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Abstract

This paper introduces a new gate sizing approach with
accurate delay evaluation. The approach solves gate sizing
problems by iterating local sizing results from linear pro-
gramming within small variable ranges of gate sizes. In
each iterative step, variable ranges of gate sizes are up-
dated according to the result from a previous step. Solu-
tions with accurate delay evaluation which consider input
signal slopes and separately evaluate rising and falling de-
lays are obtained after several iterative steps. A speedup
technique is used to pick out gates actually involved in each
local sizing step so as to reduce CPU time. Experiments
on sample circuits show that our approach can provide
solutions with smaller circuit area than conventional ap-
proaches for the same circuit delay or provide solutions un-
der tight delay constraints where conventional approaches
can not reach. Moreover, our approach is faster than the
conventional approaches for most circuits, especially un-
der loose delay constraints.

1 Introduction

Gate sizing is a timing optimization process in high per-
formance VLSI circuit design. In this design process, the
size of each gate in a combinational circuit is properly tuned
so that circuit area and/or overall power dissipation are
minimized under specified timing constraints.

Gate sizing or the similar problem, transistor sizing, is
an active research topic in recent years. Many approaches
have been proposed [1-8]. Among them, a frequently used
mathematical optimization technique for gate sizing is lin-
ear programming. Although the approaches may differ in
subsidiary aspects, the way to formulate a gate sizing prob-
lem into linear program is similar, which is first proposed
by Berkelaar and Jess in [1]. In the following text, we call
such kind of gate sizing approaches as conventional ap-
proaches.

In the conventional approaches [1-5], gate delay is eval-
uated by a simple gate level delay model and approximated
by a piecewise linear function under the assumption that it
is a convex function with respect to its gate size and output
capacitance. However, since real gate delay is not strictly
convex, there are inevitable errors in delay evaluation in the
conventional approaches. These errors will become larger
when the variable ranges of gate sizes are larger. They can
not be effectively reduced even if we use more detailed de-
lay models or increase the number of piecewise linear re-
gions because of the nonconvex nature of delay functions.

This paper proposes a new gate sizing approach with ac-
curate delay evaluation. Our approach solves gate sizing
problems by iterating local sizing steps. In each local sizing
step, linear programming is used to solve problems locally
within small variable ranges of gate sizes where gate delays
can be approximated by linear functions. Iteration goes
on by changing and decreasing the variable ranges of gate
sizes according to the result from a previous step. Solution
can be obtained after several steps of iteration when the re-
sults from local sizing steps can no longer be improved and
the variable ranges of gate sizes are small enough.

Unlike conventional approaches, our approach can use
any delay models. Moreover, the influence of input signal
slope on delay is taken into account in the process of itera-
tion, Rising and falling delays are evaluated separately. Al-
though gate delays are approximated by linear functions in
each local sizing step, delay evaluation is accurate enough
because the nonlinearity of gate delays are small within
small variable ranges of gate sizes.

Since the timing information of a circuit does not change
drastically within small variable ranges of gate sizes, we
can pick out gates actually involved in each local sizing step
by evaluating the timing requirement for each gate before-
hand. In this way, the number of variables in the corre-
sponding linear programs are substantially reduced so that
our approach becomes more efficient.

We have tested our algorithm on sample circuits includ-
ing ISCAS85 benchmarks. Experiments show that our ap-



proach can provide results with smaller circuit area than
conventional approaches under the same circuit delay or
provide results under tight delay constraints where conven-
tional approaches can not reach. Moreover, our approach is
faster than the conventional approaches for most gate siz-
ing problems, especially under loose delay constraints.

The rest of the paper is organized as follow. In Section
2 we will discuss the issue of delay evaluation in conven-
tional gate sizing approaches. In Section 3 we will describe
the proposed approach in detail. Section 4 will present ex-
perimental results and Section 5 will give conclusion and
future work.

2 Delay evaluation in conventional ap-
proaches

The conventional approaches [1-5] evaluate delay by a
simple gate level delay model which uses the worst case de-
lay of a gate with respect to rising and falling delays and
neglects the influence of input signal slope on delay. It can
be expressed as

di = τi + ci
Ci

L

xi
(1)

where xi and Ci
L are gate size and load capacitance of gate i

respectively, τi and ci are constants. Since Ci
L is determined

by the sizes of its fanout gates and wiring capacitances, the
delay of a gate can be expressed as a function of gate sizes
in the circuit if wiring capacitances are assumed to be con-
stants. Eq.(1) is further approximated by a piecewise linear
function in the form of

di =
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(2)

where xi is the size of gate i, xj( j 2 f anout i) are the sizes
of fanout gates of gate i, and p0s are constants. In this for-
mula, X = fxiji = 1 : : :ng represents the gate size vector.
The delay function is divided into l piecewise linear regions
R1;R2; : : : ;Rl .

If the delay of gate i is assumed to be a convex function
of gate sizes, Eq.(2) is equivalent to

di = max
k=1:::l

(p0kxi + ∑
j2 fanout i

p jkx j + pck): (3)

Finally, Eq.(3) is transformed into a set of linear constraints
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Fig.1 Errors in linear approximation due to
nonconvexity

di � p0kxi + ∑
j2 fanout i

p jkx j + pck

(k = 1; : : : ; l)
(4)

in the linear program.
Since gate delay is not a strict convex function of gate

sizes, there are errors when Eq.(2) is approximated by
Eq.(3). The reason of this kind of error can be explained
by a conceptual example in Fig.1. Because of the noncon-
vexity of function f(x), the maximal value of all linearizing
functions in some region may not be the one which approx-
imates the original function for this region.

Moreover, the simple delay model of Eq.(1) is not accu-
rate enough. In practice, gate delay is also influenced by its
input signal slope. Rising and falling delays may be quite
different for some gates in a circuit. It’s claimed that the
conventional approaches can also use more accurate delay
models as long as they are convex. However, since real gate
delay is not strictly convex, accurate delay models will in-
troduce more nonconvex factors into delay functions so that
the delay evaluation may conversely deteriorate. Improv-
ing the precision of delay model will not necessarily im-
prove the precision of delay evaluation in the conventional
approaches.

As a result, the conventional approaches [1-5] are usu-
ally applied to gate sizing problems under loose delay con-
straints where the precision of delay evaluation is not so im-
portant and with small variable ranges of gate sizes where
errors in delay evaluation resulting from nonconvexity is
not large.

3 Proposed gate sizing approach

Delay evaluation in gate sizing process is important be-
cause the size of a gate is determined by the timing require-
ment on this gate. In this paper, we propose a new gate
sizing approach based on iteration of local sizing steps. In



each local sizing step, a gate sizing problem is formulated
into a linear program within small variable ranges of gate
sizes. Iteration goes on by modifying and decreasing the
variable ranges of gate sizes. Results from a previous local
sizing step are used to determine the variable ranges of gate
sizes for the next step. After several steps of iteration when
results can no longer be improved and the variable ranges
of gate sizes become small enough, solution is obtained.

Moreover, a speed-up technique is used in our approach
to reduce CPU time. The speed-up technique picks out
gates which may be sized in each local sizing step and for-
mulates these gate size variables only into linear programs
so that the size of linear programs can be substantially re-
duced.

3.1 Formulation for local sizing step

In our approach, the linear program for each local sizing
step is formulated as

minimize :
n

∑
i=1

Kixi +αM

sub ject to :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dr
i � pr

0xi + ∑
j2 fanout i

pr
jx j + pr

c

d f
i � p f

0xi + ∑
j2 fanout i

p f
j x j + p f

c

t f=r
k +dr

i � tr
i

tr= f
k +d f

i � tr
i

tr
m � Tspec +M

t f
m � Tspec +M

Xi
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(5)

for every gate i (i = 1;2; : : : ;n) in the circuit. In this for-
mula, xi, dr

i , d f
i , tr

i and t f
i are gate size, delay and signal

schedule time at the output of gate i. They are variables
of the linear program. Subscript j and k denote fanout and
fanin gates of gate i. Subscript m denotes gates at primary
outputs. Variable M is a relax factor for circuit delay con-
straints. Parameter α is a large constant to keep M as small
as possible. Coefficient Ki is a weighting factor of circuit
area or power dissipation on the size of gate i. Superscripts
r and f refer to rising and falling signals respectively. Para-
menters t f=r

k and tr= f
k represent different variables for differ-

ent logic gates. Their meanings are

t f=r(r= f )
k =

8><
>:

tr( f )
k k 2 negative logic

t f (r)
k k 2 positive logic

tr
k and t f

k k 2 exclusive logic

(6)

This formula has several points different from the con-
ventional ones [1-5]. First, gate delay is not approximated
by a piecewise linear function but simply a linear function.
Thus, there is no requirement that gate delay be a convex
function. Any delay model can be used. In our algorithm,
we use the analytical delay model introduced in Ref.[9].

Second, the variable range of gate size for gate i
[Xi

lower;X
i
upper ] is only a small interval within its feasible

range of gate size [Xi
min;X

i
max]. In this small variable range,

the nonlinearity of gate delay is small. Therefore, it’s rea-
sonable to approximate it by a linear function of gate sizes.
Although local sizing steps are defined within small vari-
able ranges of gate sizes, our approach searches for the
global solution in the feasible range of gate sizes by iter-
ation. Details of the search strategy will be discussed later.

Third, rising(r) and falling(f) delay of gates are sepa-
rately formulated so that delay evaluation is more accurate.
In each local sizing step, input signal slopes of gates do not
change very much due to the small variable range of each
gate. Therefore, we can reasonably estimate typical input
signal slopes for all gates at the beginning of each local siz-
ing step. Since we update the estimates at every iteration,
the influence of input signal slope on delay is considered in
the iterative gate sizing process.

As a result, delay evaluation in our approach can be quite
accurate as long as the variable ranges of gate sizes in local
sizing steps are small enough and the delay model itself is
accurate enough.

3.2 Iterative searching strategy

Based on Eq.(5), our approach performs an iterative
searching process to find out the solution within whole fea-
sible ranges of gate sizes. Fig.2 shows the algorithm of
our approach. Here, F is the feasible solution space com-
posed of all feasible ranges of gate sizes and V is the solu-
tion space composed of all variable ranges of gate sizes in
one iterative step.

In the algorithm, the input signal slopes of gates Tin and
the longest path delay in the circuit Tcircuit are calculated
at the beginning of each local sizing step by timing anal-
ysis. After each local sizing step (“LP_Solve”), function
“Var_space” modifies Xlower and Xupper in Eq.(5) for ev-
ery gate and use them in the next iterative step. The pro-
cess ends when there is no obvious improvement within a
certain number of iterative steps or the number of iterative
steps is larger than a specified limit. During iteration, the
best result is recorded and used as the solution of this gate
sizing problem.

To calculate variable ranges of gate sizes for local sizing
steps in the iteration, we define two parameters



Xmid = (Xupper +Xlower)=2
∆X = (Xupper�Xlower):

(7)

for the variable range of each gate size [Xlower;Xupper ]. Here
Xmid and ∆X are called the middle point and span of the
variable range. These two parameters for each gate can be
determined by the result of previous local sizing step. Usu-
ally, parameter Xmid for the variable range of a gate is cho-
sen to be as close as as possible, preferably equal, to the re-
sulting size of this gate from the previous local sizing step.
Parameter ∆X is specified at the beginning of the algorithm
and decreases by a specific rate for each iterative step. Ac-
cording to Xmid and ∆X, the variable range, i.e. Xlower and
Xupper can be determined by Eq.(7).

3.3 Speed-up technique

In a gate sizing process, only gates related to critical
paths may be sized. Other gates will always take their min-
imal possible sizes. The speedup heuristics used in our ap-
proach picks out gates actually involved in each local siz-
ing step and formulates them into linear programs in order
to reduce the size of linear programs.

Because of small variable ranges of gate sizes, the tim-
ing information of a circuit does not change drastically in
a local sizing step. Therefore, it’s possible for us to predict
timing information of the resulting circuit roughly before
gates are sized in each local sizing step. According to this
timing information, we can pick out active gates, i.e. gates
which may be sized in the local sizing step.

Fig.3 shows our heuristics to pick out active gates. In
this heuristics, we first calculate the timing slack of each
gate when all gates in the circuit are at their minimum sizes.
Here, the slack of a gate is defined as the difference of re-
quired arrival time and actual arrival time at the output of
this gate.

There are two procedures to pick out active gates. In the
first procedure, we just pick out gates whose slacks are neg-
ative. In the second iterative procedure, we calculate the in-
crease in delay for candidate gates, i.e. gates whose fanout
gates contain at least one active gate, by enlarging the sizes
of all current active gates to their maximal values. If the
increase in delay of a candidate gate is larger than its slack
value, it is picked out as a new active gate. When all can-
didate gates are so evaluated, the procedure enters the next
iterative step which considers new active gates. The proce-
dure stops when no new active gates can be found.

4 Experimental results

Our approach is implemented and tested on a Sun
SPARCstation 20 with the C language. Sample circuits in-

Gate Sizing()
f

V0 � F;
i=0;
while (improved && i� i limit) {

Tin;Tcircuit  Simulate(Xmin 2Vi);
if (Tcircuit � Tspec)

X LP Solve(Vi);
else X Xmin;
if (improved) Xopt  X;
Vi+1 Var Space(Vi;Xopt ;F);
i++;

g

g

Fig.2 The algorithm of gate sizing process

Pick Out Active Gate()
f

Delay Delay_Evaluation(Xmin);
Trequired ;Tactual  Time_Evaluation(Delay);
Slack = Trequired �Tactual ;

/* Procedure 1 */
for (each gatei) f

if (slacki < 0) /* slacki 2 Slack */
Active Gate Set gatei;

g

/* Procedure 2 */
do f

for (each gatei) f
if (Fanout(gatei)\Active Gate Set 6= φ)

Candidate Set gatei;
g

for (each gatei 2Candidate Set) f
Ci

L = 0;
for (each gatej 2 Fanout(gatei)) f

if (gate j 2 Active Set)
Ci

L+=Capacitance(x j 2 Xmax);
else

Ci
L+=Capacitance(x j 2 Xmin);

g

∆delayi Delay_Increment(Ci
L�Ci

min);
if (slacki < ∆delayi) /* slacki 2 Slack */

Active Gate Set gatei;
}

g while (Active Gate Set changed)
g

Fig.3 A process to pick out active gates in gate sizing



cluding most ISCAS85 benchmarks are used to test the fea-
sibility of our algorithm. The gate delays in a circuit are
evaluated by the approach introduced in Ref.[9]. A typi-
cal 0:8µm technology is used to set the paramenters in this
delay model. The size of a gate is measured by the size of
a unit transistor (U). We assume that the feasible range of
gate size for each gate is between 1U and 10U.

An algorithm based on the conventional approaches [1-
5] is also implemented to compare its results with the pro-
posed approach. In the conventional algorithm, we use the
simple delay model of Eq.(1) and approximate gate delay
by 10� 1 piecewise linear functions, i.e. the delay func-
tion is divided into 10 regions with respect to its gate size
and 1 region with respect to the size of its fanout gates. Af-
ter a gate sizing problem is solved by the conventional ap-
proach, the resulting circuit is also evaluated by the delay
modeling approach of Ref.[9] so that delay values from two
approaches are comparable.

Fig.4 is complete resulting curves of delay vs. area for
circuit c432. When delay constraints are not tight, both
conventional and proposed approaches provide almost the
same results. This is reasonable because under loose de-
lay constraints, only a small percent of gates actually takes
part in the gate sizing process. The increase in size of these
gates has less influence on the total circuit area. How-
ever, when delay constraints become tight, the proposed
approach provides better results, i.e results with smaller
area under the same circuit delay, than the conventional ap-
proach. For example, at the solution where resulting circuit
delay is 32ns, the circuit area from the proposed approach is
956U while that from the conventional approach is 1444U.
The area from the proposed approach is only 66% of that
from the conventional approach.

To demonstrate the advantage of our iterative approach
(proposed) over piecewise linear approach (conventional),
we ran another experiment where we use the same delay
evaluation technique as the proposed approach but solve
the gate sizing problem by piecewise linear delay formula-
tion used in the conventional approach. The delay vs. area
curve of this piecewise linear (PWL) approach are also
show in Fig.4. As we can see in Fig.4, the results of this
approach are even worse than the conventional approach
which uses a very simple gate level delay model. This ex-
periment shows that further refinement in delay model for
the conventional approach is meaningless because of the
nonconvex nature in delay functions.

Table 1 has listed the sample results from both conven-
tional and proposed approaches for large ISCAS85 bench-
mark circuits. In Table 1, “Tspec” represents specified de-
lay limits for gate sizing problems, “Delay” shows the re-
sulting delay values evaluated by the delay modeling ap-
proach in Ref.[9] after gates are sized. Because of inaccu-
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Fig.4 Results for circuit c432

racy in delay evaluation in the conventional approach, ac-
tual circuit delay after gate sizing is different from the spec-
ified delay constraints. For example, the circuit with delay
52.9ns should be obtained at the specified delay of 60ns for
c1908. On the other hand, actual delay and specified de-
lay are close for the resulting circuits from the proposed ap-
proach. To make results of two approaches comparable, the
specified delay limits (Tspec) of the proposed approach are
adjusted to the resulting delay values of the conventional
approach. The sign “—” in Table 1 means that the approach
can not provide results in this case. Column Ractive shows
the average percent of active gates in all gates of a circuit
which are picked out by our speedup heuristics. Only this
part of gates are actually formulated into linear programs.

From Table 1, we know that the conventional approach
of our implementation can only provide results under rel-
atively loose delay constraints. Under tight delay con-
straints, the algorithm failed because of numerical instabil-
ity in the linear program. On the other hand, the proposed
approach can offer results under a wider range of delay con-
straints.

As a result of these experiments, we can conclude that,
under loose delay constraints, the proposed approach is
much faster than the conventional approach for most cir-
cuits due to the speedup heuristics incorporated in the al-
gorithm. Under tight delay constraints, the proposed ap-
proach can provide results with smaller circuit areas under
the same circuit delay than the conventional approach in
comparable CPU time and provide results with tight delay
limits that the conventional approach can not reach.

5 Conclusion and future work

We have proposed a new LP based gate sizing approach
with accurate delay evaluation. The approach can provide
results with smaller circuit area under the same circuit de-



Table 1 Results for ISCAS85 Benchmarks

ckt. #Gate Conventional Approach Proposed Approach
Tspec Delay Area CPU0s Tspec Delay Area CPU0s Ractive

c1908 880 60ns 52.9ns 2747U 116s 53ns 52.9ns 2746U 35s 15%
55ns 48.0ns 2817U 137s 48ns 48.1ns 2794U 153s 24%
50ns — — — 40ns 40.0ns 3149U 1003s 46%

c2670 1193 60ns 52.8ns 4331U 356s 53ns 52.9ns 4323U 80s 11%
55ns 48.4ns 4401U 385s 48ns 48.0ns 4376U 126s 15%
50ns — — — 35ns 35.2ns 5314U 1476s 30%

c3540 1669 85ns 67.7ns 5226U 451s 67ns 67.5ns 5204U 288s 21%
80ns 64.3ns 5361U 627s 64ns 64.1ns 5246U 685s 27%
75ns — — — 55ns 55.1ns 5606U 2973s 38%

c5315 2307 80ns 62.9ns 7480U 864s 63ns 63.1ns 7479U 54s 6%
75ns 59.8ns 7560U 1027s 60ns 60.0ns 7522U 121s 10%
70ns — — — 40ns 40.1ns 10635U 1161s 22%

c6228 2406 250ns 168.2ns 7412U 1423s 168ns 167.7ns 7404U 2414s 34%
240ns 159.0ns 7513U 1880s 159ns 159.0ns 7482U 6198s 44%
230ns — — — 150ns 149.9ns 7659U 21473s 51%

c7552 3512 60ns 50.9ns 11211U 2213s 51ns 51.1ns 11201U 238s 10%
55ns 46.7ns 11458U 2917s 47ns 47.2ns 11320U 511s 11%
50ns — — — 40ns 40.1ns 11940U 6328s 25%

lay than conventional approaches for gate sizing problems
under a wide range of delay constraints within wide vari-
able ranges of gate sizes in reasonable CPU time. Our fu-
ture work will focus on the application of our approach to
practical power optimization problems and refine the delay
evaluation by considering path sensitization.
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