
Acceleration Techniques for Dynamic Vector Compaction

Anand Raghunathan
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544

Srimat T. Chakradhar
C & C Research Laboratories

NEC USA, Princeton, NJ 08540

ABSTRACT: We present several techniques for accelerating
dynamic vector compaction for combinational and sequential
circuits. A key feature of all our techniques is that they
significantly improve the computation times without adversely
affecting the quality of test sets that can be derived using state-
of-the-art compaction methods. Our techniques are based on
three key ideas: (1) identification of support sets, (2) target fault
switching, and (3) use of dynamic equivalent and untestable
fault analysis. All these techniques are useful in significantly
reducing the number of faults that have to be considered by
a test generator or a fault simulator in a dynamic vector
compaction system. For fault simulation, support sets quickly
identify a large subset of faults that are guaranteed to be
undetectable by a given input sequence. For test generation,
support sets identify a large subsetof faults that are guaranteed
to be undetectable by any extension of a partially specified test
sequence. Experimental results on ISCAS 89 benchmark
circuits and large production VLSI circuits are included. For
full scan designs, our accelerationtechniques reducethe overall
computation times by a factor of 2 to 3 without adversely
affecting the quality (size) of the computed test sets or their
fault coverages. The improvement factors obtained are higher
for larger circuits. The acceleration techniques enabled the
computation of compact test sets for large production circuits
that the base test generation system was unable to process
in more than 2 CPU days on a Silicon Graphics MIPS 4400
workstation. Results for sequential circuits also show that our
acceleration techniques significantly improve the computation
times for dynamic vector compaction.

1. INTRODUCTION

Reduction in test application time and test set size is highly de-
sirable to reduce the overall costs incurred in fabricating and testing
a large number of chips that implement a specific design. Several
combinational test generators aimed at generating small test sets
for the stuck-at fault model have been developed. These methods
can be classified as static or dynamic. Static methods attempt to
reduce the number of vectors in a given test set [1, 2]. Dynamic
methods consider vector compaction during the generation of the
test set [3, 4, 5]. Vector compaction and test cycle reduction for
sequential circuits is significantly more difficult than for combina-
tional circuits. For sequential circuits, static methods have been
proposed to reduce the size of the test set or test application cy-
cles [6, 7]. Dynamic methods for reducing test application cycles
in partial scan design circuits have been suggested [8, 9]. However,
very few dynamic compaction methods for sequential circuits have
been reported [5, 10].

1.1 Motivation

Test generators that use dynamic or static compaction techniques
can require significantly more computing resources than those that
do not attempt vector compaction. Recently, several new tech-

niques have been proposed that produce highly compact test vector
sets [2, 4, 5]. The number of test vectors obtained by these methods
is typically close to the lower bound on test set size for most of the
full-scan versions of the ISCAS 89 benchmark circuits. However,
for the larger circuits in the benchmark set, these techniques can
require an order of magnitude higher computation times as com-
pared to the underlying test generator. A similar trend is observed
for dynamic compaction in sequential circuits [5].

The increase in computation times is mainly due to the large
number of faults that have to be processed by a test generator that
also performs vector compaction. Table 1 shows the number of
faults processed by a test generator and fault simulator with and
without dynamic vector compaction, for the three largest ISCAS
’89 benchmark circuits. We profiled the TRAN [11] test generation
system to obtain data for the case when no vector compaction is
attempted. The BECCS [5] vector compaction system uses the TRAN

system as the underlying test generator and fault simulator. The
number of faults processedby the test generator and fault simulator
are shown in columns ATG and FS, respectively. For example,
consider the circuit s38584. When no compaction is attempted,
the underlying test generator and fault simulator process 5561 and
744267 faults, respectively. For dynamic compaction, the same
test generator (fault simulator) now considers about 40 (75) times
more faults. Results in the table show that about 40 to 175 times
more faults may have to be processedby the test generator and fault
simulator during dynamic compaction.

Table 1: Test generation and fault simulation profiles.

Circuit TRAN BECCS BECCS/TRAN

ATG FS ATG FS ATG FS
s35932 78 108387 12534 19046042 160 175
s38417 1500 1498700 28177 38231609 18 25
s38584 5561 744267 224678 55971504 40 75

High computation times preclude the use of these methods for
large production VLSI circuits. It is possible to reduce the com-
putation times by settling for larger test sets (i.e., trade off test
generation time for test set size). The focus of this paper, in con-
trast, is to explore alternative approaches that significantly reduce
computation times without compromising the quality of the test sets
obtained.

1.2 Overview

Our techniques are devised to exploit three important charac-
teristics of dynamic vector compaction: (1) a large number of test
vectors that are fault simulated during dynamic compaction are
partially specified, (2) many of the faults considered for extending
a current partially specified test vector are usually not detectable by
any extension of the test vector, and (3) extension of a test vector
is an incremental process. Our acceleration techniques are based
on the following ideas: (1) identification of support sets, (2) target
fault switching, and (3) use of dynamic equivalent and untestable
fault analysis. All these techniques are useful in significantly re-

ducing the number of faults that have to be considered by a test
generator in a dynamic vector compaction system. Support sets
are also useful in reducing the number of faults that have to be
considered for fault simulation. Unlike critical path tracing [12]
that identifies a subset of faults that are guaranteed to be detectable
by a given input sequence, support sets identify a large subset of
faults that are guaranteed to be undetectable by the input sequence.

A technique to identify faults that are guaranteed to be unde-
tectable by a given input vectorhas beenproposed in [13] for speed-
ing up fault simulation in combinational circuits. They consider
fully specified input vectors. Their technique cannot be directly
used for fault simulation in a compaction environment since a ma-
jority of the vectors that are fault simulated during dynamic vector
compaction are only partially specified. We compute support sets
for partially specified vectors as well, allowing us to significantly
reduce the computation effort required for fault simulation during
dynamic vector compaction. We also use support sets to accelerate
test generation during dynamic compaction. A theoretical basis is
presented for computing support sets for sequential circuits, with
applications to fault simulation and test generation during dynamic
compaction for sequential circuits.

2. TERMINOLOGY

A test vector (or vector) is a set of logic values (0, 1, or X) that
are simultaneously applied to the primary inputs of the circuit. A
test vector is fully specified if all inputs are specified to 0 or 1 (i.e.,
no input assumes a value of X). Test vectors that contain X’s are
said to be partially specified. A test sequence (or sequence) is an
ordered set of test vectors that detects a target fault. A test set is an
unorderedset of test sequences. The size of a test sequence is equal
to the number of test vectors in the sequence. The size of a test
set is calculated as the number of vectors in all its test sequences.
Given a test set and the set of faults it detects, a fault is essential
if only one test sequence can detect the fault. Essential faults can
be identified during fault simulation by dropping a fault from the
target fault list only after it has been detected twice [4].

3. SUPPORT SETS

Support sets can be used to significantly reduce the number
of faults processed by a test generator or fault simulator during
dynamic or static compaction. These sets can be computed for
both combinational and sequential circuits.

3.1 Concept

Consider a vector v that produces a response of 0 or 1 at a
primary outputZ of a combinational circuit. The input vector may
or may not be fully specified. A support set for the primary output
Z is any set of signals (including primary inputs) that satisfy all the
following conditions:

SS1 All signals in the set assume a logic value 0 or 1.

SS2 The primary output Z is a member of the set.

SS3 The logic value on any signal (except a primary input) in the
support set is uniquely determined by values of other signals
in the support set.

A support set is minimal if no signal in the set can be deleted
without violating conditions SS2 or SS3. A minimum support set
has the least cardinality among all possible support sets. As an
example, consider the combinational logic of circuit s27 that is

G1

G2

G3

G5

G7

G0
G14

G17

G6 G8
G15

G16

G9

G10

G11

G12

G13

0

1

1
1

1

1

0

0

0

0

0

0

Figure 1: Combinational logic of circuit s27.

Table 2: Test vector for fault G14! G10 stuck-at 1 in Figure 1.

G0 G1 G2 G3 G5 G6 G7
1 x 0 0 1 0 x

shown in Figure 1. This circuit is part of the ISCAS 89 benchmark
set. The circuit response to the input vector of Table 2 is also
shown in Figure 1. Only signals that assume a logic value of 0 or 1
are marked with their respective values in the figure (the remaining
signals assume unknown values). One possible support set for the
primary output G17 consists of three signals G5, G11 and G17.
Since these signals assume known logic values and the set includes
G17, this set satisfies conditions SS1 and SS2. Also, the value of
signalG11 is uniquely determined by the value of signalG5 and the
value of primary output G17 is uniquely determined by the value
of signalG11. Therefore, this set also satisfies condition SS3. The
support set for primary outputG17 is also minimal. This is because
if we delete signal G5 (G11) from the set, then the value of signal
G11 (G17) is not uniquely determined by value of other signals in
the support set and we violate condition SS3. If we deleteG17, we
violate condition SS2. Therefore, no signal can be deleted from the
support set. Note that a primary output can have several support
sets. For example, two possible support sets for primary output
G11 are as follows: fG5, G11g or fG0, G14, G8, G3, G16, G9,
G11g. In the case of multiple primary outputs, condition SS2 is
modified to require that each of the primary outputs be included
in the support set. As an example, consider again the circuit of
Figure 1. The support sets for primary outputs G11,G17 and G10
are fG5,G11g, fG5,G11,G17g, and fG0,G5,G11,G14,G10g,
respectively. Therefore, the support set for the circuit is fG0, G5,
G10,G11,G14,G17g. Again, this set is minimal. This is because,
if we delete any signal then it can be shown that we violate one or
more of conditions SS2 and SS3.

It is desirable to compute a support set with small cardinality
as this leads to greater savings in test generation and fault sim-
ulation time (see Section 3.2). However, attempting to compute
the minimum support set for each input vector is computationally
expensive. This overhead can more than offset the savings that
can be obtained by using the support set. Our method to efficiently
compute a minimal support set is shown in Figure 2, as procedure
COMPUTE SUPPORT SET(). This procedure takes a list of primary
outputs L with known logic values. We assume that the input
vector has been simulated to determine the response of the circuit.
We also assume that every gate in the circuit has been assigned
an integer value (level) that is one more than the maximum level
of any fanin of the gate. All primary inputs are at level 0. The
support signals for a gate are the smallest subsetof the gate’s inputs
that are required to uniquely determine the logic value of the gate.
For example, consider an AND gate a that has two inputs b and
c. Suppose that signals b and c assume the logic value 0 and 1,
respectively. The support signal for gate a is signal b since the
value on gate a is uniquely determined by signal b.

This procedure uses an arrayLarr of size equal to the maximum
level (Maxlevel) assigned to any signal in the circuit. Larr[i] is

Procedure COMPUTE SUPPORT SET (primary output list L)
f

support set S �.
for (every output in list L)f

Add primary output to set S.
Insert output with level i into list Larr[i].

g

for (every list l from Larr[Maxlevel] to Larr[1])f
for (each gate g in list l)f

Determine support signals for gate g.
Add support signals to S and
to the appropriate list in Larr.

g

g

return support set S.
g

Figure 2: Procedure to compute minimal support sets.

a list that contains a subset of the set of signals that are assigned
the level i. Initially, all lists in Larr are empty. We illustrate the
execution of the procedure by an example. Consider the compu-
tation of support set for primary output G10 in Figure 1. For this
example, signals G10, G11, G5, G14 and G0 are assigned levels
6, 5, 0, 1 and 0, respectively. Here, Maxlevel is 6. We begin by
including G10 in the support set S. Since G10 is at level 6 we
include it in the listLarr[6]. We first process the signalG10 in the
list Larr[6]. The support signals for gate G10 are G11 and G14.
This is because both signals are necessary to uniquely determine
the value of G11. We include G11 and G14 in the support set
S. Signals G11 and G14 are also included in lists Larr[5] and
Larr[1], respectively. We then process signals in list Larr[5].
Signal G11 can have either G5 or G9 as its support signal. This
is because the value of gate G11 can be uniquely determined by
either of its inputs. We make a choice of the support signal as
follows. If one of the support signals of the gate has already been
included in the support set of the circuit, then this signal is selected
as the support signal for the gate. Otherwise, we choose a support
signal at the lowest level. In this example, we select G5 as the
support signal since it is at a lower level than G9. This heuristic
helps in generating support sets with few signals. We move on to
the signal G14 that is in the list Larr[1]. The support signal for
G14 is G0. We include G0 in the support set S. Since all lists in
the array Larr are now empty, we terminate the procedure. The
set S forms a minimal support set for the primary output G10.

G17

G8G6

G0

G1
G2

G3

G5

G7 G9

G10

G11

G12G13

G14

G15

G16

Figure 3: Circuit s27 of the ISCAS 89 benchmark set.

Table 3: Test sequence for fault G5 stuck-at 0 in Figure 3.

Sequence G0 G1 G2 G3
1 1 x 1 0

x 0 x 1

Support sets can also be computed for sequential circuits. As
an example, consider the input sequence shown in Table 3. This
sequence has two input vectors and it is applied to the sequential
circuit s27 that is shown in Figure 3. We compute support sets for

the combinational logic for each input vector, and use these sets
to derive the support set for the sequence. For the first vector, we
simulate the circuit with all state variables in an unknown state.
The logic values assumed by signals for the first vector are shown
in Figure 4. The first vector initializes all state variables. The
logic values assumed by signals for the second vector are shown in
Figure 5.

G1

G2

G3

G5

G7

G0
G14

G17

G6 G8
G15

G16

G9

G10

G11

G12

G13

0

1

1

0

0

0
0

0

1

1

1

Figure 4: Circuit response for the first vector in Table 3.

G1

G2

G3

G5

G7

G0
G14

G17

G6 G8
G15

G16

G9

G10

G11

G12

G13

0
1

1

0

0 0 0

0

1

1

1

0
1

Figure 5: Circuit response for the second vector in Table 3.

For computing support sets, we consider the vectors in reverse
order. We first compute a support set for the last vector of the
sequence, and then proceed backwards until we reach the first
vector of the sequence. As an example, consider the second vector
in the sequence shown in Table 3. The circuit response for this
vector is shown in Figure 5. The support set S2 for this vector
is computed by using the procedure COMPUTE SUPPORT SET (P2).
Here, the list P2 consists of only the primary output signal G17.
This is because for the last vector of any sequence, the support
set is computed by only considering primary outputs that assume a
logic value of 0 or 1. Next state variables with known logic values
are not considered in computing the support set for the last vector.
The support setS2 consists of the signalsG17, G11, andG5. Note
that the cardinality of the support set is significantly smaller than
the total number of signals in the circuit.

After computing the support set S2, we move on to the the first
vector. The circuit response for this vector is shown in Figure 4.
The support set S1 for this vector is computed using procedure
COMPUTE SUPPORT SET (P1). The list P1 includes all primary
outputs that have a logic value of 0 and 1. In addition, P1 also
includes any next state variable v that satisfies the following two
conditions:

C1 Next state variable v is at a logic value of 0 or 1.

C2 The present state variable corresponding to v is included in the
support set computed for vector 2.

Since the support set of vector 1 is computed after we process
vector 2, it is easy to verify if a next state variable satisfies the
condition C2. For the current example, the primary output G17 is
included in P1 since it assumes a logic value of 1. Also, all next
state variables G10, G11, and G13 assume known logic values.
Hence, condition C1 is satisfied for all these signals. As shown in
Figure 3, the present state variables corresponding to G10, G11,
and G13 are G5, G6, and G7 respectively. Of these, only G5 is

in the support set S2. Hence, only signal G10 satisfies condition
C2. We include G10 in the list P1. The support set S1 as com-
puted by procedure COMPUTE SUPPORT SET (P1) consists of the
following signals: G10, G17, G11, G9, G16, G8, G14, G3, and
G0. Although not applicable for the present example, if the input
sequenceconsists of many vectors, the last vector is processed sim-
ilar to the second vector in the present example. All other vectors
are processed using a method to similar to the one used for the first
vector.

Dynamic vector compaction methods incrementally extend a
test sequence. This can be exploited to efficiently compute support
sets in an incremental way as explained below. When new primary
outputs are set as a result of an extension of a test sequence, the
procedure COMPUTE SUPPORT SET (P) is called with the list P
containing only those primary outputs that have been set to a logic
value of 0 or 1 as a result of the last extension. Thus, the added
overhead for support set computation is minimal.

3.2 Applications

Fault simulation:

Fault simulation is used in test generators to reduce the number
of faults for which test sequences have to be derived by the test
generator. For static and dynamic compaction methods, fault sim-
ulation is also used extensively to compute essential faults [4]. In
dynamic compaction methods, a partially specified test sequence
may be extended several times by the test generator and fault sim-
ulation is performed for every extension of the test sequence. As
shown in Section 1.1, the number of faults processed during dy-
namic compaction can be very large. We show that support sets
can significantly reduce the number of faults that have to be con-
sidered for fault simulation. Theorem 1, that is adapted from [13],
provides the theoretical basis for identifying a large set of faults
that are guaranteed to be undetectable by a given test vector. This
theorem applies to combinational circuits.

Theorem 1: Consider a combinational circuitC and a test vector
T . Let S be the support set computed for the primary outputs with
0 or 1 logic value. If signal g is not in the support set S, then
a stuck-at 0 or stuck-at 1 fault on signal g cannot be detected by
vector T .

From Theorem 1, faults on signals that are not in the support
set don’t have to be fault simulated for T or any of its extensions.
A fault on the fanout branch of signal a to signal b need not be
considered if either a or b is not in the support set S. Consider
again the circuit shown in Figure 1. The support set is computed
for the primary outputs G10, G11, and G17. This is because they
assume a logic value of 0 or 1. The support set S consists of the
signals, G10, G11, G17, G5, G14, and G0. Only faults on these
signals need to be considered for fault simulation. For the circuit
shown Figure 1, the collapsed fault list consists of 32 faults. Of
these, it turns out that only 13 faults have to be considered for fault
simulation.

Support sets can also be used for reducing the number of faults
considered in dynamic compaction for sequential circuits. The-
orem 2 provides the theoretical basis for sequential circuits. All
proofs have been omitted due to lack of space and can be found
in [14].

Theorem 2: Consider a sequential circuit C and a test sequence
T that consists of n vectors, T1...Tn . Let S1...Sn be the support
sets for the circuit corresponding to vectors T1...Tn , computed as

explained in Section 3.1. Let S be the set formed by taking the set
union of S1...Sn . If signal g is not in the support set S, then a
stuck-at 0 or stuck-at 1 fault on signal g cannot be detected by the
sequence T .

As an illustration of Theorem 2, consider again the sequential
circuit s27 shown in Figure 3 and the sequence given in Table 3.
The circuit response to the first and second vectors of the sequence
are shown in Figures 4 and 5 respectively. The support sets S1

andS2 for the first and second vectors were previously computed in
Section 3.1. The setS formed by taking the union of sets S1 and S2

consists of signals G10, G17, G11, G9, G16, G8, G14, G5, G3,
and G0. Using Theorem 2, it can be shown that we can rule out 9
out of the 32 faults in the collapsed fault list. These 9 faults do not
have to be considered in fault simulation. Note that Theorems 1
and 2 do consider the propagation of fault effects along multiple
re-convergent paths. This is because,during the computation of the
support sets, we add a fanout stem signal to the support set if any of
its branches have already been included in the support set. In fact,
the support sets computed by procedure COMPUTE SUPPORT SET()
are pessimistic in the sense that faults on signals in the support set
may be undetectable.

Test generation:

The main loop in dynamic compaction methods consists of the
following two steps: (1) generate a test sequence for a target fault,
and (2) extend the test sequence by suitably specifying unspecified
primary inputs in the test sequence. By suitably assigning values to
unspecified primary inputs, several other faults can be detected by
the test sequence. The fault considered in the first step is referred
to as the primary target fault, while faults that are considered in
the second step are called secondary target faults (or secondary
faults). As shown in Section 1.1, the number of secondary faults
can be very large. Support sets are useful in significantly reducing
the number of secondary faults. In order to use support sets for
secondary fault elimination, we generalize the concept of support
sets to cover signals that assume logic values X . This extension is
necessary because faults on signals that are at a logic value of X
may be detectable by a suitable extension of the test vector. The
definition of extended support sets is given below.

SS1 All signals in the set assume a logic value 0, 1 or X .

SS2 The primary output Z is a member of the support set.

SS3 The logic value on any signal (except a primary input) in the
support set is uniquely determined by logic values of other
signals in the support set.

The procedure COMPUTE SUPPORT SET (P) described in Sec-
tion 3.1 can still be used with one difference - the list P contains
all primary outputs. The definition of support signals for a gate
is also extended as follows. For a gate g that is at a logic value
of X , all inputs of the gate are considered to be support signals.
All references to support sets in this subsection are to the extended
definition given above.

Our next result shows how to use support sets for reducing
the test generation effort involved in dynamic vector compaction.
Theorem 3 identifies a large subset of faults in the circuit that do
not have be considered as secondary faults while extending a given
partial test vector.

Theorem 3: Consider a combinational circuitC and a test vector
T . Let S be the extended support set of the circuit. If signal g is

not in the support set S, then a stuck-at 0 or stuck-at 1 fault on
signal g cannot be detected by any extension of vector T .

As an example, consider again the circuit of Figure 1. The target
(collapsed) fault list consists of 32 faults. Consider the situation
when the input vector of Table 2 is extended to detect other faults.
The logic values assumed by signals for the input vector of Table 2
are shown in Figure 1. The support set of the circuit, as computed
in Section 3.1, consists of the signals G10, G11, G17, G5, G14
and G0. If we also consider primary output signal G13 (whose
value isX), then signalsG13,G12,G7, G2 andG1 are also added
to the support set. Only faults on these signals need be considered
as secondary faults. For example, fault G8 stuck-at 1 need not be
considered as a secondary target fault for test generation. For this
circuit, it turns out that 11 of the 32 faults in the target fault list do
not have to be considered as secondary faults in trying to extend
the input vector of Table 2.

Support sets are also useful for reducing the number of sec-
ondary faults in sequential circuits. Theorem 4 provides the basis
for secondary fault elimination in sequential circuits. Consider
a sequential circuit C and a test sequence T that consists of n
vectors, T1...Tn . Let S1...Sn be the extended support sets for the
circuit corresponding to vectors T1...Tn , computed as explained
below. The computation of the support sets S1...Sn is similar to
the computation illustrated in Section 3.1, with some important
differences. As before, we proceed in the reverse order of the
vectors, i.e., we generate Sn ...S1 in that order. For generating
Sn , the procedure COMPUTE SUPPORT SET (Pn) is used where Pn

contains all the primary output signals, irrespective of their logic
values. Si (0 � i � n � 1) is computed by calling the procedure
COMPUTE SUPPORT SET (Pi), where Pi consists of both primary
outputs and next state variables. All primary outputs are included
in Pi irrespective of their logic value. Each next state variable v
that satisfies the following condition is included in Pi.

C1 The present state variable corresponding to v is included in the
support set Si+1 computed for vector Ti+1 .

Theorem 4: Consider a sequential circuit C and a test sequence
T that consists of n vectors, T1...Tn . Let S1...Sn be the extended
support sets for the circuit corresponding to vectors T1...Tn . Let
S be the set formed by taking the set union of S1...Sn . If signal g
is not in the support set S, then a stuck-at 0 or stuck-at 1 fault on
signal g cannot be detected by any extension of the sequenceT .

For example, consider again the circuit responses of circuit s27,
that are shown in Figures 4 and 5. The support setS2 corresponding
to the second vector (which is the last vector of the sequence) is
computed for only the primary output signal G17, and consists of
signals G17, G11, and G5. We next proceed to compute S1, the
support set corresponding to the first vector of the sequence. Next
state variables G10, G11, and G13 correspond to present state
variables G5, G6, and G7, respectively. Only G5 is included in
S2. Hence S1 is computed for the primary output signal, G17,
and the next state variable G10. The set S1 consists of the signals
G17, G10, G11, G9, G16, G8, G14, G3, and G0. The set S
is the set union of S1 and S2. Only faults on signals in S are
considered as secondary faults. For example, fault G2 stuck-at
0 need not be considered as a secondary fault since Theorem 4
rules out the possibility of detecting it by extending the partially
specified sequence of Table 3. Note that if the first vector alone
is considered, it can be extended so that the fault effect reaches
the next state variable G13. However, this fault effect cannot be
propagated to the primary output G17 by any extension of the

Table 4: Vector used for illustrating dynamic fault equivalence.

G0 G1 G2 G3 G5 G6 G7
0 0 0 0 0 x x

second vector. For this circuit, the target fault list has 32 faults.
After applying Theorem 4, it can be verified that 12 of the 32 target
faults cannot be detected by any extension of the given sequence.

4. DYNAMIC FAULT EQUIVALENCE

Two faults, f1 and f2 are equivalent if any test sequence that
detects f1 also detects f2 and vice-versa. By computing such
equivalent faults, we can reduce the number of faults that have to
be considered for test generation and fault simulation. If a partially

G1

G2

G3

G5

G7

G0
G14

G17

G6 G8
G15

G16

G9

G10

G11

G12

G13

0

0

0

0

0

1

0

Figure 6: Circuit response for the vector in Table 4.

specified vector has to be fault simulated or further extended (as is
the case in dynamic compaction), the partially specified values in
the circuit may lead to new equivalent faults. To see this, consider
the circuit of Figure 6. This figure also shows the signal values for
the input vector given in Table 4. Consider faultsG7 stuck-at 0 and
G12 stuck-at 1. These faults are not equivalent. However, sinceG1
assumes a logic 0, these two faults now become equivalent. This
is because any test for G12 stuck-at 1 that is derived by extending
the partial vector of Table 4 must set G7 to a 1 and propagate
the fault effect from G12 to a primary output. These are also
the conditions for any test vector for G7 stuck-at 1. Therefore, the
faultsG7 stuck-at 0 andG12 stuck-at 1 are dynamically equivalent.
Given a partially specified input vector, the target fault list can be
further collapsed based on signals that assume known values. This
situation occurs often in dynamic compaction. For example, the
initial collapsed fault list for the circuit shown in Figure 6 consists
of 32 faults. Given the vector of Table 4, we can compute additional
equivalent faults. For this example, we can collapse the fault list
to contain only 27 faults. Dynamic equivalences contribute to a
reduction in the number of faults consideredfor both test generation
and fault simulation.

5. UNTESTABILITY ANALYSIS USING X-PATH CHECK

The concept of X-path [15] check can be used to further reduce
the number of secondary faults processed. Consider a combina-
tional circuit C , a test vector T that may be partially specified, and
a candidate fault g stuck-at v (g is a signal in the circuit and v is
either 0 or 1). The X-path check assumes a knowledge of the good
circuit response to T . The X-path check starts from the fault site,
g, and searches for a path P to a primary output such that for each
gate g0 on the path, one of the following conditions is true:

Either The output of g0 is at a logic value ofX in the good circuit.

Or Each side input s of g for which there is no path from the fault
site to s has either a non-controlling value or a value of X .

The X-path check was used in PODEM [15] for guiding the
branch and bound process during test generation. We use it in a
different context, to efficiently identify faults that cannot be de-
tected by any extension of a given partial vector. Knowledge of
the good circuit response to the vector T is a pre-requisite for the
X-path check. However, this does not impose any overhead in
practice as these values are readily available from the fault simula-
tion performed for T before the next extension of T is attempted. It
is important to note that the presence of an X-path is not sufficient
to guarantee that a test can be derived for the fault by extending the
partial vector T . However, failure of the X-path check does imply
that it is futile to attempt an extension ofT to detect the fault being
considered. This significantly reduces the number of unnecessary
test generation attempts, thus making the compaction procedure
more efficient.

6. TARGET FAULT SWITCHING

If the target fault list has an untestable fault f , then f may be
considered during the extension of several test sequences before it
is proven untestable. This happens because a failure to generate a
test for f by extending a partially specified sequence T1 does not
say anything about the testability of f for another partial sequence
T2. In order to prove f as untestable, it is necessary to consider f
as a primary target fault. Thus, a fault could be considered several
times as a secondary target fault before it is detected or proven
undetectable by considering it as a primary target fault. This con-
tributes to an increase in the number of faults that are processed by
the test generator. We use a simple heuristic to avoid repeated test
generation attempts for such faults. If f is proven to be untestable
by any extension of the current test sequence, then we consider f
as the next primary target fault. It is important to note that since
target fault switching occasionally selects a different primary tar-
get fault than would have been used otherwise, it nominally alters
the fault ordering used by the dynamic compaction system. As a
result, a potentially different test set may result when target fault
switching is used. However, the change in the fault ordering thus
caused is limited to very few faults, and does not affect the test set
size significantly because most of the faults selected by this heuris-
tic turn out to be indeed untestable. Hence, known fault ordering
methods [4] can still be used along with target fault switching. In
practice, it was observed that the slight re-ordering caused by the
use of target fault switching has a negligible impact on the size of
the test sets (see Section 7).

The target fault switching strategy is also useful for cases when
the fault list has no untestable faults. If the underlying test generator
generates tests by considering each primary output separately, then
it is useful to establish if a given fault is untestable with respect to
a particular primary output. If this is the case, then the fault does
not have to be considered for all tests and their extensions that are
derived by considering this primary output. We use the following
heuristic to quickly identify such faults. If a fault f cannot be
detected by any extension of an input vector for a given primary
output O, then we consider f as the next primary target fault. The
test generator attempts to establish f as untestable with respect to
the primary output O. If f is established to be untestable with
respect to O, we need not target f as a secondary fault for detection
at O for the remaining vectors.

7. EXPERIMENTAL RESULTS

We have currently implemented the following acceleration tech-
niques as part of the BECCS system: (1) use of support sets for fault
simulation and secondary fault selection, (2) target fault switching

Table 6: Improvement in computation times.

Circuit ATG FS Total
s5378 1.50 1.65 1.57
s9234 1.10 1.05 1.08
s13207 1.14 2.44 1.61
s15850 1.29 1.98 1.38
s35932 1.0 2.24 2.14
s38417 1.25 2.8 2.32
s38584 3.13 2.86 2.95

strategy, and (3) X-path check for secondary fault selection for
combinational circuits.

7.1 Full scan designs

We performed two experiments to evaluate the effectiveness
of proposed techniques for combinational circuits. For the first
experiment, the target fault list includes all faults in the circuit.
For the second experiment, only irredundant fault lists were used.
These fault lists were obtained by removing faults that were proven
to be redundant from the fault lists used in the first experiment. All
experiments were performed on a Silicon Graphics Challenge L
series machine that uses a MIPS 4400 processor.

To study both the individual and the net effects of the acceleration
techniques on dynamic compaction, we considered three cases: (1)
BECCS with only X-path check for secondary faults (this is referred
to as the Base case), (2) BECCS with X-path check and target fault
switching strategy (Base + TFS case), and (3) BECCS with X-path
check, target fault switching strategy and use of support sets for
fault simulation (Base + TFS + Support case).

Complete fault lists:

Computation times for the full scan versions of the larger ISCAS
89 benchmark circuits are given in Table 5. Test generation time,
fault simulation time and total time are reported separately under
columns ATG, FS, and Total, respectively. No numbers for fault
coverage or test efficiency are reported, because both the base
system and BECCS achieved 100% test efficiency (all detectable
faults were detected, and all remaining faults were proven to be
redundant) for all circuits, in all cases.

Table 6 shows the improvement in test generation, fault simula-
tion and overall computation times obtained by using the proposed
acceleration techniques. Column ATG (FS) shows the ratio of test
generation (fault simulation) times for the base system to those for
the case when target fault switching strategy and support sets are
added to the base system. The improvement in overall computation
times is shown in column Total. The improvements are computed
as the ratio of the Base case to the Base + TFS + Support case.

Table 7: Test set sizes.

Circuit Base Base + TFS Base + TFS + Support
s5378 117 116 116
s9234 164 155 155
s13207 237 238 238
s15850 103 107 107
s35932 15 14 14
s38417 109 108 108
s38584 133 130 130

Test set sizes are reported in Table 7. There is a marginal
improvement in test set sizes over the base system for most circuits.
This difference is due to the fact that the target fault switching

Table 5: Computation times for dynamic compaction.

Circuit Base Base + TFS Base + TFS + Support
ATG FS Total ATG FS Total ATG FS Total

s5378 93.0 90.9 183.9 62.2 84.5 146.7 61.8 55.0 116.8
s9234 634.9 390.7 1025.6 582.5 463.2 1045.7 576.9 372.1 949.0
s13207 485.4 578.7 1064.1 467.0 592.0 1059.0 424.9 236.8 661.7
s15850 3829.3 926.4 4755.7 2928.0 1218.0 4146.0 2975.5 468.1 3443.6
s35932 139.9 3399.6 3539.5 137.6 3740.0 3877.6 139.4 1514.3 1653.7
s38417 1124.8 5642.4 6767.2 934.5 5602.4 6536.9 899.3 2012.6 2911.9
s38584 5021.7 8869.1 13890.8 1626.0 8691.1 10317.1 1603.8 3100.0 4703.8

Table 8: Production VLSI circuits.

Circuit Inputs Outputs Gates Collapsed
Faults

ckt1 336 340 7803 8824
ckt2 551 654 4656 7424
ckt3 134 32 6025 12161
ckt4 1133 1106 31416 42744
ckt5 2131 2304 49623 63703

Table 10: Improvement in computation times (irredundant fault
lists).

Circuit ATG FS Total
s5378 1.15 1.43 1.28
s9234 1.12 1.22 1.16
s13207 1.09 2.11 1.52
s15850 2.55 1.89 2.33
s35932 1.03 2.17 2.07
s38417 1.20 2.62 2.21
s38584 2.03 2.76 2.58

Production VLSI Circuits
ckt1 1.56 1.56 1.56
ckt2 1.08 1.91 1.50
ckt3 0.93 1.49 1.05
ckt4 0.60 3.19 1.84
ckt5 - - > 3.00

strategy causes faults to be considered in a slightly different order
than the fault ordering in the base system. Note that the third and
fourth columns of Table 7 are identical, indicating that test set size
is unaffected by support sets.

Results in Tables 5, 6 and 7 are significant for the following
reasons: (i) the proposed acceleration techniques can speed up the
base system by as much as a factor of 2.95, (ii) the test set sizes
produced by the base system are largely unaffected by the acceler-
ation techniques, (iii) the overhead for support set computation and
X-path check is negligible and their use results in a significant re-
duction in overall computation times, and (iv) speedups are higher
for larger circuits. If support sets are also used in reducing sec-
ondary faults, we can expect a further improvement in computation
times.

Irredundant fault lists:

The characteristics of the production VLSI circuits are shown
in Table 8. These circuits consist of non-Boolean primitives like
tristate buffers, bidirectional buffers (also called as I/O buffers)
and bus configurations. We have extended the concept of support
sets to circuits with non-Boolean primitives. Column headers of
Table 9 are identical to the headers in Table 5. Again, test efficiency
numbers are not presented because they are 100% for all circuits
in all cases. Although fault lists do not have redundant faults, the
target fault switching strategy can still be used, as explained in
Section 6.

Table 11: Test set sizes (irredundant fault lists).

Circuit Base Base + TFS Base + TFS + Support
s5378 116 118 118
s9234 168 156 156
s13207 238 238 238
s15850 104 106 106
s35932 13 15 15
s38417 107 109 109
s38584 128 129 129

Production VLSI Circuits
ckt1 263 265 265
ckt2 126 122 122
ckt3 175 169 169
ckt4 56 57 57
ckt5 - - 563

Table 9 reports computation times and Table 10 reports the im-
provements in CPU seconds for full scan versions of ISCAS 89
benchmark circuits and several production VLSI circuits. Again,
there is an improvement in performance over the base system. The
test generation times improve by a factor of upto 2.5. The reduc-
tion in fault simulation times is due to the use of support sets to
eliminate undetectable faults. The acceleration techniques result in
a system that is about two to three times faster than the base system.
For circuit ckt5 that has about 50,000 gates, the base system did
not complete in 2 days. However, using the proposed acceleration
techniques, dynamic compaction was achieved in 11.7 hours, with
100% fault coverage. The improvements in computation times are
summarized in Table 10.

Test set sizes are reported in Table 11. Again, a marginal fluc-
tuation in test set sizes over the base system is seen. The small
change in test set sizes is solely due to target fault switching, since
support sets and the X-path check do not have any effect on test set
size.

In summary, our results indicate that the proposed acceleration
techniques can speed up the base system by two to three times, the
test set sizes are largely unaffected by the acceleration techniques,
and complete fault coverage was maintained. The overhead for
support set computation and the X-path check was negligible and
their use resulted in a significant reduction in overall computation
times.

7.2 Sequential circuits

We use support sets for secondaryfault selection during dynamic
compaction for sequential circuits. Table 12 gives the computation
times, test set sizes and fault coverages for several circuits. The
total CPU time for compaction, the test set size, and the fault
coverage are given under columns CPU, Vec, and FC respectively.
Circuits whose names start with ’ps’ are partial scan circuits that
were obtained from the ISCAS 89 benchmarks by breaking all loops
except self loops. Circuits whose names start with ’p’ represent

Table 9: Computation times for dynamic compaction (irredundant fault lists).

Circuit Base Base + TFS Base + TFS + Support
ATG FS Total ATG FS Total ATG FS Total

s5378 69.4 80.3 149.7 60.7 83.7 144.4 60.1 56.1 116.2
s9234 409.0 362.4 771.4 372.9 378.6 751.5 366.0 296.0 662.0
s13207 334.2 484.5 818.7 314.8 536.2 851.0 307.2 229.7 536.9
s15850 2462.0 876.2 3338.2 1026.3 1152.8 2179.1 964.9 463.0 1427.9
s35932 144.2 3109.4 3253.6 141.4 4435.1 4576.5 140.4 1429.9 1570.3
s38417 1036.0 5551.0 6587.0 878.6 5669.5 6548.1 864.6 2121.7 2986.3
s38584 1960.2 8288.4 10248.6 974.9 8758.5 9733.4 964.7 3000.6 3965.3

Production VLSI Circuits
ckt1 1089.0 563.6 1652.6 675.8 669.7 1345.5 696.3 361.5 1057.8
ckt2 151.0 247.0 398.0 139.4 246.3 385.9 140.0 129.5 265.5
ckt3 1420.9 651.2 2072.1 1489.8 767.4 2257.2 1536.3 435.7 1972.0
ckt4 1353.4 6643.4 7997.8 2214.2 6330.7 8544.9 2253.8 2082.5 4336.3
ckt5 - - > 2 days - - - 29179.3 13198.3 42377.6

Table 12: Acceleration of dynamic compaction in sequential cir-
cuits.

Circuit Base Base + Support
CPU Vec FC CPU Vec FC

s208 27.2 151 63.7 23.8 151 63.7
s344 318.7 127 94.1 175.0 168 94.1
s382 1728.2 1016 81.7 1575.1 1016 81.7
s386 1022.6 354 79.7 393.0 380 79.7
s838 2123.4 169 29.6 1833.0 169 29.6
s1196 1261.2 334 99.7 451.0 332 99.7
s1238 1308.8 332 94.5 513.1 333 94.5
s1423 16417.1 40 19.7 12102.1 35 20.2
ps510 68.2 133 100.0 28.0 137 100.0
ps526 3413.1 2023 82.7 1827.1 1874 82.7
ps526n 3213.9 2089 82.3 1979.0 2089 82.3
ps820 1096.5 349 100.0 147.0 370 100.0
ps832 1156.5 355 98.4 148.0 380 98.4
ps953 6989.6 245 100.0 600.1 262 100.0
ps1488 1623.1 307 87.1 180.0 334 86.8
ps1494 1569.2 315 100.0 181.1 341 100.0
p35932 > 2 days - - 19741.4 271 44.44
p38417 > 2 days - - 23614.3 415 45.92

pipelined versions of the corresponding ISCAS 89 benchmarks
(all loops including self loops were broken through partial scan).
Table 12 shows that the use of acceleration techniques improved
the speed of the dynamic compaction process by up to a factor of
8:75. Circuits like p35932 and p38417 that the base compaction
system was unable to process in over 2 days were successfully
processed by using our acceleration techniques.

8. CONCLUSION

We have presented techniques for accelerating dynamic vector
compaction. These techniques can be used for combinational or
sequential circuits. They can be integrated into most dynamic or
static vector compaction systems. Experimental results on several
large production VLSI circuits show that our techniques can ac-
celerate dynamic compaction methods by a factor of two to three.
More significantly, the acceleration factors are higher for larger
circuits, enabling the generation of compact test sets for large pro-
duction circuits. The test set quality (size) was unaffected by our
methods, and complete fault coverages were maintained for all our
experiments. We demonstrated the use of support sets to signifi-
cantly reduce the number of faults processed during dynamic com-
paction. Support sets have several other applications, including
serial or parallel fault simulation for combinational and sequential
circuits. Although not attempted here, our techniques can also be

used in static compaction methods that rely extensively on fault
simulation [2].

REFERENCES
[1] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient

Automatic Test Pattern Generation System,” IEEE Transactions on Computer-
Aided Design, vol. 7, pp. 126–136, January 1988.

[2] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “On Compacting Test
Sets by Addition and Removal of Test Vectors,” in VLSI Test Symposium, pp. 202–
207, April 1994.

[3] P. Goel and B. C. Rosales, “PODEM-X: An Automatic Test Generation Sys-
tem for VLSI Logic Structures,” in Proceedings of the 18th ACM/IEEE Design
Automation Conference, pp. 260–268, June 1981.

[4] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-Effective Genera-
tion of Minimal Test Sets for Stuck-at Faults in CombinationalLogic Circuits,” in
Proceedingsof the 30th ACM/IEEE Design AutomationConference, pp. 102–106,
June 1993.

[5] S. T. Chakradhar and A. Raghunathan, “Bottleneck Removal Algorithm for Dy-
namic Compaction and Test Cycles Reduction,” in Proc. European Design Au-
tomation Conf., September 1995.

[6] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A. Abraham, “Test Compaction
for Sequential Circuits,” IEEE Transactions on Computer-Aided Design, vol. 11,
pp. 260–267, February 1992.

[7] S. P. Morley and R. A. Marlett, “Selectable Length Partial Scan: A Method
to Reduce Vector Length,” in Proceedings of the International Test Conference,
pp. 385–392, September 1991.

[8] S. Y. Lee and K. K. Saluja, “Sequential Test Generationwith Reduced Test Clocks
for Partial Scan Designs,” in VLSI Test Symposium, pp. 220–225, April 1994.

[9] E. M. Rudnick and J. H. Patel, “A Genetic Approach to Test Application Time
Reduction for Full Scan and Partial Scan Circuits,” in Proceedings of the 8th
International Conference on VLSI Design, January 1995.

[10]I. Pomeranz and S. M. Reddy, “On Generating Compact Test Sequences for
Synchronous Sequential Circuits,” in Proc. European Design Automation Conf.,
September 1995.

[11]S. T. Chakradhar, V. D. Agrawal, and S. Rothweiler, “A Transitive Closure
Algorithm for Test Generation,” IEEE Transactions on Computer-Aided Design,
vol. 12, pp. 1015–1028, July 1993.

[12]M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design. New York, NY: Computer Science Press, 1990.

[13]S. B. Akers, B. Krishnamurthy,S. Park, and A. Swaminathan, “Why is Less Infor-
mation from Logic Simulation more useful in Fault Simulation?,” in Proceedings
of the International Test Conference, pp. 786–800, 1990.

[14]A. Raghunathan and S. T. Chakradhar, “Acceleration Techniques for Dynamic
Compaction,” tech. rep., C&C Research Labs, NEC USA, Princeton, NJ, October
1994.

[15]P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational
LogicCircuits,” IEEE Transactions on Computers, vol. C-30, pp. 215–222,March
1981.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

