
Gate-Level Simulation of Digital Circuits Using Multi-Valued Boolean Algebras

Scott Woods Giorgio Casinovi

School of Electrical & Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0250

Abstract
This paper describes an algorithm for the simulation of

gate-level logic. Multiple logic levels are used to describe
the state of each node. Each state corresponds to a different
voltage level, and the number of levels to be used for a sim-
ulation is user-defined. This feature simplifies considerably
the interface between a digital and an analog simulator. A
DC solver is incorporated to find the initial operating point
of a circuit before a transient analysis begins. This solver
has the capability of finding the operating point of gates
located in feedback loops. For transient analysis, a gate
delay model that takes into account the slope of the input
waveforms is used. The performance of the algorithm is
demonstrated by simulations of a number of benchmark
circuits.

1 Introduction
As the percentage of integrated circuits that contain both

analog and digital components keeps growing, so does the
importance of mixed-mode simulation as a verification tool.
Extensive literature exists on this topic: for a detailed bib-
liography the interested reader is referred to [1, 2] and to
the references listed therein. A feature common to all pub-
lished mixed-mode simulation algorithms is that they must
trade-off speed versus accuracy, in particular when it comes
to simulating the digital portion of a circuit. In terms of
speed, gate-level simulation would have to be the preferred
choice, because it can run almost three orders of magnitude
faster than a circuit level simulation. Even higher levels
of simulation such as timing simulation can run up to 100
times slower than a gate-level simulation [2]. On the other
hand, it is also desirable to keep as much information as
possible about signal levels: denoting the output of a gate
as “unknown," as is done in most logic simulators, provides
no information about the actual voltage present at the gate’s
output. This causes problems at the digital-analog interface
of mixed-mode simulators.

An attempt to reconcile these two conflicting require-
ments was made with the development of so called

This work was supported in part by the National Science Foundation
under Grant MIP-9211163.

electrical-logic analysis, or ELOGIC [3]. This is a switch-
level timing analysis technique in which signals can take
any of a number of user-specified voltage levels between a
logic zero and a logic one. The ELOGIC simulation algo-
rithm then computes the time necessary for a node voltage
to change its value from its current level to an adjacent one.
In this way it is possible to control the signal resolution,
and in particular to trade off speed for accuracy. However,
the simulation is still performed at the device level using
ordinary device models, so that the computational effort
required is still substantially greater than gate-level logic
simulation [2]. A different approach is given in [1], where
a functional-level mixed-mode simulator is described. As
in ELOGIC simulation, an arbitrary number of voltage lev-
els between a logic zero and a logic one is available to
represent signal values. Ordinary AND and OR Boolean
operations are replaced by min and max operations on the
signal levels. In this way logic functions can be simulated
at the gate level, and a certain number of high-level analog
operations can be handled as well.

The simulation algorithm described here also tries to re-
tain the speed of traditional gate-level simulation, while at
the same time maintaining enough information on the wave-
forms generated by digital logic gates to compute accurate
delays and provide lower level simulators with detailed
data. In particular, multiple logic states (levels) are used
to describe the state of each node. Each state corresponds
to a voltage level, and the the number of levels to be used
for a simulation is user-defined. These logic levels provide
more information about a waveform than the traditional
states (0, 1, X, Z), so slopes of waveforms can be deter-
mined and accurate times can be calculated for threshold
crossings. There are however a number of differences be-
tween the algorithm described here and the one proposed in
[1]: one is that our implementation requires only ordinary
Boolean algebra operations (except for computing delays).
As a consequence of this fact, it is possible to determine
the initial state of the circuit by solving a set of Boolean
algebraic equations, so that a valid operating point for the
circuit can be determined before a transient analysis begins,



thus eliminating the need for an unknown state. The DC
solver has the ability to handle gates in feedback loops, so
it is not limited to combinational circuits.

2 Multiple-level logic
An obvious way to try to combine the speed of gate-

level logic simulation with the finer resolution of multiple
signal levels is to use Boolean algebras containing more
than two elements. A complete mathematical treatment of
such algebras is beyond the scope of this paper, and can be
found, for instance, in [4, 5]. In brief, a Boolean algebra is a
set of elements on which three operations, called AND (^),
OR (_) and NOT (¯), have been defined. It can be shown
that, as a consequence of the laws that Boolean operations
must satisfy, a finite Boolean algebra must contain exactly
2n elements.

An order relation (�) can be introduced in a Boolean
algebra by the following definition:

x � y , x ^ y = x

or equivalently:

x � y , x _ y = y:

Unfortunately this order relation is only partial, not total
(except in the case of a two-element algebra): this means
that there exist pairs of elements x; y such that neither
x � y nor y � x is true. It can be shown that if z = x ^ y,
then z is the largest element such that z � x and z � y:
therefore, the AND operation can can be regarded as a sort
of min operation on the the Boolean algebra. Similarly, if
z = x _ y, then z is the smallest element such that x � z

and y � z.
At a first look it would appear that the easiest way to

perform logic simulation with more than two signal levels
would be to use a Boolean algebra with more than two
elements, with each element in the algebra corresponding
to a different signal level. However, because the various
Boolean operations are supposed to model the behavior of
physical gates, additional constraints must be taken into
account: for instance, it seems reasonable to require that
the output of an AND gate be equal to the lowest input
level (i.e. the AND Boolean operation must behave like the
min operator on the input signals [1]). Similarly, the OR
operation should yield the max of the inputs. Unfortunately
those requirements are incompatible with the lattice struc-
ture of Boolean algebras, which are only partially ordered
sets, while the set of all possible signal values is obviously
totally ordered. This type of problem, which presents itself
whenever Boolean algebras with more than two elements
are involved, was already pointed out in [6].

This difficulty can be overcome by representing the value
of a signal with a pair of Boolean algebra elements in the

following way. Let A = fa0 � a1 � : : : � ang and
B = fb0 � b1 � : : : � bng be two chains in a Boolean
algebra such that a0 = b0 = 0 and an = bn = 1, and such
that a 2 A ) ā 2 B and b 2 B ) b̄ 2 A. A signal level
can now be represented by a pair (xI ; xF ), with xI 2 A

and xF 2 B: the pairs (0; 0) and (1; 1) represent the signal
levels corresponding to logic 0 and logic 1, respectively,
while other pairs correspond to intermediate levels. It is
now possible to define Boolean operations on the signals in
the following way:

(xI1 ; x
F
1 ) ^ (x

I
2 ; x

F
2 ) = (xI1 ^ x

I
2 ; x

F
1 ^ x

F
2 ) (1)

(xI1 ; x
F
1 ) _ (x

I
2 ; x

F
2 ) = (xI1 _ x

I
2 ; x

F
1 _ x

F
2 ) (2)

(xI1 ; x
F
1 ) = (x̄F1 ; x̄

I
1): (3)

It is easy to verify that, with those restrictions placed on the
pair (xI ; xF ), the logic operations thus defined behave on
signals as desired: the output of an AND is the minimum
among the inputs, the output of an OR the maximum, and
a NOT generates a signal level which is as close to a logic
zero as the input was to a logic one.

The signal representation described above can be imple-
mented by describing each logic level by a binary string of
length 2n, divided in a lower and an upper half: the lower
half represents xI and the upper half represents xF in the
pair (xI; xF ). The number of ones in either half of this bi-
nary string determines the logic level: if the string contains
all zeros, it is a logic zero, and if the string contains all ones,
it is a logic one. Representations of intermediate levels are
obtained by shifting the same number of ones in both halves
of the string. In the lower half of the string the ones must
be shifted in from the right, so that all the least significant
bits of the string are ones and the the most significant bits
are zeros. The opposite operation is performed on the up-
per half of the binary string: the ones must be shifted in
from the left, so that all the ones are contained in the most
significant bits and all the zeros are in the least significant
bits. Since both halves always have the same number of
ones and zeros, the two halves will always be symmetrical
about the middle. As an example, a representation with
five signal levels is shown Table I, with 0V corresponding
to a logic zero, and 5V corresponding to a logic one. In this
example it is assumed the intermediate levels are equally
spaced, but this does not necessarily have to be the case.

The signal operations defined in eqns. (1–3) require only
simple bitwise boolean operations. This eliminates the need
for table lookups and the overhead of generating tables. As
long as the entire binary string can be stored in a single
computer word, the AND or OR of any two signals require
only a single bitwise operation, regardless of the number
of levels involved. The complementation operation (NOT)
is slightly more complicated, because it requires comple-
menting the entire binary string bitwise, and then swapping



TABLE I
A five-level signal representation

level voltage binary string

1 0.00 0000 0000
2 1.25 1000 0001
3 2.50 1100 0011
4 3.75 1110 0111
5 5.00 1111 1111

the upper half with the lower half. A few examples of the
AND, OR, and NOT operations performed on signals with
five logic levels are shown below.

AND : (1111 1111)^ (1100 0011) = (1100 0011)

(1000 0001)^ (1110 0111) = (1000 0001)

OR : (1111 1111)_ (1100 0011) = (1111 1111)

(1000 0001)_ (1110 0111) = (1110 0111)

NOT : (1110 0111) = (1000 0001)

(1100 0011) = (1100 0011)

Note that if the number of logic states is odd, there is a
middle state which is the complement of itself (such as in
the last example of the NOT function). This state allows
for a valid operating point for feedback loops where an odd
number of inversions exists.

3 Initialization
Most switch-level or gate-level simulation algorithms

have no mechanism for computing the initial operating
point of a digital circuit containing feedback loops. The
common solution is to initialize all the nodes to an unde-
fined state X, and then to continue the simulation with the
usual rules of three-element logic algebra. It will be shown
next that, using the signal representation introduced in the
previous section, it is possible to compute the initial state
of any digital circuit, if one exists, or to determine that one
does not exist, or that more than one exists, and, in the
last case, what nodes may have more than one solution and
must therefore be truly considered to have an undefined
state. All this is possible because, as pointed out earlier, all
operations on signals can be expressed in terms of ordinary
Boolean algebra operations.

In traditional circuit simulation, the DC operating point
of a circuit is found by computing a solution of a set of
real algebraic equations. Similarly, the initial state of a
digital circuit can be computed by solving a set of boolean

(x1
I ,x1

F)

(x2
I ,x2

F)

(x1
I ∨x2

I ,x1
F∨x2

F) =

(x1
F∧x2

F,x1
I ∧x2

I )

Figure 1. Boolean equations for a NOR gate.

algebraic equations: for instance, in [7] Gaussian elimina-
tion is used to solve a set of linear boolean equations. In
the case considered here, the equations will generally be
nonlinear, so a different algorithm is needed. A suitable
one is a straightforward extension of Gaussian elimination,
namely the method of successive eliminations, described
below; a broader and more thorough discussion of this al-
gorithm can be found in [8]. At the basis of the algorithm
are the following theorems.

Theorem 1 ([4, p. 8]) Let a; b be two elements in a
Boolean algebra. Then b � ā, a ^ b = 0.

Theorem 2 ([4, p. 58]) Let a; b; x be elements in a
Boolean algebra. The following statements are equivalent:

(a ^ x) _ (b ^ x̄) = 0

b � x � ā:

Consequently, the equation (a ^ x) _ (b ^ x̄) = 0 has
solutions if and only if a ^ b = 0.

It should be stressed again that the theorems above are
valid in any Boolean algebra, not just in the ordinary binary
algebra (where they are trivial).

If the state of each node in a digital circuit is described
by a pair of Boolean variables (as explained in the previous
section), each gate in the circuit generates two Boolean
equations. For example, the NOR gate shown in Fig. 1
generates the equations:

xI3 = x̄F1 ^ x̄
F
2

xF3 = x̄I1 ^ x̄
I
2 :

The above equations have the form:

xi = fi(x1; : : : ; xn)

which, by the laws of Boolean algebra, is equivalent to [4]:

(xi ^ f̄i) _ (x̄i ^ fi) = 0:

Therefore there is no loss of generality in assuming that the
set of equations to be solved has the form:

fi(x1; : : : ; xn) = 0 i = 1; : : : ;m: (4)

This system is equivalent to the single equation:

F 1(x1; : : : ; xn) =

m_

i=1

fi(x1; : : : ; xn) = 0: (5)



Algorithms to solve Boolean equations in more than one
unknown use the result stated in Theorem 2 and the Shan-
non decomposition of Boolean functions [9]. The standard
method [4] to solve eqn. (5) consists of eliminating one
unknown at a time using the Shannon decomposition: if
F 1 = (x1 ^F

1
x1
)_ (x̄1 ^F

1
x̄1
), then eqn. (5) can be rewrit-

ten as:

(x1 ^ F
1
x1
(x2; : : : ; xn)) _ (x̄1 ^ F

1
x̄1
(x2; : : : ; xn)) = 0:

By Theorem 2, x1 must then satisfy the inequalities:

F 1
x̄1
(x2; : : : ; xn) � x1 � F̄ 1

x1
(x2; : : : ; xn) (6)

which can be satisfied if and only if the following equation
is satisfied:

F 2(x2; : : : ; xn) =

F 1
x̄1
(x2; : : : ; xn) ^ F

1
x1
(x2; : : : ; xn) = 0:

Thus the number of unknowns has been reduced by one
from the original equation, because the function F 2 does
not depend on x1. Recursive application of this technique
reduces the original system of equations to one equation in
one unknown, whose solutions (if they exist) can be deter-
mined through the use of Theorem 2. By back substitution,
values for the other unknowns can be computed through
inequalities of the type shown in eqn. (6).

However, if this algorithm were implemented exactly as
described above, the computational effort required to solve
even a system of moderate size would quickly exceed prac-
tical limits. To get around this problem, a slight modified
version of this algorithm is described next. This implemen-
tation relies on the sparsity of the system of equations being
solved: in this case, this means that each equation in the
system depends explicitlyonly on a small subset of the total
number of unknowns. It is well-known that the equations
describing an electrical network are almost always sparse
[10]. To take advantage of this fact the equations will be
split into smaller groups, according to the unknowns that
affect them. Let:

Si = fj : fj depends on xi but not on x1; : : : ; xi�1g;

and define:

Gi(xi; : : : ; xn) =
_

j2Si

fj(xi; : : : ; xn)

F 1(x1; : : : ; xn) = G1(x1; : : : ; xn)

F i+1 = (F i
xi
^ F i

x̄i
) _Gi+1:

It is immediate to verify thatF i depends only onxi; : : : ; xn
(the claim is obvious for i = 1; by induction, F i de-
pends only on xi; : : : ; xn, so F i

xi
and F i

x̄i
depend only

on xi+1; : : : ; xn, as does Gi+1, and hence F i+1). The
solutions of the original system of equations can then be
computed in the following way:

(Fx; Fx̄) (0; 0);
GateList A list of all gates in circuit;
for each node in circuit f

Let x be the variable at this node;
(Fx; Fx̄) Shannon Decomp(x; Fx ^ Fx̄);
for each gate in GateList connected to this node f

Let f be the function describing this gate;
(Fx; Fx̄) (Fx; Fx̄) _ Shannon Decomp(x; f);
Remove gate from GateList;
g

g

Figure 2. An algorithm to solve Boolean equa-
tions.

Theorem 3 Any n-tuple x1; : : : ; xn that satisfies the fol-
lowing set of inequalities:

F i
x̄i
(xi+1; : : : ; xn) � xi � F̄ i

xi
(xi+1; : : : ; xn);

i = n; : : : ; 1

is a solution of the system of equations (4).

Proof: By Theorem 2, the inequalities above imply that:

(xi ^ F
i
xi
) _ (x̄i ^ F

i
x̄i
) = F i

= 0; i = 1; : : : ; n;

which in turn implies that Gi = 0; i = 1; : : : ; n. By defini-
tion of the functions Gi, this means that fj(x1; : : : ; xn) =

0; j = 1; : : : ; n. 2

The advantage of this algorithm is that it limits the num-
ber of functions that must be handled at the same time,
as well as the number of variables on which each func-
tion depends, thus reducing the computational effort re-
quired to obtain a solution. For an efficient implemen-
tation, the functions involved can be represented using
BDD’s [11, 12]. A simplified pseudo-code description
of the algorithm is shown in Fig. 2. The function Shan-
non Decomp() returns a pair of functions corresponding
to the Shannon decomposition of a function with respect
to the specified variable: if f = (x ^ fx) _ (x̄ ^ fx̄),
then Shannon Decomp(x; f) = (fx; fx̄). Functions de-
scribing gates are understood to have been put in the
form f = 0, as explained earlier in this section. Oper-
ations on pairs of functions are performed elementwise,
e.g. (f1; f2)_ (g1; g2) = (f1 _ g1; f2 _ g2). Upon termina-
tion of the procedure, (Fx; Fx̄) contains a pair of constants,
which determine the range of values for the variable at the
last node. The values of the variables at other nodes can
be determined by saving the factors of the intermediate
Shannon decompositions, as explained in Theorem 3.



To further limit the overall computational effort, the cir-
cuit is partitioned into strongly connected components be-
fore the DC solution is computed. This is done by treating
the circuit as a directed graph, and performing two depth-
first searches on the graph. The time to partition the circuit
is bound by O(M ), where M is the number of edges in
the graph. The DC solution is computed by using a graph
traversal algorithm to propagate the primary inputs through-
out the circuit: when a strongly connected component is
met, the algorithm described above is used to compute the
voltages at the nodes contained in that component.

4 Transient analysis
A standard event-driven selective-trace algorithm [13] is

used for transient analysis. The delay model implemented
in this algorithm is taken from [1]: it calculates both a delay
time for inputs to propagate to the output and a slope value
for the output. To take into account the gain of a gate,
the output slope so is expressed as a gate-specific function
fo() of the input slope si and the capacitance at the gate’s
output, Co:

so = fo(si; Co):

Similarly, rise and fall delay values tr and tf are calculated
as functions of si and Co:

tr = fr(si; Co)

tf = ff (si; Co):

The functions fo(); fr() and ff () can be be given in
the form of two-dimensional tables. Alternatively, experi-
mental data shows that the gate delay as a function of the
reciprocal of the input slope resembles closely a linear seg-
ment [1]. Therefore the gate delays can also be computed
approximately as:

tr = a0=si + a1

tf = b0=si + b1

where a0; a1; b0 and b1 are gate-specific coefficients de-
scribing the gate’s delay characteristics. In the same way,
instead of using a table the output slope can be computed by
first multiplying the input slope (of the input which caused
the transition) by a gain factor k specific to the gate, up to
a maximum slew rate smax determined by the gate:

sr = min(ksi; smax):

The value thus obtained, sr , does not take the capacitive
load of the gate into account. The actual value of the output
slope is computed by scaling sr according to the load [1]:

so = sr
Cg

Cg +
P

iCi

:

In this formula, Cg is the output capacitance of the gate
itself, while the Ci’s represent the fanout capacitances.

0 2e-07

Figure 3. Output waveforms of the ring oscillator.

1.75e-07 2e-07

Figure 4. One period of the oscillator’s output.

5 Numerical results
The algorithms described in the previous sections were

implemented in a multi-level logic simulator, whose per-
formance was tested on a number of circuits.

The first test circuit was a ring oscillator consisting of
six inverters and a nand gate. A comparison between the
waveforms obtained by our simulator and by SPICE are
shown in Fig. 3: the dashed line shows the results using the
simulation algorithm described here (17 logic states were
used), and the dotted line shows the results of a SPICE
simulation. For 200 nanoseconds of simulation time, the
gate-level simulation ran at over 600 times faster than the
SPICE simulation. A better comparison between the two
waveforms can be made in Fig. 4, which shows a blow-up
of one period of the oscillator’s output.

The performance of the algorithm to compute the initial



TABLE II
DC solution times (in seconds) for ISCAS89

benchmarks

Ckt. No. of Longest CPU
Name Gates Fbk. Loop Time

s208.1 112 5 0.083
s298 133 18 0.27
s344 175 24 0.35
s349 176 25 0.40
s382 179 27 0.23
s386 165 59 0.53
s400 185 28 0.52
s420 234 5 0.13
s444 202 37 0.40
s510 217 161 34.0
s526n 215 19 0.38
s641 398 161 1.90
s713 412 93 1.20
s820 294 144 14.0
s832 292 147 24.0
s953 424 125 34.0
s1196 547 0 0.033
s1238 526 0 0.033
s1423 731 12 1.20
s1494 653 0 0.10
s1488 659 0 0.18
s5378 2958 252 27.0
s35932 17793 204 560
s38417 23815 0 33.0
s38584 16310 17 230

state of a digital circuit, described in Section 3, was tested
on a number of circuits taken from the 1989 ISCAS bench-
marks. A summary of the results is shown in Table II: the
numbers in the "Longest Fbk. Loop" column indicate the
number of gates in the longest feedback loop present in the
circuit, while the CPU times refer to a Sparcstation 10/40
running SunOS 4.1.3. It can be seen that the required com-
putational effort is always very reasonable, even in the case
of circuits of respectable size containing deep feedback
loops.

Finally, simulations were run on a number of circuits
taken from the 1985 and 1989 ISCAS benchmarks. The
benchmark circuits were simulated by applying one hun-
dred random input vectors every 100 ns. with a central
clock toggling every 20 ns. The results of the simulations
are shown in Tables III and IV, which, for comparison
pusposes, show also the times necessary to simulate the
same circuits with VERILOG XL. All CPU times refer to
a Sparcstation 10/40 running SunOS 4.1.3.

TABLE III
Simulation times (in seconds) for ISCAS85

benchmarks

Ckt. No. of CPU VERILOG XL
Name Gates Time Comp. Link Sim.

c432 160 0.8 0.8 0.4 0.3
c499 202 1.0 0.7 0.2 0.4
c880 383 1.5 0.7 0.3 0.4
c1355 546 5.6 1.0 0.5 0.5
c1908 880 4.5 1.1 0.5 0.5
c2670 1193 5.0 1.2 0.9 0.9
c3540 1669 9.0 1.7 0.9 0.8
c5315 2307 15.0 2.1 1.3 1.7
c6288 2416 79.0 4.0 1.0 4.0
c7552 3512 24.0 3.0 1.4 2.4

TABLE IV
Simulation times (in seconds) for ISCAS89

benchmarks

Ckt. No. of CPU VERILOG XL
Name Gates Time Comp. Link Sim.

s208.1 112 0.2 0.5 0.2 0.5
s298 133 0.3 0.5 0.3 0.4
s344 175 0.6 0.6 0.2 0.6
s349 176 0.5 0.5 0.3 0.6
s382 179 0.5 0.5 0.3 0.6
s386 165 0.4 0.5 0.2 0.5
s400 185 0.4 0.5 0.3 0.6
s420 234 0.4 0.5 0.3 0.6
s444 202 0.4 0.5 0.3 0.6
s510 217 0.2 0.5 0.3 0.5
s526n 215 0.4 0.5 0.3 0.5
s641 398 0.8 0.7 0.4 0.6
s713 412 1.1 0.6 0.4 0.7
s820 294 0.7 0.6 0.3 0.5
s832 292 0.7 0.7 0.3 0.5
s838.1 478 0.9 0.8 0.4 0.8
s953 424 0.9 0.7 0.4 0.8
s1196 547 1.6 0.7 0.3 0.7
s1238 526 1.7 0.7 0.4 0.6
s1423 731 1.6 0.8 0.6 1.0
s1494 653 1.4 0.8 0.4 0.5
s1488 659 1.3 0.7 0.4 0.5
s5378 2958 5.6 2.7 1.5 2.4
s35932 17793 93.0 31.0 10.2 23.2
s38417 23815 110.0 86.3 11.1 23.9
s38584 16310 69.0 40.1 10.0 20.0

6 Conclusion
We have described an algorithm that extends logic sim-

ulation to multiple-level signals. This is made possible by



representing the value of a signal with a pair of elements
of an n-dimensional Boolean algebra. This representation
makes it possible to manipulate signals with an arbitrary
number of intermediate levels using only Boolean alge-
bra operations and in a way that mimics the operation of
physical gates. There are several advantages to this ap-
proach: because operations in an n-dimensional Boolean
algebra can be implemented as ordinary bitwise Boolean
operations on a binary string, the speed of logic simulation
is retained independently of the number of levels used (as
long as the number of levels does not exceed the computer
word length). Moreover, the problem of finding the initial
state of a digital circuit ("DC solution") can be cast as the
problem of finding the solution of a set of Boolean equa-
tions. An algorithm for that purpose has been described,
and it has been shown how it can be modified to take ad-
vantage of the sparsity of the system of equations. On the
other hand, the availability of an arbitrary number of inter-
mediate signal levels between a logic zero and a logic one
eliminates the need for an "unknown" state, and makes it
easier the interfacing of digital and analog simulators. As
a disadvantage, it should be mentioned that certain analog
elements, such as adders and dividers, cannot be handled by
our algorithm (while they can by the algorithm described
in [1]).

A simulator implementing the techniques described here
was developed, and its performance was tested on a num-
ber of benchmark circuits. The examples given show that
it achieves a satisfactory trade-off between speed and accu-
racy. Future research plans include merging this simulator
with the multi-level analog simulator described in [14].

References
[1] Genhong Ruan, Jiri Vlach, James A. Barby, and Ajoy

Opal, “Analog Functional Simulator for Multilevel
Systems”, IEEE Transactions on Computer-Aided
Design, vol. CAD-10, no. 5, pp. 565–576, May 1991.

[2] Eduardo L. Acuna, James P. Dervenis, Andrew J.
Pagones, Fred L. Yang, and Resve A. Saleh, “Simula-
tion Techniques for Mixed Analog/Digital Circuits”,
IEEE Journal of Solid-State Circuits, vol. 25, no. 2,
pp. 353–362, April 1990.

[3] Young H. Kim, J. E. Kleckner, R. A. Saleh, and
A. R. Newton, “Electrical-Logic Simulation”, in
Proceedings of the 1984 International Conference on
Computer-Aided Design. IEEE, November 1984, pp.
7–9.

[4] Sergiu Rudeanu, Boolean Functions and Equations,
North-Holland Publishing Co., Amsterdam, 1974.

[5] Paul R. Halmos, Lectures on Boolean Algebras, Van
Nostrand Co., Princeton, NJ, 1963.

[6] Melvin A. Breuer, “A Note on Three-Valued Logic
Simulation”, IEEE Transactions on Computers, vol.
C-21, no. 4, pp. 399–402, April 1972.

[7] Randal E. Bryant, “Algorithmic Aspects of Symbolic
Switch Network Analysis”, IEEE Transactions on
Computer-Aided Design, vol. CAD-6, no. 4, pp. 618–
633, July 1987.

[8] Scott F. Woods and Giorgio Casinovi, “A Mixed
Digital/Analog Gate-Level Simulation Algorithm”,
Submitted for publication in IEEE Transactions on
Computer-Aided Design.

[9] C.E. Shannon, “A Symbolic Analysis of Relay and
Switching Circuits”, Transactions of the American
Institute of Electrical Engineers, pp. 713–723, 1938.

[10] William J. McCalla, Fundamentals of Computer-
Aided Circuit Simulation, Kluwer Academic Pub-
lishers, Norwell, MA, 1988.

[11] Randal E. Bryant, “Graph-Based Algorithms for
Boolean Function Manipulation”, IEEE Transactions
on Computers, vol. C-35, no. 8, pp. 677–691, August
1986.

[12] Karl S. Brace, Richard L. Rudell, and Randal E.
Bryant, “Efficient Implementation of a BDD Pack-
age”, in Proceedings of the 27th ACM/IEEE Design
Automation Conference, Orlando, FL, June 1990, pp.
40–45.

[13] Melvin A. Breuer and Arthur D. Friedman, Diagno-
sis & Reliable Design of Digital Systems, Computer
Science Press, Inc., Rockville, MD, 1976.

[14] Giorgio Casinovi and Jeen-Mo Yang, “Multi-Level
Simulation of Large Analog Systems Containing Be-
havioral Models”, IEEE Transactions on Computer-
Aided Design, vol. 13, no. 11, pp. 1391–1399,Novem-
ber 1994.


	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index


