
Design-For-Debugging of Application Specific Designs

Miodrag Potkonjak†§, Sujit Dey†, Kazutoshi Wakabayashi‡

†C&C Research Laboratories, NEC USA, Princeton, NJ 08540
‡C&C Research Laboratories, NEC Corp., Tokyo, Japan

ABSTRACT

We address the problem of considering debugging requirements
during high level synthesis by providing low-cost hardware
support and scheduling and assignment methods for ensuring
controllability and observability of the user specified variables.
Two key conceptually new design ideas that enable efficient
debugging are developed: pipelining of debugging variables
for improving their scheduling and assignment freedom and
use of I/O buffers for improving resource utilization of I/O pins.

The provably optimal bounds for the maximum cardinality of
the set of controllable and observable variables for a given
design specification are derived. A polynomial time complexity
synthesis algorithm for achieving the bounds is developed. The
minimization of hardware overhead gives rise to a combinato-
rial optimization problem which is solved using a non-greedy
heuristic algorithm. The effectiveness of the proposed Design-
for-Debugging approach is demonstrated on several examples.

1.0 Introduction

It is well-known that functional debugging usually
dominates the cost of design development. Debugging is in
particular a difficult activity when real-time full-custom
ASIC designs are targeted, due to the strict timing constraints
and a lack of flexibility during execution.

We have four main objectives of the research presented in this
paper:
1. to formalize an intuitive notion of ASIC debugging so

that it can be treated as a design and CAD activity;
2. to identify key design and high level synthesis principles

which support debugging;
3. to developed efficient high level synthesis algorithms for

optimization problems related to ASIC debugging; and
4. to give an impetus for creation of design-for-debugging

and synthesis-for-debugging methodologies.

Debugging is a process of detecting, diagnosing, and
correct ing errors in the speci ficat ion of an ASIC
implementation. Error is any discrepancy between desired
and realized behavior of the specification of the design. The
debugging process can be divided into three phases [Ren89].
The first step is error detection, in which the designer
discovers that a program (design) does not function correctly

for a particular input. The second phase is error diagnosis in
which the programmer/designer identifies the statement or the
section of the code which is causing the incorrect behavior.
The third step is error correction, in which the faulty section
or the statement responsible for the observed fault is replaced
by the corrected section.

In the research presented in this paper, we concentrate on the
error detection phase. Even when only this phase is
considered there can be numerous different strategic
approaches. However, it is widely accepted that providing
simultaneous controllability and observability of as many as
possible variables of the program under execution immensely
facilitates the debugging process.

Therefore, we will informally define the design-for-
debugging problem in the following way. Given is an ASIC
design. The design is fully specified: the control-data flow
graph (CDFG) of the computation, timing constraints in
terms of the available number of control steps, and the
schedule and assignment of each operation, variable and
constant, and data transfer are given. Furthermore, a set of
desired controllable debug variables (write variables) and
observable debug variables (read variables) is specified by the
user. The goals of a design-for-debugging (DfD) technique is
to modify design such that the set of desired debug variables
are made controllable/observable, satisfying given timing
constraints, while adding a minimal additional hardware.

The key constraint of the DfD is that functionality of the
design should not be altered in any way, except when
requested by the user when debugging variables should be
altered by the user provided values. The key idea is to use
available I/O pins for reading and writing debug variables in
control steps when they are not used by the design variables.

We conclude this section by pointing out key differences
between testing and debugging. The key difference is that
while testing targets controllability and observability in the
test mode, debugging targets enhanced controllability and
observability during the functionally correct mode of
operation. Furthermore, while testing has as the goal to make
all hardware elements of the design (e.g. all execution units,
all registers, and complete control logic) controllable and
observable, debugging concentrates only on a selected set of

§Miodrag Potkonjak is now with UCLA , CS Department

registers at the selected control steps in which user-specified
debugging variables are stored. Finally, debugging an ASIC
design usually requires that all controllable variables are set
simultaneously and that all observable variables are
simultaneously obtained.

The rest of the paper is organized as follows. In the next
section we review related work. Sections 3 and 4 introduce all
preliminaries and the design-for-debugging process. We
present the algorithm for minimization of debugging
hardware using life-time spliting of debugging variables in
Section 5. After presenting experimental results in Section 6,
we summarize the DfD method in Section 7.

2.0 Related Work

Debugging is as old as building of digital electronic
computing systems. Debugging has been recognized as a
crucial design and compilation activity. However, initially it
was relatively rarely addressed due to its high conceptual
complexity [Hen82, Zel83]. Recently, the situation changed
and the importance of debugging has been documented by a
great deal of research in several research and development
communities, including compilers and computer architecture,

By far the most comprehensive treatment of debugging has
been conducted in the software compiler domain. Several
debuggers, such as Dbx [Lin90], has been widely used.
Currently the major emphasis in the software compilation
debugging domain is on integration between optimization
technique based on transformations or aggressive scheduling
techniques and debugging process [Shu93].

Numerous controllers and DSP processors are supported by
in-circuits emulators which enable an efficient debugging. An
in-circuits emulator for a processor is a system that can
imitate the behavior of the microprocessor, with the extension
that the internal state and operation of the emulated processor
is fully observable and controllable by the user [Chi94].

An interesting alternative to in-circuit emulation is used
sometimes during development of new microprocessors
[Sei93]. The processor model is ported onto a logic design
hardware model comprising of an array of rapid prototyping
modules. This way both high speed execution and complete
observability/controllability of all registers is provided.

In the CAD domain recently Powley and De Groat developed
a VHDL model for an embedded controller [Pow94]. The
model supports debugging of the application software. Also,
Naganuma et al. [Nag94] combined structured analysis
approaches with algorithmic debugging techniques from
logic programming to speed-up design validation process.

3.0 Preliminaries and Problem Formulation

In this section we present all the essential assumptions for
introducing and developing our approach for design-for-
debugging. We conclude the section by explicitly stating the

considered design-for-debugging problem.
We assume the synchronous da ta flow mode l o f

computations [Lee87] which is widely used in many
computationally intensive applications. The selected
computational model has two important implications for the
design-for-debugging approach. First, i t states that
computation is conducted on infinite stream of data implying
a need for periodic controllability and observability of
variables in each iteration. Second, it implies static compile-
time scheduling and assignment and full predictability of the
earliest and the latest time when a particular debugging
variable can be observed or controlled.

We do not put any restriction on the interconnect scheme of
the assumed hardware model at the register-transfer level. We
considered two types of I/O mechanisms. In the first type
each pin can be used to both input and output data. In the
second case, a pin can be used exclusively as either an input
or an output unit. While the first type of I/O pins provides
higher flexibility, its hardware realization is more expensive.

The four key debugging assumptions are the following.
1. The design is fully specified (scheduled and assigned)

and its functionality and realization should not be dis-
turbed by the debugging process, except for bringing the
user specified values to the controllable variables.

2. All controllable/observable variables are known at com-
pile/synthesis time. Usually debugging variables are one
which are states in the functionality of the computations
which denote boundaries between successive program or
internal loop iterations.

3. For proper support of debugging, all controllable and
observable variable should be simultaneously controlla-
ble and observable.

4. During design-for-debugging, we allocate additional
debugging hardware to t satisfy all (or as many as possi-
ble) debugging requirements. The goal is, of course, to
add as little as possible hardware. In particular, we do
not allow increase in the number of I/O pins, since this is
the hardware constraint which usually dominates other
hardware constraints in modern designs.

The DfD problem can be summarized as follows. Given a
design and a list of debugging variables. Add as little as
possible additional hardware resources and schedule and
assign the desired debugging variables and associated data
transfers so as to satisfy all the debugging requirements.

4.0 The Design-for-Debug Process

Consider the Control Data Flow Graph (CDFG) of a 4th order
IIR parallel filter shown in Figure 1(a). The example consists
of nine addi t ions represented by +1, . . . , +9, nine
multiplications represented by *1, ... , *9. The state variables
are denoted byS1, ... ,S4 . The nodes T1 and T2 represent
transfer operations, and .

Suppose the designer-specified schedule and assignment of

S2 S1–<() S4 S3–<()

the nodes is as shown in Figure 1(a). The schedule satisfies a
performance constraint of seven clock cycles, and uses a
minimal set of execution units, two adders (A1 andA2) and
two multipliers (M1 andM2). For instance, the operation +2
is scheduled in control step 3, and assigned to be executed in
adderA1, shown in Figure 1(a) by the ordered pair (3,A1).

Associated with every input (output) variable of the design is
an input (output) operation. Similar to scheduling/assigning
other operations, an input (output) operation has to be
scheduled in a clock cycle in which an available input
(output) pin resource can be used to write in (read out) the
variable from (to) the environment. Consequently, the
specified design has one input pin and one output pin. In the
rest of the paper, an input (output) operation of data to (from)
an input (output) variable will be referred to by the name of
the variable itself.

Without any design-for-debugging, to debug the design, the
designer can only write to the primary inputIn, and read from
the primary output variableOut. To make the design easier to
debug, suppose the designer wishes to be able to write and
read the state variableS1, S2, S3, andS4 during debugging.
The ability to write and read the state variables would enable
the designer to control and observe the state of the
computation after every iteration. Consequently, for the DfD
technique to be described in this paper, thedebug write
and read variables are {S1, S2, S3, S4}, and thedebug
requirements are {WR(S1), WR(S2), WR(S3), WR(S4),
RD(S1), RD(S2), RD(S3), RD(S4)}. Note that in this case, the
debug write variables are the same as the debug read
variables; but, in general, this may not be the case.

4.1 Incorporating the Debug Requirements
To incorporate the desired debug requirements, the original

CDFG in Figure 1(a) is modified to the CDFG of Figure 1(b),
with the desired input/output operations added. To satisfy the
debug write requirements, each debug write variableSi will
be set to a newDebug Input variable DIi when “Debug =
1” and to its original source otherwise. The introduced
triangular nodes represent conditional statements/switches,
which can be implemented as multiplexor nodes in the actual
implementation. For example, in the new CDFG, the
following input operation is incorporated to satisfy WR(S1):

If (Debug) thenS1 <- Out(+2); elseS1 <- DI1;

In general, a separate input variableDI i and its input
operation are needed for each debug write variableDWi, so
that eachDWi can be written independently,DWi <- DIi,
during the debug mode. Similarly, for each debug read
variableDRi, an output variableDOi and its output operation
is needed to accomplish the debug readDOi <- DRi. Note that
the debug requirement of independent write (read) of each
debug variable is very different from a typical testing
requirement, where each variable whose controllability
(observability) needs to be assigned can be written from (read
to) the same, even existing, input (output) variable.

4.2 Satisfying the Debug I/O Operations

After the original CDFG has been modified to incorporate the
debug requirements, the next step is to schedule and assign
the input/output operations, so as to satisfy the specified clock
cycle and input/output pin constraints. Scheduling a given
debug input/output operation is constrained by the following
two factors:
1. The As Soon As Possible (ASAP) and the As Late As

Possible (ALAP) control steps that the write/read debug
variable can be written/read, and

2. The availability of an input/output pin in that clock
cycle.

Let prod(X) be the set of control steps in which a variableX in
the CDFG is possibly produced. (X can be produced in

+2 +4*1

+1 +3

S1

T1

*3*2

S2

*5*4

+6 +8

+5 +7

S3

T2

*8*6

S4

*9*7

+9

DI1

DI2

DI3

DI4

IN OUT

(2, M3)

(1, M1) (2, M1)

(1, M2) (2, M2)

(3, M1) (4, M1)

(4, M2)(3, M2)

(7, A1)(4, A1)(3, A1)

(3, A2)(2, A1)
(3, TU1)

(5, TU1)
(5, A1)(4, A2)

(6, A2)(5, A2)

(7, P2)(1, P1)

DO1

DO2

DO3

DO4

Figure 1: (a) Original CDFG of the 4th order IIR parallel filter,
showing the user-specified schedule and assignment to satisfy the
available time constraint of 7 control steps, (b) Modified CDFG
after incorporating the debug I/O operations.

+2 +4*1

+1 +3

S1

T1
*3*2

S2

*5*4

+6 +8

+5 +7

S3

T2
*8*6

S4

*9*7

+9
IN OUT

(2, M3)

(1, M1) (2, M1)

(1, M2) (2, M2)

(3, M1) (4, M1)

(4, M2)(3, M2)

(7, A1)(4, A1)(3, A1)

(3, A2)(2, A1)
(3, TU1)

(5, TU1)
(5, A1)(4, A2)

(6, A2)(5, A2)

(7, P2)(1, P1)

(a)

(b)

multiple control steps if it is set in different branches of a
conditional). Letreq(X) be the set of control steps in which a
variableX is required. Letmin{prod(X)}, max{prod(X)}
min{req(X)}, andmax{req(X)}denote the latest and earliest
control steps a variableX is produced and required
respectively. For example, in Figure 1(a),min{prod(S1)} =
max{prod(S1)} = 3, min{req(S1)} = 1, max{req(S1)} = 3.

Consider a debug input operation for the debug writeX <- DI,
whereX is the debug variable to be written, andDI is the
input variable that will be used to writeX. The debug variable
X has to be written anytime from control step 1, and before
the earliest control stepX is required. Hence, the (ASAP,
ALAP) control steps for the input operation associated with
inputDI are:

(EQ 1)

Let us consider the modified CDFG shown in Figure 1(b).
The (ASAP, ALAP) t imes for the debug input/output
operations are shown in Figure 1(c). For instance, the(ASAP,
ALAP) for input operation ofDI1, denoted just byDI1, are
(1,0), asS1 is needed in control step 1. Hence, input variables
DI1 andDI2 cannot be scheduled. Since, input In has been

+2 +4*1

+1 +3

S1

T1

*3*2

S2

*5*4

+6 +8

+5 +7

S3

T2

*8*6

S4

*9*7

+9

DI1

DI2

DI3

DI4

IN OUT

(2, M3)

(1, M1) (2, M1)

(1, M2) (2, M2)

(3, M1) (4, M1)

(4, M2)(3, M2)

(7, A1)(4, A1)(3, A1)

(3, A2)(2, A1)
(3, TU1)

(5, TU1)
(5, A1)(4, A2)

(6, A2)(5, A2)

(7, P2)(1, P1)

DO1

DO2

DO3

DO4

Figure 2: (a) Modified CDFG showing pipelining of debug
variables, (b) Interval Graph showing solution with 2 pins (c)
Interval Graph showing solution with 1 pin

PI
DI1
DI2
DI3
DI4

1 2 3 4 5 6 7 1 2 3 4 5 6 7
x

x

x
x

x

PO
DO1
DO2
DO3
DO4

1 2 3 4 5 6 7 1 2 3 4 5 6 7
x

x
x

x
x

(a)

(b)

x : input/output
 operation scheduled

ASAP ALAP,[] DI() 1 min req X(){ } 1–,()=

scheduled in control step 1, the only available control step to
schedule bothDI3 andDI4 is control step 2. However, this
can be done only if an extra input pin is made available.
Similarly, it can be seen that to satisfy the debug output
requirements, an extra output pin is required for eitherDO3 or
DO4. Consequently, when the modified CDFG in Figure 1(b)
is given to the high level synthesis system Hyper, it can
schedule the input/output operationsDI3, DI4, DO1, DO2,
DO3, andDO4 using an extra input pin and an extra output
pin, but cannot satisfy DI1 and DI2. However, if no I/O pins
are available, only 1 input operation and 3 output operations
can be satisfied.

4.3 Pipelining Debug Input/Output Variables
We now show how the debug I/O variables can be

functionally pipel ined to satisfy the desired debug
requirements. Pipelining is a widely used transformation
technique which changes positioning of a selected set of
variables from one iteration to another iteration of the
computation. Positioning of a variable to previous iteration is
usually denoted by adding @1 to the name of the variable.
Pipelining the debug I/O variables gives more freedom to
schedule the debug I/O operations. Consider the CDFG with
the debug I/O variables pipelined, shown in Figure 2(a). For
instance, variable S1 is last written in the previous iteration in
control step 3, and is required in the current iteration in
control step 0. Consequently, if the write operation (S1 <-
DI1) can be performed after step 3 in previous iteration, it will
not be re-written in the previous iteration. Similarly, the write
operation needs to be completed before control step 1 in the
current iteration for it to be used. Hence, the (ASAP, ALAP)
times for scheduling the input operation forDI1, is (4@1,0).
The (ASAP, ALAP) times of the other pipelined debug
variables/operations are listed in Figure 2(b).

In general, the (ASAP, ALAP) times of pipelined input
variableDI for a debug writeX <- DI are:

(EQ 2)
whereX@1 denotes the variableX in the previous iteration.
The (ASAP, ALAP) times of a pipelined output operation for a
debug readDO <- Y are:

(EQ 3)
whereY@-1 denotes the variableY in the next iteration. The
(ASAP, ALAP) times for the pipelined debug input/output
variables in Figure 2(a) are listed in Figure 2(b). The effect of
pipelining the debug I/O variables is clear from Figure 2(b).
Each of the I/O variables has now much more time to be
scheduled than originally as shown in Figure 1(c).

The scheduling of the debug I/O operations/variables, and
their assignment to available pins, is performed using an
interval graph representation of the (ASAP, ALAP) times of
the I/O operations, and the left-edge algorithm [Kur87],

ASAP ALAP,[] DO() =
max max prod X@1(){ } max req X@1(){ },{ }(+

1 min req X(){ } 1)–,

ASAP ALAP,[] DO() =

max prod Y(){ } 1 min prod Y@ 1–(){ } 1–,+()

originally proposed for register/module assignment. Figure
2(b) shows the (ASAP, ALAP) information for the debug I/O
operations in the form of an interval graph, where each
horizontal bar associated with an I/O operation/variable
represents the interval of the (ASAP, ALAP) times of that
operation.

When the left-edge algorithm is applied to the interval graph
shown in Figure 2(b), all the I/O operations can be scheduled
and assigned as shown in Figure 2(b). The four input
operations are scheduled in the control steps 4, 5, 6, and 7 of
the previous iteration respectively, and assigned to input pin
p1. The four output operations are scheduled in the control
steps 4, 5, 6 of the current iteration, and control step 1 of the
next iteration, and assigned to output pinp1. The net effect is
that at the beginning of every iteration, all the debug write
variablesS1, S2, S3, andS4 can been written for use in the
current iteration. Also, by the second control step of every
iteration, the values of the debug read variablesS1, S2, S3,
andS4 in the previous iteration can be read out.

4.4 Debug I/O buffering
Note that till now, we have attempted to write and read the

des i red debug var iab les a t every i te ra t ion o f the
computation.However, when a solution does not exist with a
single iteration write/read, we can increase the periodicity at
which the debug variables can be written and read. We define
debug periodicity as the number of iterations needed to write
and read the desired debug variables. In this section, we
introduce I/O buffering as a way to be always able to achieve
n debug requirements using
iterations, whereccandiop are the available control steps and
input/output pins, respectively, and I and O are the number of
primary inputs and primary outputs.

Let us consider the same CDFG of the 4th order IIR parallel
filter as before, but with a more constrained available time of
5 control steps. Assume there is one input pin, and one output
pin available. The debug write/read required are the same as
before: { WR(S1), WR(S2), WR(S3), WR(S4), RD(S1),
RD(S2), RD(S3), RD(S4)}. Figure 3(a) shows the given
schedule and assignment of the original CDFG nodes, as well
as the modification done to add the desired debug write/reads,
with the debug input/output variables pipelined.

The maximum number of debug variables that can be
satisfied is (5*2*1 - 2*1) = 8. Since the number of debug
variables that we have to satisfy is exactly 8, a periodicity of
1 may be sufficient to satisfy them. In other words, the
minimum debug periodicity required to satisfy the given 8
debug reads/writes is 1. Consequently, let us try to schedule/
assign the added debug input/output operations with a debug
periodicity of 1. Application of the left-edge algorithm
[Kur87] on the corresponding interval graph is shown in
Figure 3(b). As can be seen from Figure 3(b), only two of the
four desired debug writes can be satisfied.

Analysis of the interval graph shows that even though the

n cc* iop I O+()–()⁄

input pin is available in two control steps, 2 and 3 in the
previous iteration, it cannot be utilized for the debug inputs
because the debug variables cannot still be written, as shown
by theirASAP times in Figure 3(b). This is because ifS1, S2,
S3, orS4 are written in control steps 2 or 3, they will be re-
written by the functional operations, +2,T1, +6, orT2
respectively. This shows that though control steps and pins
may be available, they may not be utilizable because of the
ASAP, ALAP constraints imposed by the original CDFG on
the debug variables.

I/O buffering is a possible way to eliminate the restriction
imposed on the input/output operations by theASAP, ALAP
times of the write/read variables. With input buffering, any
input operation for a writeX <- DI can be performed with any
available input pin at any control step, and then stored in an
input bufferIB, to be later transferred to the register storing
variableX anytime during [ASAP,ALAP](X). Similarly, output
buffering can be used to transferY to an output buffer,BO,
during [ASAP,ALAP](Y), and then use an output pin when it
becomes available later. The I/O buffering strategy, while
taking up some extra hardware resources of registers and
interconnects, allows all the available pins and control steps
to be utilized for the desired input/output operations. Hence,
if the number of I/O buffers is not limited, a solution to the
debug write/read requirements ofdv variables can be always
satisfied with a periodicity ofdp.

(EQ 4)

Using input/output buffering, all the debug requirements for
Figure 3(a) can be satisfied as shown by the interval graph in
Figure 3(c). The input operationsDI3 andDI4 are performed
in control steps 2 and 3, and stored in input buffersIB1 and
IB2 respectively. Subsequently, in control step 4, the data
from IB1 andIB2 are transferred to the register storing
variablesS3 andS4 respectively. Consequently, with 2 input
buffers, and two interconnects, (IB1 -> Reg(S3)) and (IB2 ->
Reg(S4)), all 8 debug read/write can be accomplished, with a
periodicity of 1, under the available time and pins constraints
of 5 and 2 respectively.

5.0 Minimizing Debugging Hardware
Overhead

As we already indicated, one of the most important features
of the behavioral synthesis debugging process is that it
usually incurs a relatively small hardware overhead. In this
Section we will show a technique which can even further
reduce debugging hardware overhead.

We will introduce the procedure for debugging hardware
reduction using the following small example shown in Figure
4. The key idea is to use already available registers in the
designs when they are not used for storing design variables
and to use already available interconnects for transferring
debugging variables among the available registers in the
design when they are free.

dp dv cc* iop I O+()–()⁄=

The techniques is based on life-time splitting of debugging
variables [Kri92, Pot94]. Figure 4 illustrate the considered
optimization problem. Assume that debug variabledv is
stored in the first control step in the register 2 of the I/O
buffer and that has to be written in register C between control
steps 8 and 10. Figure 4(a) shows a part of the datapath of the
initial implementation which was obtained without taking
into account debugging. Figure 4(b) shows intervals in the
registers of the design in which those registers are not used,

+2 +4*1

+1 +3

S1

T1
*3*2

S2

*5*4

+6 +8

+5 +7

S3

T2
*8*6

S4

*9*7

+9

DI1

DI2

DI3

DI4

IN OUT

(2, M3)

(1, M1) (2, M1)

(1, M2) (2, M2)

(1, M3) (2, M3)

(2, M4)(1, M4)

(5, A1)(4, A1)(3, A1)

(3, A2)(2, A1)
(3, TU1)

(5, TU1)
(3, A4)(2, A2)

(4, A2)(3, A3)

(7, P2)(1, P1)

DO1

DO2

DO3

DO4

PI

DI1

DI2

DI3

DI4

PO

DO1

DO2

DO3

DO4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

x

x

x

x

x
x

x

x

x

x

Figure 3: (a) IIR parallel filter: schedule and assignment with
available time of 5 control steps, and added nodes for
debugging, (b) Interval graph showing solution not possible (c)
Interval Graph showing solution using 2 input buffers

(a)

(b)

(c)

PI

DI1

DI2

DI3

DI4

PO

DO1

DO2

DO3

DO4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

x

x

x

x

x
x

x

x

x : input/output operation scheduled

 : transfer from I/O buffer

except for the register C for which the interval during which
variabledv should be stored in is shown.

The straightforward way to accomplish this part of debugging
task is to introduce a new interconnect from the I/O buffer to
the register C. However, one can avoid the introduction of a
new interconnect by first transferring variabledv from I/O to
register A, and then consequently to register B and eventually
to register C. During this process two requirements must be
always satisfied. First, during period the debugging variable
is stored in a particular register the register should not be
already allocated for either design or another debug variable.
Second, each transfer from a register to another register must
be accomplished in one of control steps when this
interconnect is not used for transfer or any other data.

Assuming, that interconnects I/O -> reg A, reg A -> reg B,
and reg B -> reg C are not allocated in control steps 4, 6, 7,
and 10 respectively one can transfer variabledv from I/O to
reg C as it is shown in the last column of Figure 4(b).

So, the problem of debugging hardware minimization using
life-time spliting can be now stated in the following way.
Given is a design and all debugging variables and their
destinations. Reduce I/O buffer and additional interconnect
requirements by appropriately scheduling and assigning data-
transfers of the debugging variables, without impeding proper
functionality of the design.

To solve the optimization problem, we developed the
heuristic algorithm described by the following pseudo-code:
Algorithm for Debugging Hardware Overhead Minimization (){

1. Assemble_pull_of_free_resources();
2. Identify_feasible_debug_variables();
3. while (non_resolved_debug_variable() == 1){

4. dv = Select_debugging_variable();
5. Assign_and_Schedule(dv);

Reg 1

Reg 3

Reg 2

Reg 4

I/O pins

A B C

I/O buffers

Variable
Control steps when
register is not used

lifetime of
variabledv

Reg2 1 - 7 1 -4

A 3 - 11 4 - 6

B 5 - 9, 12 - 15 7 - 9

C 8 - 20 10

(a)

(b)

Figure 4: Minimizing Debugging Hardware Overhead using
Life-time Splitting of Debugging Variables

6. if (no_feasible_variable)
{add_additional_interconnect();

7. Update_pull_of_resources();}
8. Update_list_of_debugging_variables();

 }

The key idea of the algorithm is to select at each stage a
debugging variable which will least reduce the number of
choices in which debugging variables can be transferred to
their destinations, by allocating registers for the shortest
amount of time, and by allocating interconnects which are in
smallest demand for future possible use by other debug
variables. If in a particular stage of the algorithm there is no
debug variable which can be transferred using existing
resources to its destination, a new interconnect is allocated
for directly transferring a debugging variable with the
shortest life-time. The run time of the heuristics is O(n2m),
where n is the number of debugging variables, and m is the
number of resources in the pool.

6.0 Experimental Results

We applied our approach for design-for-debugging and
optimization algorithms on 6 industrial examples. Table 1
gives the size characteristics of the considered designs. The
examples are: Controller - 5 state linear controller, Wavelet -
QMB sub-band filter;, High Pass - audio filter, 8X8 DCT - 2
dimensional discrete cosine transform; DAC - NEC digital-
to-analog converter and Large Controller - 11 states, 3 input,
3 output linear controller for automotive applications.

During the derivation of experimental results we applied the
following procedure. We selected as debugging variables all
the state variables of the corresponding computations. First,
all design have been synthesized using the Hyper high level
synthesis system [Rab91]. The number of additional I/O pins
required by Hyper due to the debugging requirements is
shown in Table 1, column 3. This approach often resulted in
high and unacceptable I/O overhead.

We next applied the proposed DfD approach to the initial
designs (with no debugging variables) produced by Hyper.
The DfD approach could sat isfy al l the debugging
requirements without addition of any new I/O pins. The
number of registers in I/O buffers needed is shown in the last
column of Table 1. The area overhead was minimal, in all

Example O/D
Hyper
(pins)

DfD
(registers)

Controller 108/10 3 1

Wavelet 31/14 5 4

High Pass 42 /20 1 0

8X8 DCT 46 /20 11 2

NEC 324 /22 5 2

Echo 212/ 56 16 0

Table 1: Characteristics of examples used to
demonstrate the effectiveness of DfD approach

cases less than 5 % of the initial area.

7.0 Conclusion

We addressed a new and important problem of considering
hardware and synthesis support for debugging during
behavioral synthesis. The ASIC debugging process has been
defined. Pipelining of debug variables, addition of I/O buffers
for intermediate storage of debug variables, and approach for
minimizing hardware overhead using life-time splitting
technique are conceptual and implementation basis for
efficient, yet inexpensive design for debugging. The practical
effectiveness of DfD approach is demonstrated on several
examples by providing observability and controllability of
debug variables with a minimal hardware overhead.

8.0 References
[Car87] T.A. Cargill, B.N. Locanthi, “Cheap hardware support for

software debugging and profiling”, ACM SIGPLAN
Notices, Vol. 22, No. 10, pp. 82-83, 1992.

[Chi94] P.C. Ching, Y.C. Cheng, M.H. Ko, “An In-Circuit Emula-
tor for TMS320C25”, IEEE Transactions on Education,
Vol.. 37, No. 1, pp. 51-56, 1994.

[Hen82] J. Hennessy, “Symbolic Debugging of Optimized Code”,
ACM Transactions on Programming Languages and Sys-
tems, Vol. 4, No. 3, pp. 323-344, 1982.

{Kri92] G. Krishnamoorthy, J.A. Nestor, “Data Path Allocation
using an Extended Binding Model”, Design Automation
Conference, pp. 279-284, 1992.

[Kur87] F.J. Kurdahi, A.C. Parker, “REAL: A Program for Regis-
ter Allocation”, DAC-87, pp. 210-215, 1987.

[Lin90] M.A. Linton, “The evolution of Dbx”, USENIX Confer-
ence, pp. 211-220, 1990.

[Miy88] M. Miyata, H. Kishigami, K. Okamuto, S. Kamiya, “The
TX1 32-Bit Microprocessor: Performance Analysis, and
Debugging Support”, IEEE MICRO, pp. 37- 46, 1988.

[Nag94] J. Naganuma, T. Ogura, T. Hoshino, “High-Level Design
Validation Using Algorithmic Debugging”, EDAC-94,
pp. 474-480, 1994.

[Pot94] M. Potkonjak, S. Dey, "Optimizing Resource Utilization
and Testabilit using Hot Potato Techniques", DAC-94
31th ACM/IEEE DAC, pp. 201-205, June 1994.

[Pow94] G.S. Powley, J. E. DeGroat, “Experience in Testing and
Debugging the i960 MX VHDL Model”, VHDL Interna-
tional Users Forum, pp. 130-135, 1994.

[Rab91] J. Rabaey, et al. , “Fast Prototyping of Datapath-Intensive
Architectures”, IEEE Design and Test of Computers, Vol.
8, No. 2, pp. 40-51, June 1991.

[Ren89] S. Renner, M.T. Harandi, “Debugging Run-time Errors”,
22nd Annual Hawaii IEEE International Conference on
System Science, Vol. 2, pp. 495-503, 1989.

{Sai93] A. Saini, “Design of the Intel Pentium TM Processor”,
ICCAD93, pp. 258-261, 1993.

[Shu93] W.S. Shu, “Adapting a debugger for optimized programs”,
SIGPLAN Notices, Vol. 28, No. 4, pp. 39-44, 1993.

[Zel83] P. Zellweger, “An Interactive high-level debugger for con-
trol-flow optimized programs”, SIGPLAN Notices, Vol.
18, No. 8, pp. 159-172, 1983.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

