Acceleration Techniques for Dynamic Vector Compaction

Anand Raghunathan
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544

ABSTRACT: We present several techniques for accelerating
dynamic vector compaction for combinational and sequential
circuits. A key feature of all our techniques is that they
significantly improvethe computation times without adver sely
affecting the quality of test setsthat can be derived using state-
of-the-art compaction methods. Our techniques are based on
threekey ideas: (1) identification of support sets, (2) tar get fault
switching, and (3) use of dynamic equivalent and untestable
fault analysis. All these techniques are useful in significantly
reducing the number of faults that have to be considered by
a test generator or a fault simulator in a dynamic vector
compaction system. For fault simulation, support sets quickly
identify a large subset of faults that are guaranteed to be
undetectable by a given input sequence. For test generation,
support setsidentify alar gesubset of faultsthat areguar anteed
to beundetectable by any extension of a partially specified test
sequence. Experimental results on 1SCAS 89 benchmark
circuits and large production VL SI circuits areincluded. For
full scan designs, our acceler ationtechniquesreducetheoverall
computation times by a factor of 2 to 3 without adversely
affecting the quality (size) of the computed test sets or their
fault coverages. Theimprovement factors obtained ar e higher
for larger circuits. The acceleration techniques enabled the
computation of compact test setsfor large production circuits
that the base test generation system was unable to process
in more than 2 CPU days on a Silicon Graphics MIPS 4400
wor kstation. Resultsfor sequential cir cuits also show that our
acceler ation techniques significantly impr ove the computation
times for dynamic vector compaction.

1. INTRODUCTION

Reductionin test application time and test set size is highly de-
sirableto reducethe overall costsincurred in fabricating and testing
alarge number of chipsthat implement a specific design. Several
combinational test generators aimed at generating small test sets
for the stuck-at fault model have been developed. These methods
can be classified as static or dynamic. Static methods attempt to
reduce the number of vectorsin a given test set [1, 2]. Dynamic
methods consider vector compaction during the generation of the
test set [3, 4, 5]. Vector compaction and test cycle reduction for
sequential circuits is significantly more difficult than for combina-
tional circuits. For sequential circuits, static methods have been
proposed to reduce the size of the test set or test application cy-
cles[6, 7]. Dynamic methods for reducing test application cycles
in partial scandesign circuits have beensuggested[8, 9]. However,
very few dynamic compaction methods for sequential circuits have
been reported [5, 10].

1.1 Motivation
Test generatorsthat use dynamic or static compactiontechniques

can require significantly more computing resources than those that
do not attempt vector compaction. Recently, several new tech-

Srimat T. Chakradhar
C & C Research Laboratories
NEC USA, Princeton, NJ 08540

nigques have been proposed that produce highly compact test vector
sets[2, 4, 5]. Thenumber of test vectors obtained by these methods
istypically closeto the lower bound on test set sizefor most of the
full-scan versions of the ISCAS 89 benchmark circuits. However,
for the larger circuits in the benchmark set, these techniques can
require an order of magnitude higher computation times as com-
pared to the underlying test generator. A similar trend is observed
for dynamic compaction in sequential circuits [5].

The increase in computation times is mainly due to the large
number of faults that have to be processed by atest generator that
also performs vector compaction. Table 1 shows the number of
faults processed by a test generator and fault simulator with and
without dynamic vector compaction, for the three largest ISCAS
'89 benchmark circuits. We profiled the TRAN [11] test generation
system to obtain data for the case when no vector compaction is
attempted. The BEccs[5] vector compaction systemusesthe TRAN
system as the underlying test generator and fault simulator. The
number of faults processedby thetest generator and fault simulator
are shown in columns ATG and FS, respectively. For example,
consider the circuit s38584. When no compaction is attempted,
the underlying test generator and fault simulator process 5561 and
744267 faults, respectively. For dynamic compaction, the same
test generator (fault simulator) now considers about 40 (75) times
more faults. Results in the table show that about 40 to 175 times
more faults may haveto be processed by the test generator and fault
simulator during dynamic compaction.

Table 1: Test generation and fault simulation profiles.

Circuit TRAN BECcs BECCS/TRAN
ATG FS ATG FS ATG FS
$35932 78 108387 12534 | 19046042 | 160 | 175
s38417 | 1500 | 1498700 28177 | 38231609 18 25
38584 | 5561 744267 | 224678 | 55971504 40 75

High computation times preclude the use of these methods for
large production VLSI circuits. It is possible to reduce the com-
putation times by settling for larger test sets (i.e., trade off test
generation time for test set size). The focus of this paper, in con-
trast, is to explore alternative approachesthat significantly reduce
computation times without compromisingthe quality of the test sets
obtained.

1.2 Overview

Our techniques are devised to exploit three important charac-
teristics of dynamic vector compaction: (1) alarge number of test
vectors that are fault simulated during dynamic compaction are
partially specified, (2) many of the faults considered for extending
acurrent partially specified test vector are usually not detectable by
any extension of the test vector, and (3) extension of a test vector
is an incremental process. Our acceleration techniques are based
on thefollowing ideas: (1) identification of support sets, (2) target
fault switching, and (3) use of dynamic equivalent and untestable
fault analysis. All these techniques are useful in significantly re-

ducing the number of faults that have to be considered by a test
generator in a dynamic vector compaction system. Support sets
are also useful in reducing the number of faults that have to be
considered for fault simulation. Unlike critical path tracing [12]
that identifies asubset of faults that are guaranteed to be detectable
by a given input sequence, support sets identify a large subset of
faults that are guaranteed to be undetectableby the input sequence.

A technique to identify faults that are guaranteed to be unde-
tectable by agiven input vector has beenproposedin[13] for speed-
ing up fault simulation in combinational circuits. They consider
fully specified input vectors. Their technique cannot be directly
used for fault simulation in a compaction environment since ama-
jority of the vectors that are fault simulated during dynamic vector
compaction are only partially specified. We compute support sets
for partialy specified vectors as well, allowing us to significantly
reduce the computation effort required for fault simulation during
dynamic vector compaction. We also use support setsto accelerate
test generation during dynamic compaction. A theoretical basisis
presented for computing support sets for sequential circuits, with
applicationsto fault simulation and test generation during dynamic
compaction for sequential circuits.

2. TERMINOLOGY

A test vector (or vector) is aset of logic values (0, 1, or X) that
are simultaneously applied to the primary inputs of the circuit. A
test vector is fully specifiedif all inputs are specifiedto O or 1 (i.e.,
no input assumes avalue of X). Test vectorsthat contain X's are
said to be partially specified. A test sequence (or sequence) is an
ordered set of test vectorsthat detectsatarget fault. A test setisan
unorderedset of test sequences. Thesize of atest sequenceis equal
to the number of test vectors in the sequence. The size of a test
set is calculated as the number of vectorsin all its test sequences.
Given atest set and the set of faults it detects, a fault is essential
if only one test sequence can detect the fault. Essential faults can
be identified during fault simulation by dropping a fault from the
target fault list only after it has been detected twice [4].

3. SUPPORT SETS

Support sets can be used to significantly reduce the number
of faults processed by a test generator or fault simulator during
dynamic or static compaction. These sets can be computed for
both combinational and sequential circuits.

3.1 Concept

Consider a vector » that produces a response of 0 or 1 at a
primary output Z of acombinational circuit. Theinput vector may
or may not be fully specified. A support set for the primary output
Z isany set of signals (including primary inputs) that satisfy all the
following conditions:

SS1 All signalsin the set assume alogic value O or 1.
SS2 Theprimary output Z is a member of the set.

SS3 Thelogic value on any signal (except a primary input) in the
support set is uniquely determined by values of other signals
in the support set.

A support set is minimal if no signal in the set can be deleted
without violating conditions SS2 or SS3. A minimum support set
has the least cardinality among all possible support sets. As an
example, consider the combinational logic of circuit s27 that is

Figure 1: Combinational logic of circuit s27.

Table 2: Test vector for fault G14 — G10 stuck-at 1 in Figure 1.

GOGLI G2 G3][G5 G6 [G7
1 X 0 0 1 0 X

shownin Figure 1. Thiscircuit is part of the ISCAS 89 benchmark
set. The circuit response to the input vector of Table 2 is also
shownin Figure 1. Only signalsthat assumealogic valueof O or 1
are marked with their respectivevaluesin thefigure (the remaining
signals assume unknown values). One possible support set for the
primary output G17 consists of three signals G5, G11 and G17.
Since these sighalsassume known logic valuesand the set includes
(717, this set satisfies conditions SS1 and SS2. Also, the value of
signal G11isuniquely determined by thevalueof signal G5 andthe
value of primary output G17 is uniquely determined by the value
of signal G11. Therefore, this set also satisfiescondition SS3. The
support set for primary output G17isalso minimal. Thisisbecause
if we delete signal G5 (G'11) from the set, then the value of signal
G'11 (G17) is not uniquely determined by value of other signalsin
the support set and we violate condition SS3. If we delete G17, we
violate condition SS2. Therefore, no signal can be deleted from the
support set. Note that a primary output can have several support
sets. For example, two possible support sets for primary output
G1llareasfollows: {G5, G11} or {GO, G14, G8, G3, G16, G9,
G11}. In the case of multiple primary outputs, condition SS2 is
modified to require that each of the primary outputs be included
in the support set. As an example, consider again the circuit of
Figure 1. The support setsfor primary outputs G11, G17 and G10
are {G5, G11}, {G5, G11, G17},and { GO, G5, G11, G14, G10},
respectively. Therefore, the support set for the circuit is { GO, G5,
G10,G11, G14,G17}. Again, thissetisminimal. Thisisbecause,
if we delete any signal then it can be shown that we violate one or
more of conditions SS2 and SS3.

It is desirable to compute a support set with small cardinality
as this leads to greater savings in test generation and fault sim-
ulation time (see Section 3.2). However, attempting to compute
the minimum support set for each input vector is computationally
expensive. This overhead can more than offset the savings that
can be obtained by using the support set. Our method to efficiently
compute a minimal support set is shown in Figure 2, as procedure
CoMPUTE_SUPPORT_SET(). This procedure takes a list of primary
outputs I with known logic values. We assume that the input
vector has been simulated to determine the response of the circuit.
We also assume that every gate in the circuit has been assigned
an integer value (level) that is one more than the maximum level
of any fanin of the gate. All primary inputs are at level 0. The
supportsignalsfor agateare the smallest subset of the gate’sinputs
that are required to uniquely determine the logic value of the gate.
For example, consider an AND gate « that has two inputs b and
c. Suppose that signals b and ¢ assume the logic value 0 and 1,
respectively. The support signal for gate « is signal b since the
value on gate « is uniquely determined by signal 5.

Thisprocedureusesanarray Larr of sizeegual to the maximum
level (M azlevel) assigned to any signal in the circuit. Larr[i] is

Procedur e COMPUTE_SUPPORT_SET (primary output list L)
{
support set S — ¢.
for (every outputin list L){
Add primary output to set S.
Insert output with level ¢ into list Lar+[s].

for (every listi from Larr[Mazlevel] to Larr[1]){
for (eachgate g inlist {){
Determine support signalsfor gate g.
Add support signalsto .S and
to the appropriatelist in Larr.

return support set S.

Figure 2: Procedureto compute minimal support sets.

alist that contains a subset of the set of signals that are assigned
thelevel :. Initidly, al listsin Larr are empty. We illustrate the
execution of the procedure by an example. Consider the compu-
tation of support set for primary output G10 in Figure 1. For this
example, signals G10, G11, G5, G14 and GO are assigned levels
6, 5, 0, 1 and O, respectively. Here, M axlevel is6. We begin by
including G10 in the support set .S. Since G10 is at level 6 we
includeit inthelist Larr[6]. Wefirst processthe signal G10in the
list Lars[6]. The support signals for gate G10 are G11 and G14.
This is because both signals are necessary to uniquely determine
the value of G11. We include G11 and G14 in the support set
S. Signals G11 and G14 are also included in lists Larr[5] and
Larr[1], respectively. We then process signals in list Larr[5].
Signal G11 can have either G5 or G9 as its support signal. This
is because the value of gate G11 can be uniquely determined by
either of its inputs. We make a choice of the support signal as
follows. If one of the support signals of the gate has already been
included in the support set of the circuit, then this signal is selected
as the support signal for the gate. Otherwise, we choose a support
signal at the lowest level. In this example, we select G5 as the
support signal since it is at a lower level than G9. This heuristic
helpsin generating support sets with few signals. We move on to
the signal G14 that isin the list Larr[1]. The support signal for
G114 is GO. We include GO in the support set S. Since all listsin
the array Larr are now empty, we terminate the procedure. The
set .S forms aminimal support set for the primary output G'10.

G17

oo e

Figure 3: Circuit s27 of the ISCAS 89 benchmark set.
Table 3: Test sequencefor fault G5 stuck-at 0 in Figure 3.

Sequence | GO [GI || G2 || G3
1 1 X 1 0
X 0 X 1

Support sets can also be computed for sequential circuits. As
an example, consider the input sequence shown in Table 3. This
seguence has two input vectors and it is applied to the sequential
circuit s27 that is shown in Figure 3. We compute support sets for

the combinational logic for each input vector, and use these sets
to derive the support set for the sequence. For the first vector, we
simulate the circuit with all state variables in an unknown state.
Thelogic values assumed by signals for the first vector are shown
in Figure 4. The first vector initializes all state variables. The
logic values assumed by signalsfor the second vector are shownin
Figure5.

Figure5: Circuit responsefor the second vector in Table 3.

For computing support sets, we consider the vectors in reverse
order. We first compute a support set for the last vector of the
seguence, and then proceed backwards until we reach the first
vector of the sequence. As an example, consider the second vector
in the sequence shown in Table 3. The circuit response for this
vector is shown in Figure 5. The support set S, for this vector
is computed by using the procedure COMPUTE_SUPPORT_SET (P2).
Here, the list P, consists of only the primary output signal G'17.
This is because for the last vector of any sequence, the support
set is computed by only considering primary outputs that assumea
logic value of 0 or 1. Next state variables with known logic values
are not considered in computing the support set for the last vector.
The support set S, consists of the signalsG17, G11, and G5. Note
that the cardinality of the support set is significantly smaller than
the total number of signalsin the circuit.

After computing the support set Sz, we move on to the the first
vector. The circuit response for this vector is shown in Figure 4.
The support set .S; for this vector is computed using procedure
COMPUTE_SUPPORT_SET (Pi1). The list P includes all primary
outputs that have a logic value of 0 and 1. In addition, P; also
includes any next state variable v that satisfies the following two
conditions:

C1 Next statevariable v is at alogic value of O or 1.

C2 Thepresent state variable correspondingto » isincludedin the
support set computed for vector 2.

Since the support set of vector 1 is computed after we process
vector 2, it is easy to verify if a next state variable satisfies the
condition C2. For the current example, the primary output G17 is
included in P; since it assumes a logic value of 1. Also, all next
state variables G10, G'11, and G13 assume known logic values.
Hence, condition C1 is satisfied for all these signals. Asshownin
Figure 3, the present state variables corresponding to G10, G111,
and G13 are G5, G6, and G'7 respectively. Of these, only G5 is

in the support set .S;. Hence, only signal G10 satisfies condition
C2. We include G10 in the list P1. The support set .51 as com-
puted by procedure COMPUTE_SUPPORT_SET (P4) consists of the
following signals: G10, G17, G11, G9, G16, G8, G14, G3, and
G0. Although not applicable for the present example, if the input
seguenceconsistsof many vectors, the last vector is processed sim-
ilar to the second vector in the present example. All other vectors
are processed using a method to similar to the one used for the first
vector.

Dynamic vector compaction methods incrementally extend a
test sequence. This can be exploited to efficiently compute support
setsin an incremental way as explained below. When new primary
outputs are set as a result of an extension of a test sequence, the
procedure COMPUTE_SUPPORT_SET (P) is called with the list P
containing only those primary outputs that have been set to alogic
value of 0 or 1 as aresult of the last extension. Thus, the added
overhead for support set computation is minimal.

3.2 Applications

Fault simulation:

Fault simulation is used in test generators to reduce the number
of faults for which test sequences have to be derived by the test
generator. For static and dynamic compaction methods, fault sim-
ulation is also used extensively to compute essential faults [4]. In
dynamic compaction methods, a partially specified test sequence
may be extended several times by the test generator and fault sim-
ulation is performed for every extension of the test sequence. As
shown in Section 1.1, the number of faults processed during dy-
namic compaction can be very large. We show that support sets
can significantly reduce the number of faults that have to be con-
sidered for fault simulation. Theorem 1, that is adapted from [13],
provides the theoretical basis for identifying a large set of faults
that are guaranteed to be undetectable by a given test vector. This
theorem appliesto combinational circuits.

Theorem 1: Consider a combinational circuit C' and a test vector
T'. Let S bethe support set computed for the primary outputs with
0 or 1 logic value. If signal g is not in the support set .S, then
a stuck-at 0 or stuck-at 1 fault on signal g cannot be detected by
vector 7.

From Theorem 1, faults on signals that are not in the support
set don’t haveto be fault simulated for 7" or any of its extensions.
A fault on the fanout branch of signal « to signal b need not be
considered if either ¢ or b is not in the support set S. Consider
again the circuit shown in Figure 1. The support set is computed
for the primary outputs G10, G11, and G17. Thisis becausethey
assume a logic value of 0 or 1. The support set S consists of the
signals, G10, G11, G17, G5, G14, and GO. Only faults on these
signals need to be considered for fault simulation. For the circuit
shown Figure 1, the collapsed fault list consists of 32 faults. Of
these, it turns out that only 13 faults haveto be considered for fault
simulation.

Support sets can also be used for reducing the number of faults
considered in dynamic compaction for sequential circuits. The-
orem 2 provides the theoretical basis for sequential circuits. All
proofs have been omitted due to lack of space and can be found
in[14].

Theorem 2: Consider a sequential circuit C' and a test sequence
T that consists of n vectors, T1...7,,. Let S1...S, be the support
sets for the circuit corresponding to vectors 73...7;,, computed as

explained in Section 3.1. Let S be the set formed by taking the set
union of 51...5,. If signal ¢ is not in the support set .S, then a
stuck-at 0 or stuck-at 1 fault on signal g cannot be detected by the
sequence”.

As an illustration of Theorem 2, consider again the sequential
circuit s27 shown in Figure 3 and the sequence given in Table 3.
The circuit responseto thefirst and second vectors of the sequence
are shown in Figures 4 and 5 respectively. The support sets .51
and S, for thefirst and second vectorswere previously computedin
Section 3.1. Theset .S formed by taking the union of sets.S; and .S
consists of signals G10, G17, G11, G9, G16, G8, G14, G5, G3,
and G0. Using Theorem 2, it can be shown that we can rule out 9
out of the 32 faults in the collapsed fault list. These9 faults do not
have to be considered in fault simulation. Note that Theorems 1
and 2 do consider the propagation of fault effects along multiple
re-convergent paths. Thisisbecause, during the computation of the
support sets, we add afanout stem signal to the support set if any of
its branches have already been included in the support set. In fact,
the support sets computed by procedure CoMPUTE_SUPPORT _SET()
are pessimistic in the sense that faults on signalsin the support set
may be undetectable.

Test generation:

The main loop in dynamic compaction methods consists of the
following two steps: (1) generate a test sequencefor atarget fault,
and (2) extend the test sequence by suitably specifying unspecified
primary inputsin the test sequence. By suitably assigning valuesto
unspecified primary inputs, several other faults can be detected by
the test sequence. The fault considered in the first step is referred
to as the primary target fault, while faults that are considered in
the second step are called secondary target faults (or secondary
faults). Asshown in Section 1.1, the number of secondary faults
can be very large. Support sets are useful in significantly reducing
the number of secondary faults. In order to use support sets for
secondary fault elimination, we generalize the concept of support
setsto cover signalsthat assumelogic values X . Thisextensionis
necessary because faults on signals that are at a logic value of X
may be detectable by a suitable extension of the test vector. The
definition of extended support setsis given below.

SS1 All signalsin the set assumealogic value O, 1 or X.
SS2 The primary output Z is amember of the support set.

SS3 Thelogic value on any signal (except a primary input) in the
support set is uniquely determined by logic values of other
signalsin the support set.

The procedure COMPUTE_SUPPORT_SET (P) described in Sec-
tion 3.1 can still be used with one difference - the list P contains
all primary outputs. The definition of support signals for a gate
is also extended as follows. For a gate ¢ that is at a logic value
of X, al inputs of the gate are considered to be support signals.
All referencesto support setsin this subsection are to the extended
definition given above.

Our next result shows how to use support sets for reducing
the test generation effort involved in dynamic vector compaction.
Theorem 3 identifies a large subset of faults in the circuit that do
not have be considered as secondary faults while extending agiven
partial test vector.

Theorem 3: Consider a combinational circuit C' and a test vector
T. Let S bethe extended support set of the circuit. If signal ¢ is

not in the support set S, then a stuck-at O or stuck-at 1 fault on
signal g cannot be detected by any extension of vector 7.

Asan example, consider again the circuit of Figure 1. Thetarget
(collapsed) fault list consists of 32 faults. Consider the situation
when the input vector of Table 2 is extended to detect other faults.
Thelogic values assumed by signalsfor the input vector of Table 2
are shownin Figure 1. The support set of the circuit, as computed
in Section 3.1, consists of the signals G10, G11, G17, G5, G14
and GO. If we also consider primary output signal G13 (whose
valueis X), thensignalsG13, G12, G7, G2 and G1 are also added
to the support set. Only faults on these signals need be considered
as secondary faults. For example, fault G8 stuck-at 1 need not be
considered as a secondary target fault for test generation. For this
circuit, it turns out that 11 of the 32 faults in the target fault list do
not have to be considered as secondary faults in trying to extend
the input vector of Table 2.

Support sets are also useful for reducing the number of sec-
ondary faults in sequential circuits. Theorem 4 provides the basis
for secondary fault elimination in sequential circuits. Consider
a sequential circuit C' and a test sequence 7' that consists of n
vectors, 71...7,,. Let S1...5, bethe extended support sets for the
circuit corresponding to vectors 73...7,,, computed as explained
below. The computation of the support sets S;...S,, is similar to
the computation illustrated in Section 3.1, with some important
differences. As before, we proceed in the reverse order of the
vectors, i.e, we generate S,,...51 in that order. For generating
Sy, the procedure COMPUTE_SUPPORT _SET (P,,) is used where P,
contains all the primary output signals, irrespective of their logic
values. S; (0 < ¢ < n — 1) iscomputed by calling the procedure
COMPUTE_SUPPORT_SET (P;), where P; consists of both primary
outputs and next state variables. All primary outputs are included
in P; irrespective of their logic value. Each next state variable v
that satisfiesthe following conditionisincluded in P;.

C1 Thepresent state variable correspondingto » isincludedin the
support set S;+1 computed for vector 754 1.

Theorem 4: Consider a sequential circuit C' and a test sequence
T that consists of n vectors, 71...7,,. Let 51...5, bethe extended
support sets for the circuit corresponding to vectors 73...7,,. Let
S be the set formed by taking the set union of .S;...5,, . If signal ¢
is not in the support set S, then a stuck-at O or stuck-at 1 fault on
signal g cannot be detected by any extension of the sequenceT'.

For example, consider again the circuit responsesof circuit s27,
that are shownin Figures4 and 5. Thesupport set S» corresponding
to the second vector (which is the last vector of the sequence) is
computed for only the primary output signal G17, and consists of
signals G17, G11, and G5. We next proceed to compute S, the
support set corresponding to the first vector of the sequence. Next
state variables G10, G11, and 13 correspond to present state
variables G5, G6, and G7, respectively. Only G5 isincluded in
S>. Hence S; is computed for the primary output signal, G17,
and the next state variable G10. The set S; consists of the signals
G17, G10, G11, 39, G16, 8, G14, G3, and GO. The set S
is the set union of S; and S,. Only faults on signalsin S are
considered as secondary faults. For example, fault G2 stuck-at
0 need not be considered as a secondary fault since Theorem 4
rules out the possibility of detecting it by extending the partially
specified sequence of Table 3. Note that if the first vector alone
is considered, it can be extended so that the fault effect reaches
the next state variable (G13. However, this fault effect cannot be
propagated to the primary output G17 by any extension of the

Table 4: Vector used for illustrating dynamic fault equivalence.

GOGI G2 G3][G5 G6 1 G7
0 0 0 0 0 X X

second vector. For this circuit, the target fault list has 32 faults.
After applying Theorem4, it can be verified that 12 of the 32 target
faults cannot be detected by any extension of the given sequence.

4. DYNAMIC FAULT EQUIVALENCE

Two faults, f1 and f2 are equivalent if any test sequence that
detects f1 also detects f2 and vice-versa. By computing such
equivalent faults, we can reduce the number of faults that have to
be considered for test generation and fault simulation. If apartially

Figure 6: Circuit responsefor the vector in Table 4.

specified vector hasto be fault simulated or further extended (asis
the case in dynamic compaction), the partially specified valuesin
the circuit may lead to new equivalent faults. To seethis, consider
the circuit of Figure 6. Thisfigure also showsthe signal valuesfor
theinput vector givenin Table 4. Consider faults G7 stuck-at 0 and
G112 stuck-at 1. Thesefaultsarenot equivaent. However, since G1
assumes a logic 0, these two faults now become equivalent. This
is because any test for G12 stuck-at 1 that is derived by extending
the partial vector of Table 4 must set G7 to a 1 and propagate
the fault effect from G12 to a primary output. These are also
the conditions for any test vector for G7 stuck-at 1. Therefore, the
faults G7 stuck-at 0 and G12 stuck-at 1 are dynamically equivalent.
Given a partially specified input vector, the target fault list can be
further collapsed based on signalsthat assume known values. This
situation occurs often in dynamic compaction. For example, the
initial collapsed fault list for the circuit shownin Figure 6 consists
of 32faults. Giventhevector of Table4, we cancomputeadditional
equivalent faults. For this example, we can collapse the fault list
to contain only 27 faults. Dynamic equivalences contribute to a
reductionin the number of faults consideredfor both test generation
and fault simulation.

5.UNTESTABILITY ANALYSISUSING X-PATH CHECK

The concept of X-path [15] check can be used to further reduce
the number of secondary faults processed. Consider a combina-
tional circuit C, atest vector 7' that may be partially specified, and
a candidate fault ¢ stuck-at » (g is asignal in the circuit and v is
either 0 or 1). The X-path check assumesa knowledge of the good
circuit responseto 7'. The X-path check starts from the fault site,
g, and searchesfor apath P to a primary output such that for each
gate g’ on the path, one of the following conditionsis true;

Either Theoutput of ¢’ isat alogic valueof X inthegood circuit.

Or Eachsideinput s of ¢ for which thereis no path from the fault
site to s has either a non-controlling value or avalue of X.

The X-path check was used in PODEM [15] for guiding the
branch and bound process during test generation. We use it in a
different context, to efficiently identify faults that cannot be de-
tected by any extension of a given partial vector. Knowledge of
the good circuit responseto the vector 7' is a pre-requisite for the
X-path check. However, this does not impose any overhead in
practice asthese valuesare readily available from the fault simula-
tion performed for 7' beforethe next extension of 7" isattempted. It
isimportant to note that the presence of an X-path is not sufficient
to guaranteethat atest can be derived for the fault by extending the
partial vector T'. However, failure of the X-path check doesimply
that it isfutile to attempt an extension of 7' to detect the fault being
considered. This significantly reduces the number of unnecessary
test generation attempts, thus making the compaction procedure
more efficient.

6. TARGET FAULT SWITCHING

If the target fault list has an untestable fault f, then f may be
considered during the extension of several test sequencesbeforeit
is proven untestable. This happensbecause afailure to generate a
test for f by extending a partially specified sequence 71 does not
say anything about the testability of f for another partial sequence
T>. In order to prove f as untestable, it is necessary to consider f
asaprimary target fault. Thus, afault could be considered several
times as a secondary target fault before it is detected or proven
undetectable by considering it as a primary target fault. This con-
tributes to an increasein the number of faults that are processed by
the test generator. We use a simple heuristic to avoid repeated test
generation attempts for such faults. If f isproven to be untestable
by any extension of the current test sequence, then we consider f
as the next primary target fault. It isimportant to note that since
target fault switching occasionally selects a different primary tar-
get fault than would have been used otherwise, it nominally alters
the fault ordering used by the dynamic compaction system. Asa
result, a potentially different test set may result when target fault
switching is used. However, the change in the fault ordering thus
causedis limited to very few faults, and does not affect the test set
size significantly becausemost of the faults selected by this heuris-
tic turn out to be indeed untestable. Hence, known fault ordering
methods [4] can still be used along with target fault switching. In
practice, it was observed that the slight re-ordering caused by the
use of target fault switching has a negligible impact on the size of
the test sets (see Section 7).

Thetarget fault switching strategy is also useful for caseswhen
thefault list hasno untestablefaults. If the underlying test generator
generatestests by considering each primary output separately, then
it is useful to establish if a given fault is untestable with respect to
aparticular primary output. If thisis the case, then the fault does
not have to be considered for all tests and their extensionsthat are
derived by considering this primary output. We use the following
heuristic to quickly identify such faults. If a fault f cannot be
detected by any extension of an input vector for a given primary
output O, then we consider f asthe next primary target fault. The
test generator attempts to establish f as untestable with respect to
the primary output O. If f is established to be untestable with
respect to O, we need not target f asasecondary fault for detection
at O for the remaining vectors.

7.EXPERIMENTAL RESULTS
We have currently implemented the following acceleration tech-

niquesas part of the BEccs system: (1) useof support setsfor fault
simulation and secondary fault selection, (2) target fault switching

Table 6: Improvement in computation times.

Circuit | ATG FS [Total
s5378 150 | 1.65 157
s9234 1.10 | 1.05 1.08
s13207 114 | 244 161
s15850 1.29 | 1.98 1.38
s35932 10 | 224 214
s38417 1.25 2.8 2.32
s38584 3.13 | 2.86 2.95

strategy, and (3) X-path check for secondary fault selection for
combinational circuits.

7.1 Full scan designs

We performed two experiments to evaluate the effectiveness
of proposed techniques for combinational circuits. For the first
experiment, the target fault list includes all faults in the circuit.
For the second experiment, only irredundant fault lists were used.
Thesefault listswere obtained by removing faultsthat were proven
to be redundant from the fault lists usedin the first experiment. All
experiments were performed on a Silicon Graphics Challenge L
series machine that uses a M1 PS 4400 processor.

To study both theindividual andthe net effects of the acceleration
techniques on dynamic compaction, we considered three cases: (1)
Beccs with only X-path check for secondary faults (this isreferred
to asthe Base case), (2) Beccs with X-path check and target fault
switching strategy (Base + TFScase), and (3) BEccs with X-path
check, target fault switching strategy and use of support sets for
fault simulation (Base + TFS+ Support case).

Completefault lists:

Computationtimesfor thefull scanversionsof thelarger ISCAS
89 benchmark circuits are given in Table 5. Test generation time,
fault simulation time and total time are reported separately under
columns ATG, FS, and Total, respectively. No numbers for fault
coverage or test efficiency are reported, because both the base
system and BEccs achieved 100% test efficiency (all detectable
faults were detected, and all remaining faults were proven to be
redundant) for al circuits, in all cases.

Table 6 showsthe improvement in test generation, fault simula-
tion and overall computation times obtained by using the proposed
acceleration techniques. Column ATG (FS) showstheratio of test
generation (fault simulation) times for the base system to those for
the case when target fault switching strategy and support sets are
addedto the base system. Theimprovementin overall computation
times is shown in column Total. The improvements are computed
astheratio of the Base caseto the Base + TFS+ Support case.

Table 7: Test set sizes.

Circuit | Base | Base+ TFS | Base+ TFS+ Support
s5378 117 116 116
s9234 164 155 155
513207 237 238 238
515850 103 107 107
s35932 15 14 14
s38417 109 108 108
538584 133 130 130

Test set sizes are reported in Table 7. There is a marginal
improvement in test set sizesover the base system for most circuits.
This difference is due to the fact that the target fault switching

Table 5: Computation times for dynamic compaction.

Circuit Base Base+ TFS Base + TFS+ Support
ATG FS Total ATG FS Total ATG FS Total
5378 93.0 90.9 183.9 62.2 845 146.7 61.8 55.0 116.8
9234 634.9 390.7 1025.6 582.5 463.2 1045.7 576.9 372.1 949.0
513207 485.4 578.7 1064.1 467.0 592.0 1059.0 424.9 236.8 661.7
s15850 | 3829.3 926.4 4755.7 | 2928.0 | 1218.0 4146.0 | 2975.5 468.1 | 3443.6
35932 139.9 | 3399.6 3539.5 137.6 | 3740.0 3877.6 139.4 | 1514.3 | 1653.7
s38417 | 1124.8 | 5642.4 6767.2 934.5 | 5602.4 6536.9 899.3 | 2012.6 | 2911.9
s38584 | 5021.7 | 8869.1 | 13890.8 | 1626.0 | 8691.1 | 10317.1 | 1603.8 | 3100.0 | 4703.8

Table 8: Production VLSI circuits.

Circuit | Tnputs | Outputs | Gates | Collapsed
Faults
cktl 336 340 | 7803 8824
ckt2 551 654 | 4656 7424
ckt3 134 32 | 6025 12161
cktd 1133 1106 | 31416 42744
ckt5 2131 2304 | 49623 63703

Table 10: Improvement in computation times (irredundant fault
lists).

Circuit | ATG FS Total
s5378 115 | 143 1.28
s9234 112 | 1.22 1.16
s13207 1.09 | 211 152
s15850 255 | 1.89 2.33
s35932 1.03 | 2.17 2.07
s38417 1.20 | 2.62 221
s38584 2.03 | 2.76 2.58
Production VLSI Circuits
cktl 156 | 1.56 1.56
ckt2 1.08 | 1.91 1.50
ckt3 093 | 1.49 1.05
ckt4 0.60 | 3.19 1.84
ckt5 - - | >3.00

strategy causes faults to be considered in aslightly different order
than the fault ordering in the base system. Note that the third and
fourth columns of Table 7 are identical, indicating that test set size
is unaffected by support sets.

Results in Tables 5, 6 and 7 are significant for the following
reasons: (i) the proposed acceleration techniques can speed up the
base system by as much as a factor of 2.95, (ii) the test set sizes
produced by the base system are largely unaffected by the acceler-
ation techniques, (iii) the overhead for support set computation and
X-path check is negligible and their use results in a significant re-
duction in overall computation times, and (iv) speedupsare higher
for larger circuits. If support sets are also used in reducing sec-
ondary faults, we can expect afurther improvement in computation
times.

Irredundant fault lists:

The characteristics of the production VLS| circuits are shown
in Table 8. These circuits consist of non-Boolean primitives like
tristate buffers, bidirectional buffers (also called as 1/0 buffers)
and bus configurations. We have extended the concept of support
sets to circuits with non-Boolean primitives. Column headers of
Table9areidentical to theheadersin Table5. Again, test efficiency
numbers are not presented because they are 100% for all circuits
in al cases. Although fault lists do not have redundant faults, the
target fault switching strategy can still be used, as explained in
Section 6.

Table 11: Test set sizes (irredundant fault lists).

Circuit | Base | Base+ TFS | Base+ TFS+ Support
s5378 116 118 118
s9234 168 156 156
s13207 238 238 238
s15850 104 106 106
s35932 13 15 15
s38417 107 109 109
s38584 128 129 129
roduction VLSI Circuits
cktl 263 265 265
ckt2 126 122 122
ckt3 175 169 169
ckt4 56 57 57
ckt5 - - 563

Table 9 reports computation times and Table 10 reports the im-
provements in CPU seconds for full scan versions of ISCAS 89
benchmark circuits and several production VLSI circuits. Again,
thereis an improvement in performance over the base system. The
test generation times improve by a factor of upto 2.5. The reduc-
tion in fault simulation times is due to the use of support sets to
eliminate undetectablefaults. Theacceleration techniquesresultin
asystemthat is about two to three times faster than the base system.
For circuit ckt5 that has about 50,000 gates, the base system did
not completein 2 days. However, using the proposed acceleration
techniques, dynamic compaction was achieved in 11.7 hours, with
100% fault coverage. The improvementsin computation times are
summarized in Table 10.

Test set sizes are reported in Table 11. Again, amarginal fluc-
tuation in test set sizes over the base system is seen. The small
changein test set sizesis solely dueto target fault switching, since
support sets and the X -path check do not have any effect on test set
size.

In summary, our results indicate that the proposed acceleration
techniques can speed up the base system by two to three times, the
test set sizes are largely unaffected by the accel eration techniques,
and complete fault coverage was maintained. The overhead for
support set computation and the X-path check was negligible and
their use resulted in a significant reduction in overall computation
times.

7.2 Sequential circuits

We usesupport setsfor secondary fault selection during dynamic
compaction for sequential circuits. Table 12 givesthe computation
times, test set sizes and fault coverages for several circuits. The
total CPU time for compaction, the test set size, and the fault
coverage are given under columns CPU, Vec, and FC respectively.
Circuits whose names start with 'ps’ are partial scan circuits that
were obtained from the ISCA S 89 benchmarksby breakingall loops
except self loops. Circuits whose names start with 'p’ represent

Table 9: Computation times for dynamic compaction (irredundant fault lists).

Circuit Base Base+ TFS Base + TFS+ Support
ATG FS Total ATG FS Total ATG FS Total
s5378 69.4 80.3 149.7 60.7 837 1444 60.1 56.1 116.2
s9234 409.0 362.4 771.4 372.9 378.6 751.5 366.0 296.0 662.0
s13207 334.2 484.5 818.7 314.8 536.2 851.0 307.2 229.7 536.9
s15850 | 2462.0 876.2 3338.2 | 1026.3 | 1152.8 | 2179.1 964.9 463.0 1427.9
s35932 144.2 | 3109.4 3253.6 141.4 | 4435.1 | 4576.5 140.4 1429.9 1570.3
s38417 | 1036.0 | 5551.0 6587.0 878.6 | 5669.5 | 6548.1 864.6 2121.7 2986.3
s38584 | 1960.2 | 8288.4 | 10248.6 9749 | 87585 | 97334 964.7 3000.6 3965.3
Production VLS Circuits
cktl 1089.0 563.6 1652.6 675.8 669.7 | 13455 696.3 3615 1057.8
ckt2 151.0 247.0 398.0 139.4 246.3 385.9 140.0 1295 265.5
ckt3 1420.9 651.2 2072.1 | 1489.8 767.4 | 2257.2 1536.3 435.7 1972.0
ckt4 1353.4 | 6643.4 7997.8 | 2214.2 | 6330.7 | 8544.9 2253.8 2082.5 4336.3
ckt5 - - | > 2days - - - | 29179.3 | 13198.3 | 42377.6

Table 12: Acceleration of dynamic compaction in sequential cir-
cuits.

Circuit Base Base + Support
CPU | Vec FC CPU | Vec FC
s208 2721 151 | 637 238 | 151 | 637
s344 3187 | 127 | 941 1750 | 168 | 941
s382 17282 | 1016 | 81.7 | 15751 | 1016 | 81.7
s386 10226 | 354 | 79.7 3930 380 | 79.7
s838 21234 | 169 | 296 | 18330 | 169 | 29.6
51196 12612 | 334 | 99.7 4510 | 332 | 99.7
51238 13088 | 332 | 945 5131 | 333 | 945
51423 16417.1 40 | 19.7 | 12102.1 35| 202
ps510 68.2 | 133 | 100.0 280 | 137 | 100.0
ps526 34131 | 2023 | 82.7 | 1827.1 | 1874 | 827
ps526n 32139 | 2089 | 823 | 1979.0 | 2089 | 823
ps820 1096.5 | 349 | 100.0 147.0 | 370 | 100.0
ps832 11565 | 355 | 984 1480 | 380 | 984
ps953 6989.6 | 245 | 100.0 600.1 | 262 | 100.0
ps1488 16231 | 307 | 87.1 1800 | 334 | 86.8
ps1494 1569.2 | 315 | 100.0 181.1 | 341 | 100.0
p35932 | > 2days - - | 197414 | 271 | 4444
p38417 | > 2days - - | 23614.3 | 415 | 45.92

pipelined versions of the corresponding ISCAS 89 benchmarks
(al loops including self loops were broken through partial scan).
Table 12 shows that the use of acceleration techniques improved
the speed of the dynamic compaction process by up to a factor of
8.75. Circuits like p35932 and p38417 that the base compaction
system was unable to process in over 2 days were successfully
processed by using our acceleration techniques.

8. CONCLUSION

We have presented techniques for accelerating dynamic vector
compaction. These techniques can be used for combinational or
seguential circuits. They can be integrated into most dynamic or
static vector compaction systems. Experimental results on several
large production VLSI circuits show that our techniques can ac-
celerate dynamic compaction methods by a factor of two to three.
More significantly, the acceleration factors are higher for larger
circuits, enabling the generation of compact test setsfor large pro-
duction circuits. The test set quality (size) was unaffected by our
methods, and complete fault coverageswere maintained for all our
experiments. We demonstrated the use of support sets to signifi-
cantly reducethe number of faults processed during dynamic com-
paction. Support sets have several other applications, including
serial or parallel fault simulation for combinational and sequential
circuits. Although not attempted here, our techniques can also be

used in static compaction methods that rely extensively on fault
simulation [2].

REFERENCES

[1] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System,” |EEE Transactions on Computer-
Aided Design, vol. 7, pp. 126-136, January 1988.

S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “On Compacting Test
Setsby Addition and Removal of Test Vectors,” in VLS Test Symposium, pp. 202—
207, April 1994.

P. Goel and B. C. Rosales, “PODEM-X: An Automatic Test Generation Sys-
tem for VLSI Logic Structures,” in Proceedings of the 18th ACM/IEEE Design
Automation Conference, pp. 260-268, June 1981.

S.Kgjihara, |. Pomeranz, K. Kinoshita, and S. M. Reddy, “ Cost-Effective Genera-
tion of Minimal Test Sets for Stuck-at Faultsin Combinational Logic Circuits,” in
Proceedingsof the 30th ACM/I EEE Design Automation Conference, pp. 102—106,
June 1993.

[5] S. T.Chakradhar and A. Raghunathan, “Bottleneck Removal Algorithm for Dy-
namic Compaction and Test Cycles Reduction,” in Proc. European Design Au-
tomation Conf., September 1995.

[6] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A. Abraham, “Test Compaction
for Sequential Circuits,” |EEE Transactionson Computer-Aided Design, vol. 11,
pp. 260267, February 1992.

[71 S. P Morley and R. A. Marlett, “Selectable Length Partial Scan: A Method
to Reduce Vector Length,” in Proceedings of the International Test Conference,
pp. 385-392, September 1991.

[8] S.Y.LeeandK.K. Saluja, “Sequential Test Generationwith Reduced Test Clocks
for Partial Scan Designs,” in VLSl Test Symposium, pp. 220-225, April 1994.

[9] E. M. Rudnick and J. H. Patel, “A Genetic Approachto Test Application Time
Reduction for Full Scan and Partial Scan Circuits,” in Proceedings of the 8th
International Conference on VLSl Design, January 1995.

[10]1. Pomeranz and S. M. Reddy, “On Generating Compact Test Sequences for
Synchronous Sequential Circuits,” in Proc. European Design Automation Conf.,
September 1995.

[11]S. T. Chakradhar, V. D. Agrawal, and S. Rothweiler, “A Transitive Closure
Algorithmfor Test Generation,” | EEE Transactions on Computer-Aided Design,
vol. 12, pp. 1015-1028, July 1993.

[12]M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design. New York, NY: Computer Science Press, 1990.

[13]S. B. Akers, B. Krishnamurthy, S. Park, and A. Swaminathan, “Why isLessInfor-
mation from Logic Simulation more useful in Fault Simulation?,” in Proceedings
of the International Test Conference, pp. 786-800, 1990.

[14]A. Raghunathan and S. T. Chakradhar, “Acceleration Techniques for Dynamic
Compaction,” tech. rep., C& C Research Labs, NEC USA, Princeton, NJ, October
1994.

[15]P. Goel, “ An Implicit Enumeration Algorithmto Generate Testsfor Combinational
LogicCircuits,” |EEE Transactionson Computers, vol. C-30, pp. 215-222, March
1981.

[2

[3

[4

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

