote the net-based algorithm.
Note that exe lists the total running time of GFMk. On
the average, GFMk achieves 42% and 51% improvements
over DF on 3-way and 4-way partitioning, respectively. In
Table 5, � denotes those test cases with large cell violating
the size constraints and the improvement over those test
cases may not be exact.

3-way 4-way
DF GFMk DF GFMk

cir. cut cut exe cut cut exe

T2 81 81 23 318 �179 136
T3 201 120 60 298 174 92
T4 329 �144 61 514 �223 97
T5 517 �166 118 863 �278 204
T6 252 156 66 285 144 101

PGA1 159 97 15 187 105 21
PGA2 578 268 114 717 422 143

Table 5: Comparison with net based method DF on 
at cir-

cuits; � denotes those test cases with large cell violating the
size constraints.

4.2 Partitioning with Replication

We performed the experiments on the same test cases
as those in [12] where each I/O pad was set to the largest
area of all cells. We set the size overhead limit to be 50%.
In each table, over denotes the percentage of the cell size
overhead due to replication.

We made comparison with the FM on Replication Graph

approach (FMRG) [12]. The FMRG algorithm �rst con-
struct a replication graph. Then, the directed FM algo-
rithm is applied on the replication graph to generate a
solution. Table 6 shows the experimental results. The
number of the iterations in the GFMr algorithm was set
to 20. The results in the column GFMrt are from one run
only. On the average, the GFMr and GFMrt algorithms
achieve 14% and 23% improvements over the FMRG al-
gorithm.

FMRG GFMr GFMrt

cir. cut cut exe over cut exe over

T2 33 32 30 47% 31 19 48%
T3 23 17 26 49% 16 19 48%
T4 25 27 35 40% 23 18 38%
T5 34 23 72 34% 26 35 42%
T6 17 21 38 49% 11 23 47%
T7 29 18 76 48% 19 41 48%

Table 6: Comparison with FMRG method.
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