Logic Synthesis for Look-Up Table based FPGAs using Functional
Decomposition and Support Minimization

Hiroshi Sawada, Takayuki Suyama and Akira Nagoya
NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN

{sawada, suyama, nagoya}@Qcslab.kecl.ntt.jp

Abstract

This paper presents a logic synthesis method for
look-up table (LUT) based field programmable gate ar-
rays (FPGAs). We determine functions to be mapped
to LUTs by functional decomposition. We use not only
disjunctive decomposition but also nondisjunctive de-
composition. Furthermore, we propose a new Boolean
resubstitution technique customized for an LUT net-
work synthesis. Resubstitution is used to determine
whether an existing function is useful to realize an-
other function; thus, we can share the common func-
tion among two or more functions. The Boolean re-
substitution is effectively carried out by solving a sup-
port minimization problem for an incompletely speci-
fied function. We can also handle satisfiability don’t
cares of an LUT network using the technique.

1 Introduction

Look-up table (LUT) based field programmable
gate arrays (FPGAs) consist of an array of pro-
grammable logic blocks (LUTSs) and a programmable
routing network to connect the LUTs. Each LUT can
realize any Boolean function with m (typically 4 or 5)
inputs.

In logic synthesis, it is important to extract
adequate sub-expressions from a large expression.
Kernel extraction [1] is a supreme method for
extractions when expressions are in sum-of-product
forms. As for synthesis of an LUT network, functional
decomposition [2, 3] can be considered as one of
the methods, and many researchers have used it
[4, 5, 6, 7, 8]. Furthermore, several researchers
1L5, 6, 7] proposed functional decomposition methods
or functions represented by an ordered binary decision
diagram (OBDD or simply BDD) [9]. We also use
a BDD-based functional decomposition procedure to
extract functions to be mapped to LUTs. Many of the
researchers have used only disjunctive decomposition
for LUT network synthesis. = We use not only
disjunctive decomposition but also nondisjunctive
decomposition.

It is also important to identify common sub-
expressions. Only functional decompositions for each
of single output functions does not allow sharing
LUTs among several functions. Resubstitution is a
technique to check whether a function is useful to
realize another function. By resubstituting a function
into several functions, we can determine whether or

not the function is common among several functions.
Resubstitution techniques for a multi-level network
of sum-of-product form can be found in [1, 10]. In
this paper, we propose a new Boolean resubstitute
technique customized for an LUT network. The
Boolean resubstitution is effectively carried out based
on support minimization for an incompletely specified
function [11, 12, 13]. We can also handle satisfiability
don’t cares of an LUT network using the technique.

This paper is organized as follows. In Section 2,
we introduce some notation about Boolean functions
and BDDs and review previous works on functional
decomposition and support minimization. In Section
3, we discuss our strategies for generating functions to
be mapped to LUTs using functional decomposition.
In Section 4, we discuss a new Boolean resubstitution
technique for an LUT network, which is carried
out by support minimization. Section 5 shows the
experimental results and our observations on them.
We conclude this paper in Section 6.

2 Preliminaries and Previous Works
2.1 Boolean function and BDD

Let f:{0,1}™ — {0,1} be a Boolean function over
variables (z1,...,2,). Let f., = f(z1,...,zi-1, 1,
Titly.-- 7~Tn) and fH: f(xla' sy i1, OaxH—la' . '7'7371)-
The support sup(f) of a function f is the set of vari-
ables that the function depends on: Vz € sup(f), fz #
fe and Vo & sup(f), fz = fo. A function f is called
m-feasible if |sup(f)| < m; otherwise, f is called m-
infeasible.

An ordered binary decision diagram (BDD) [9]
is a directed acyclic graph representing Boolean
functions (Figure 1). A BDD has two kinds of nodes:
variable nodes and constant nodes. A constant node
represents the Boolean constant 0 or 1. A variable
node is associated with a Boolean variable and has
two outgoing edges labeled 0 and 1, respectively.
Traversing from any variable node to a constant node
according to the assignment to variables, Boolean
variables must occur at most only once and in a given
order. We define the level of a variable node as
follows. If there exists an edge from a variable node v;
to another variable node v;, the level of v; is smaller
than that of v;. We define a variable order 7 as a
one-to-one mapping from levels to indexes of Boolean
variables. The form of a BDD depends not only on a
Boolean function but also on a variable order.

. cut_sef f3)={y, v ¥
level index o get nd ft330)={y. %
1 2 cut_set nq f331)={y ¥

X4 X %o

Xa X %o

Figure 1: A BDD and its Functional Decompositions

2.2 Functional Decomposition

Functional decomposition of a function f(z1,...,zn)
is of the form

f=g(a(X7),...

where XP and X7 are sets of variables such that
XBuXxt' = {x,...,7,}. The sets XZ and
XT are called the bound set and the free set,
respectively. If XB N X¥ = §§, the form is called
disjunctive decomposition; otherwise, it is called
nondisjunctive decomposition. g is called the
image of a decomposition. In this paper, we
will call a;(XPB),..., a;(XP) the subfunctions of a
decomposition.

The fundamental concept of a functional decompo-
sition was studied by Ashenhurst [2] and Roth and
Karp [3]. Recently, several researchers [5, 6, 7] have
proposed BDD-based algorithms for functional decom-
positions. We use the following definitions and propo-
sitions that Lai, Pedram and Vrudhula [7] have pro-
posed.

Definition 1 In the BDD of a function f with a
variable order , let cut_set(f,,l) denote the set of
nodes whose levels are greater than [and that have
edges from nodes of level less than or equal to [. O
Proposition 1 (disjunctive decomposition) For
an n-variable function f with a variable order =, if
|cut_set(f,m,1)| < 2, there exists a decomposition of
the form (1) where X% = {z.¢),..., 2.} and X*

= {‘rﬁ(l-‘rl)’) xﬂ(n)} o
Definition 2 Let s < [and i € {0,1}/"°*!. In the
BDD of a function f with a variable order =, let
cut_set_nd(f,m,1,s,i) mean cut_set(f;,m,1[), where f;
is the function resulting from assigning ¢ to f at the
variables from level s to level [. m|
Proposition 2 (nondisjunctive decomposition)

For an n-variable function f with a variable order m,
if Vi € {0, 1}/ =% |cut_set_nd(f, w,1,s,i)| < 2!, there
exists a decomposition of the form (1) where X? =

{:E,T(l),...,:r,r(l)} and X7 = {Cﬂﬂ.(s),...,xﬂ.(n)}. a
Figure 1 shows the concepts of cut_set and
cut_set_nd and their relations to decomposition

yar(X7), x7) = g(@(x "), x7), (1)

XXX 0 1 XX 1
00|0|* 0|00
01 1L =%+ x%% 01| 111 g =xx+x%
1| [[et x| gExEx
101" 1011
Figure 2: Support Minimization
forms. There exists a decomposition of the form

f = glan(xe,x1,24),2(xa,21,24), x3) because
lcut_set(f,7,3)] = 3 < 22. The form requires
three 3-input LUTs. There also exists a decom-
position of the form f = g(ay(z2,x1,24),24,23)
because |cut_set_nd(f,7,3,3,0)] = 2 < 2! and
|cut_set nd(f,n,3,3,1)] = 2 < 2'. The form requires
two 3-input LUTs.

2.3 Support Minimization

Let the relation of two functions f-g = 0 be
clenoted by f < g. An incompletely specified function
f:{0,1}™ — {0,1,%} (x means don’t care) can be
given by an interval [f%, fU], where f* and fY are
complete specified functions satisfying f* < fU. The
set of minterms that map to 0, 1 and * (on-set,
off-set and dc-set) is given by {X | fI(X) = 1},
{X | fY(X) =0} and {X | f/(X) =0, fU(X) =1},
respectively. We will use the notation f instead of
f to represent that a function may be incompletely
specified. The support of an incompletely specified
function f is given by sup(f) = sup(fF) U sup(fY).

A completely specified function f is said to be
compatible with an incompletely specified function
[f%, fU], denoted by f < [fF, fU],if f© < f < fU. In
the same manner, an incompletely specified function
[g%, gV] is said to be compatible with an incompletely
specified function [f¥, fU] if fI < gF < gV < fU.

Support minimizations for incompletely specified
functions were discussed in [11, 12, 13]. We address
a support minimization problem as follows: given
an incompletely specified function [fF, fU], find a
compatible function § whose support sup(g) is the
smallest. For example, consider the incompletely

specified function f = [fL = T122 + T1T27T3, fU =
x1 + x2 + x3] shown in Figure 2. The support sup(f)
is {x1,za,23}. By replacing the dc-set with on-set or
off-set, we can get a compatible function § = [¢¥ =
Tize + 1173, gU = m1 + x2] whose support sup(g)
is {z1,z2}. All the completely specified functions
compatible with ¢, T1zo + 2172 and z; + z2, are also
compatible with f .

We use the following definition and proposition
found in [11].
Definition 3 Let f(z1,...,2,) be a Boolean func-
tion and let R and S be subsets of {zi,...,z,}.

X®n X" 0 1 2
t @) ® =
4 4 4
n-3 n-2 n-1
[[[
@
4 4
5 -] -]
n-2 n-1
[[
@ #
4
3 | -]
n-1

Figure 3: Decomposition Forms and their Costs

disjunctive eliminant edis(f, R) and conjunctive
eliminant econ(f, R) are defined as follows.
edis(f,0) = f
edis(f,{z:}) = far + foi, 1 €{1,...,n}
edis(f,RUS) = edis(edis(f, R), S)

econ(f,0) = f
econ(fa {xl}) = fE fria (S {17- . -an}
econ(f, RUS) = econ(econ(f, R),S) O

Proposition 3 Let f=[f", fU] be an incompletely

specified function and E be a subset of sup(f). If
edis(f¥, E) < econ(fV, E), f'=[edis(f*, E), econ(fV,
E)] is compatible with f and sup(f') = sup(f)—E. O

According to Proposition 3, a support minimization
problem can be solved by finding one of the largest
subsets E of eliminated variables. In Figure 2, ¢¥ =
edis(f¥, {x3}) and gV = econ(fV,{x3}). If we let
E be {z1} or {z3}, the inequality edis(f*, E) <
econ(fY, E) is not satisfied. Thus, {23} is the largest
subset, of eliminated variables.

3 Generating m-feasible Functions us-
ing Functional Decomposition

3.1 Decomposition Forms and their Costs

We assume that every LUT in a network can
realize any Boolean function with m (m > 3) inputs
and 1 output. Our synthesis procedure iterates
functional decompositions to break a function into
new functions having fewer supports until the supports
of all functions are less than or equal to m. Functional
decompositions are applied not to multiple output
functions but to each of the single output functions.
How to share common LUTSs among several functions
will be discussed in Section 4.

Given an m-infeasible function, we try to decom-
pose the function such that the size of a bound set X2

is equal to m. The subfunctions a; (X ?), ..., a:(XP)

/* global variables that store the best solution */
mincost;
minm;
/* f is a BDD and w represents the variable order of f */
/* Nin is the number of variables included in bound set */
/* Nout is the number of variables excluded from bound set */
bound_set(f, m, Nin, Nout) {
if (Nin = m or Nout =n—m) { /* terminal case */
cost = least_cost_decomposition(f,);
if (mincost > cost) {
mincost = cost;
minmT = T;

else { /* non-terminal case */

/* include the variable of level Nin+1 in bound set */
bound_set(f, =, Nin+1, Nout);

/* exclude the variable of level Nin+1 from bound set */
(newf, newn) = jump_down(f, m, Nin+1, n—Nout);
bound_set(new f, newm, Nin, Nout+1);

Figure 4: Decomposition Tests for All the Bound Sets

of the decomposition can be allocated to LUTSs be-
cause they are m-feasible. If the image g of the de-
composition is m-feasible, it can also be allocated to an
LUT; otherwise, it becomes a new m-infeasible func-
tion.

We are only interested in a decomposition whose
image has fewer supports than the original function;
therefore, an inequality t+| X7 < | X B|+|X |- |X BN
XF| is given as the condition for decomposability.
From this inequality and |XB| = m, we can derive
t+|XBnXF| < m. Because t > 1 and |XZ N
XF| > 0, we can consider m(m — 1)/2 kinds of
decomposition forms. For example, if m = 4, the 6
kinds of decomposition forms shown in Figure 3 can
be considered. We evaluate the costs of decomposition
forms as follows. Decompositions of fewer ¢ have less
cost, and in decompositions of equal ¢, those of fewer
|XBNXF| have less cost. In Figure 3, the number in a
circle represents the cost of decomposition for m = 4.

If a function f is not decomposable in any of
the forms in Figure 3, we apply an expansion f =
T; - fa= + x; - fz, using a variable z; € sup(f) to the
function. Consequently, a function Z7 - 2 + x1 - T3 can
be realized by an LUT and fz and f,, become new
me-infeasible functions.

3.2 Decomposition Tests

For a function f to be decomposed, we examine
decomposition forms and their costs for all the bound
sets X P of size m and find the least cost decomposition
form. If sup(f) is n, the number of all the bound sets
of size m is ,C,,. According to Propositions 1 and 2,
the variables in a bound set should be ordered from
level 1 to level m in the BDD representation. Thus,
we need to construct ,,C,, BDDs of different variable
orders. We change the variable order of a BDD by
jump_down operations. jump_down(i,j) moves the
variable at level 7 to level j (1 < j) and decreases
the levels of all the variables from level j to level
i—1 by 1. Figure 4 shows a recursive algorithm to

examine decomposition forms and their costs for all
the bound sets of size m. The computation starts by
calling bound_set(f,m,0,0).

3.3 Encoding and Don’t Cares

Even if the bound set and free set that give the least
cost decomposition are found, the image g and the
subfunctions aq,...,a; are not uniquely determined.
Different encoding of cut_set or cut_set_nd’s yield
different functions ¢ and «,...,a;. Discussions of
encoding problems were found in [5, 8]. However, in
our implementation up to now, we encode cut_set or
cut_set_nd’s in a straightforward way: assigning the
binary representation of ¢ to the i-th element. For
example, in Figure 1 the elements of cut_set(f,,3)
are encoded in asay = {vg : 00, vy : 01, vo : 10}.

Since @ never has the value 11, the minterms
of the image, ¢g(1,1,0) and g(1,1,1), can be handled
as don’t cares. Unless |cut_set(f,m,[)] = 2' or
Vi € {0,151 |cut_set_nd(f,m,1,s,i)| = 2¢, we can
encode cut_set and cut_set_nd’s such that the image ¢
has don’t cares. The Boolean resubstitution technique
discussed in the next section can identify such don’t
cares because it uses satisfiability don’t cares.

4 Boolean Resubstitution based on
Support Minimization

4.1 Problem Formulation

Only the procedure presented in Section 3 does
not allow sharing LUTs among several functions.
Resubstitution, discussed in [1, 10], is a technique to
check whether an existing function is useful to realize
other functions. For example, let y; = 122+ x123+ 14
and ys = 5 + x3. If we resubstitute y» into y;, y1 can
be represented as y; = x1 (T2 + 3) + T4 = T1Y2 + T4,
which costs less than the original.

The image of a functional decomposition sometimes
becomes an incompletely specified function as shown
in Subsection 3.3. If a function that plans to utilize
other functions is incompletely specified, we will find
a resubstitution form such that the resultant function
of the substitution is compatible with the original
function. In the case of LUT network synthesis,
support size can be considered as one of the costs of
a Boolean function. Therefore, we formulate Boolean
resubstitution problem as follows.

Problem 1 Let f be an incompletely specified
function whose support is X and let hy,...,hs be
completely specified functions whose supports are
X', (X' € X). Find a function § such that g(

hi(X),...,hs(X"), X"), (X" C X) is compatible with
£, sup(g) < sup(f), and sup(g) is the minimum. O

4.2 An Algorithm based on Support
Minimization

Let y be a variable such that y = h(X’). If y is
utilized by another function, we do not care about
the minterms represented by y # h(X'). Such don’t
cares are called satisfiability don’t cares (SDCs) [14].
Boolean resubstitution can be carried out by support

/* global variables that store the best solution */
minN sup;
minf’;
minfU;
/* the function is given by [f¥, fU] */
/* Nsup is the size of the support of the function */
/* elim is the index of the variable to be eliminated */
support_min(fL, fU, Nsup, elim) {
if (elim < 0) return; /* terminal case */
if (Nsup—elim > minNsup) return;
newf’ = econ(f-, werim);
newfV = edis(fU, Tetim);
if (newa < newa) { /* exclude zcrim */
if (Nsup—1 < minNsup) {
minNsup = Nsup—1;
minfl = newf’;
minfl = newfV;

support-min(new fL, newfV, Nsup—1, elim—1);

support_min(fL, fU, Nsup, elim—1); /* include zejim */

Figure 5: Support Minimization

minimization for an incompletely specified function
that is generated by considering SDCs.

We will show our procedure to solve Problem 1.

1. Let yi,...,ys be variables such that y;, =
hi(X'), i €{1,...,s}. Consider D =3 ..
yi # hi(X') as the SDC among X' and y1,. .., ys.

A~

2. Let f be expressed by an interval [fT) fU].
Consider an incompletely specified function
drn 1T given by an interval [f© - D, fU + D]. The
support of grnrr is {y1,...,ys} U X. Because
D becomes 0 by substituting h,;(X’) for y; (Vi €
{ 7"'75})7 f = gINIT(hl(X/)a"'7hS(X’)7X)'

3. Apply a support minimization procedure to
grvrr and find a compatible function ¢ that
has a minimal support. If sup(g) < |X]|,
the resubstitution has succeeded; otherwise the
resubstitution has failed. Let E be the set of
eliminated variables in the support minimization.
Then, f > g(hi(X'),...,hs(X’),X"), where
X"=X-E.

Lin [13] gave a BDD-based algorithm to find all
the supports. Although our method is also based
on BDD representation, it only finds just one of
minimal supports. Figure 5 shows our recursive

algorithm. For an interval f = [fF, fU] and
.,Zn}, the computation starts by

sup(f) = {z1,..
calling support_min(f”, fU,n,n). The algorithm is
not time consuming because the search space can
be pruned in the following two cases. If newf” <
new fU is not satisfied, no compatible function can be
found from the search state; also, if Nsup—elim >
minNsup, any compatible function whose support
size is less than minN sup cannot be found from the
search state.

4.3 Resubstitution of m-feasible functions

We will now show our synthesis procedure using
not only functional decomposition but also Boolean
resubstitution. The procedure iterates the following
steps until all the functions become m-feasible.

1. Let f1,..., fr be functions that are m-infeasible,
and let f; be a completely specified function
compatible with f;, (i € {1,...,k}).

2. Find the least cost decomposition form for each
of functions fi, ..., fx by the procedure described
in Section 3. Let @;(X?) be the subfunctions
generated in the least cost decomposition form
of fi (i € {1,...,k}). Note that @;(XP?) are m-
feasible functions.

3. For all 4,5 € {1,...,k}, try to resubstitute

@;(XP) into f;. Let success; be a subset
of {1,...,k} such that j € success; if and
only if the resubstitution of @;(X2) into f; is
successful. Let §;; be the function generated by
the resubstitution of @;(X7?) into f;.

4. We calculate gain; =) .c iccess; ISUP(fi)l —
|sup(gi;)|, which means how many fanins of
functions are reduced if @;(X?) is used. Find the

best subfunction d’b(Xf) among &, ...,a@ such
that gain; is the maximum.

5. Allocate LUTs for @, (X). For all j € successs,
If there exist m-feasible
., fr, allocate an LUT for

replace f; with gy;.
functions among fi,..
each of them.

In our synthesis procedure, LUTs are allocated
from the side of primary inputs to the side of primary
outputs. Thus, the SDCs of the circuit can be used to
simplify the functions that have not been mapped to
LUTs. The resubstitution technique helps us to easily
handle the SDCs. In step 3, if i = 7, it is clear that
the resubstitution is successful. However, we actually
resubstitute @;(X7?) into f; and generate g;; to easily
identify the don’t cares caused by encoding of cut_set
or cut_set_nd’s.

4.4 Resubstitution of Another Primary
Output

There exists a case where an primary output
function can be realized simply by resubstituting
another primary output function into the function.
Such a case may not be detected by the procedure
described so far.

We apply resubstitution of another primary output
at the beginning of our synthesis process in the
following manner. Let fi,..., fi be output functions.
For all 4,5 € {1,...,k}, try to resubstitute f; into
fi- In fact, we apply the resubstitution according to
the following priority to restrain the depth of a circuit
from increasing.

1. In the case that the function generated by the
resubstitution is m-feasible: only one additional
LUT is needed to realize the function.

2. In the case that f; is m-feasible.

3. All other cases.

5 Experimental Results

The logic synthesis procedure presented so far
has been implemented. The input to the program
is a combinational (multi-level or two-level) circuit.
The circuit description is transformed to BDD
representations of primary outputs in terms of primary
inputs. The synthesis procedure is then carried out to
construct a network of m-input LUTs.

Table 1 shows the experimental results for several
of the MCNC [16] benchmark circuits listed in the
column “circuit”. The columns “size” and “dep” show
the number of 5-input and 1-output LUTs and the
depth of the circuit, respectively. The column “time”
shows CPU time in seconds on a SPARCstation 10/51.
We limited the maximum number of usable BDD
nodes to 1,000,000.

Three experiments were performed on each bench-
mark circuit. The column “without resub.” means
that Boolean resubstitutions were not carried out. In
the case, no LUT is shared among two or more primary
outputs. The column “with resub.” means that re-
substitutions of m-feasible functions were carried out.
The column “resub. PO” means that resubstitution
of a primary output into another primary output was
also applied at the beginning of the synthesis process.

In each experiment, functional decompositions for
all the bound sets of size m were carried out. Thus
the execution time of circuits having a primary output
of many supports tended to be enormous. For some
larger circuits, e.g., C880, the method failed due to
memory overflow.

Comparing the columns “without resub.” and
“with resub.”, we can observe the following. Boolean
resubstitution is very effective because it reduces
the number of LUTs sharing common LUTs among
several functions without increasing the circuit depth
in many cases. Furthermore, the execution time of
Boolean resubstitution, most of which is spent in
support minimization, is not expensive. Comparing
the columns “with resub.” and “resub. PO”, we
can observe the following. Although resubstitution
of a primary output generally reduces the number of
LUTs and execution time, it tends to increase the
depth of a circuit. In order to compare our results
with other LUT network synthesizers, we pick up the
results found in [4, 15, 5]. We observe that our method
gives good results for most of the circuits.

6 Conclusion

We have presented a logic synthesis method for
an LUT network using functional decompositions and
Boolean resubstitutions based on support minimiza-
tions. Functional decompositions are used to enumer-
ate candidates of m-feasible functions to be mapped
to LUTs. After the enumeration, the best m-feasible
functions are determined by resubstituting the candi-
dates into all the m-infeasible functions.

In each of synthesis steps, we generate only
one m-feasible function as a candidate from each
of m-infeasible functions. To synthesize LUT
networks of higher quality, methods to enumerate
more candidates will be required. The Boolean

Table 1: Experimental Results (5-input 1-output LUTS)

circuit without resub. with resub. resub. PO [4] T15] 5]
name in out || size dep time| size dep time| size dep time size
5xpl 7 10 15 2 0.2 11 2 0.2 10 3 0.2 18 27 12
9sym 9 1 7 3 0.7 7 3 0.8 7 3 0.7 7 59 6
alu2 10 6 48 6 13.8 48 6 16.7 48 6 17.0 || 109 116 54
alud 14 8 172 7 2914 90 T 234.7 56 9 38.4 1| 55 195
apex4 9 19| 374 5 76.7 | 374 5 230.8| 374 5 240.5 || 412 558
apex6 135 99 192 6 623.9| 161 4 755.0| 155 8 208.7 | 182 212 204
apex7 49 37| 120 5 164.1 61 5 126.9 54 5 12.3 || 60 64 56
b12 15 9 16 3 0.3 16 3 0.3 16 3 0.4
b9 41 21 53 4 11.3 39 5 12.9 37 5 6.5 39 35
clip 9 5 18 3 3.7 11 3 3.8 14 8 2.6 28
cordic 23 2 15 5 45.9 9 4 48.0 10 6 27.6
count 35 16 52 4 5.3 31 6 11.3 31 6 11.0) 31 31 32
duke2 22 29 175 7 432.2| 155 7 489.4| 150 8 451.8 || 110 120
f51m 8 8 12 3 0.3 10 3 0.3 8 4 0.1 17 12
misex1 8 7 12 2 0.2 10 2 0.2 10 4 0.2 1 19 11
misex2 25 18 40 3 1.5 36 3 1.8 36 4 2.3 28 29
misex3 14 14 195 9 5034 | 213 9 6704| 120 13 136.6
misex3c 14 14 107 9 1324 99 9 131.1 92 11 1016
rd73 7 3 8 2 0.1 6 3 0.2 6 3 0.2 6 7
rd84 8 4 12 3 0.4 7 3 0.5 8 5 0.3 10 73 12
sao2 10 4 23 4 7.4 21 4 8.2 21 4 7.6 28 46
t481 16 1 5 3 4.4 5 3 4.5 5 3 4.5
vg2 25 8 44 5 2175 21 5 253.0 17 4 4.2 20 21
z4ml 7 4 6 2 0.2 5 2 0.2 4 2 0.1 5 6 5

total 1721 105 2537.3 | 1446 106 3001.2 | 1289 132 1275.4

resubstitution technique proposed in this paper is
not time consuming, which will allow effective
identification of common LUTSs from large amount of
candidates.

For functions that do not have many supports,
examining decomposition for all the bound sets
generates a good m-feasible function to be mapped
to LUTs without spending a large amount of time.
However, for functions with many supports, the
examinations are time consuming and sometimes fail
due to memory overflow. Thus, heuristics that avoid
the expensive search will be needed for synthesis of
larger circuits.

Acknowledgement

We would like to thank Kiyoshi Oguri for his
suggestions and encouragements during this reserch.

References

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,
and A. R. Wang, “MIS: A Multiple-Level Logic
Optimization System,” IEEFE Trans. CAD, vol. CAD-
6, pp. 1062-1081, Nov. 1987.

R. L. Ashenhurst, “The Decomposition of Switching
Functions,” in Proc. of an International Symposium
on the Theory of Switching, Apr. 1957.

J. P. Roth and R. M. Karp, “Minimization over
Boolean graphs,” IBM journal, pp. 227-238, Apr.
1962.

R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Improved Logic Synthe-
sis Algorithms for Table Look Up Architectures,” in
ICCAD, pp. 564-567, Nov. 1991.

S. Chang and M. Marek-Sadowska, “Technology
Mapping via Transformations of Function Graphs,”
in ICCD, pp. 159-162, Oct. 1992.

[6] T. Sasao, “FPGA design by generalized functional
decomposition,” in Logic Synthesis and Optimization
(T. Sasao, ed.), pp. 233-258, Kluwer Academic
Publishers, 1993.

Y.-T. Lai, M. Pedram, and S. Vrudhula, “BDD based
decomposition of logic functions with application to
FPGA synthesis,” in 30th DAC, pp. 642—647, June
1993.

R. Murgai, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Optimum Functional Decomposition
Using Encoding,” in 31st DAC, pp. 408-414, June
1994.

R. E. Bryant, “Graph-based algorithm for Boolean
function manipulation,” IEEE Trans. Computers,
vol. C-35, pp. 667-691, Aug. 1986.

H. Sato, Y. Yasue, Y. Matsunaga, and M. Fujita,
“Boolean Resubstitution With Permissible Functions
and Binary Decision Diagrams,” in 27th DAC,
pp. 284-289, June 1990.

F. M. Brown, Boolean Reasoning: The Logic of
Boolean Equations. Kluwer Academic Publishers,
1990.

M. Fujita and Y. Matsunaga, “Multi-level Logic
Minimization based on Minimal Support and its
Application to the Minimization of Look-up Table
Type FPGAs,” in ICCAD, pp. 560-563, Nov. 1991.
B. Lin, “Efficient Symbolic Support Manipulation,”
in ICCD, pp. 513-516, Oct. 1993.

H. Savoj, R. K. Brayton, and H. J. Touati, “Extract-
ing Local Don’t Cares for Network Optimization,” in
ICCAD, pp. 514-517, Nov. 1991.

R. Francis, J. Rose, and Z. Vranesic, “Chortle-crf:
Fast Technology Mapping for Lookup Table-Based
FPGASs,” in 28th DAC, pp. 227-232, June 1991.

S. Yang, Logic synthesis and optimization benchmarks
user guide version 3.0. MCNC, Jan. 1991.

[9]

[10]

[13]
[14]

[15]

[16]

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

