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Abstract

Modern applications are often defined as sets of several
computational tasks. This paper presents a synthesis algo-
rithm for ASIC implementations which realize multiple
computational tasks under hard real-time deadlines. The
algorithm analyzes constraints imposed by task sharing as
well as the traditional datapath synthesis criteria. In partic-
ular, we demonstrated an efficient technique to combine
rate-monotonic scheduling, a widely used hard real-time
systems scheduling discipline, with estimations and sched-
uling and allocation algorithms. Matching the number of
bits in tasks assigned to the same processor was the most
important factor in obtaining good designs. We have dem-
onstrated the effectiveness of our algorithms on several
multiple-task examples.

1  Introduction

Until now high level synthesis has concentrated on the syn-
thesis of a single computational task [McF90]. In this paper
we introduce the first high-level synthesis algorithm for the
creation ofmulti-task application-specific systems. By us-
ing information provided byhard-real time scheduling
methodologies andbehavioral synthesis tools, we connect
the synthesis process to operating systems methodologies
and technologies and enable efficient sharing of hardware
by several tasks.

We target hardware design problem for systems of pro-
cesses with deadlines is specified as a set of periodictasks.
Each task is defined using control-data flow graph and the
set of timing constraints. For each task three timing con-
straints are imposed:period interval, the start time (the
earliest time when all required data for one iteration are
available) and thefinish time (the latest time by which task
has to be completed). As in much real-time scheduling
work, we assume that the finish time for each task is the end
of its period.

The synthesis goal is to partition the set of tasks in an arbi-
trary number of subsets so that for each subset can be

implemented on one dedicated multifunctional ASIC. All
timing constraints for all tasks must be satisfied. The parti-
tioning is conducted in a such a way that the area of the
ASIC is minimized. We developed a search strategy which
partitions the tasks into groups. In our methodology, “parti-
tioning” denotes that different subsets of tasks are imple-
mented on different chips. Each partition is implemented by
a single datapath/controller machine; tasks are executed one
at a time on the datapath, with the highest-priority active
task being executed. The search strategy is guided by a sim-
ple and fast estimation procedure which predicts the
required hardware and corresponding time resources for
each task.

In the next section we outline the terms and models used in
our work. In Section 3 we define the targeted synthesis
problem and introduce the rank-order-based optimization
algorithm, while Section 4 presents experimental results.
We have deferred the comparison of our work until
Section 5, since our problem makes use of results from sev-
eral different disciplines.

2  Preliminaries

2.1  Computational and Hardware Models

Our computational model for a single task is synchronous
data flow [Lee87]. The model has two important ramifica-
tions. First, the proper speed metric for a synchronous data-
flow task is the sampling period with which input data can
be processed. At the system level the appropriate metrics of
speed is how many tasks with a given periodicity can be ac-
cepted so that the constraints imposed by their sampling pe-
riods are satisfied. Second, the tasks are well behaved in the
sense that one can impose an upper limit of the execution
time of each tasks and tasks can be statically scheduled.

Each task is defined as a hierarchical data-control flow
graph (CDFG). We assume it is possible to derive upper
bounds on the execution of each task on the available hard-
ware. We do not impose any restriction on the assumed
hardware model. For implementation we used the Hyper
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high level synthesis system [Rab91] which targets dedi-
cated register file model.

2.2  Rate Monotonic Scheduling

Rate-monotonic scheduling (RMS) theory addresses the
problem of ensuring that independent periodic tasks are
scheduled without violation of the associated timing con-
straints. Tasks are independent if their correct execution
does not imply need for synchronization. Note that tasks can
be independent even when they interchange data, so long as
the interchange does not cause a task to block.

The real-time scheduling basis for our work is found in the
following two theorems [Liu73, Sha90].

Feasibility Theorem [Liu73]: A set ofn independent peri-
odic tasks scheduled by the rate monotonic algorithm will
always meet its deadlines, for all task phasings, if

whereCi andTi are the execution time and period of taskτi
respectively.

Critical Zone Theorem [Liu73]: For a set of independent
periodic tasks, if each task meets its first deadline when all
tasks are started at the same time, then the deadline will
always be met for any combination of start times.

The feasibility theorem guarantees a sufficient condition for
any distribution of start times that can arise when the rate
monotonic scheduling policy is applied. As the number of
tasks approaches infinity, the bound converges to 0.69 (ln
2). Table 1 gives the utilization bound for small number of
tasks sharing one processing element. If the execution
engine is fast enough that the run time of the periodic tasks
satisfy the conditions of the theorem, a feasible schedule is
guaranteed, regardless of the task start times.

We will illustrate the feasibility theorem using the follow-
ing example. Suppose that four tasks are given with param-
eters as stated in Table 2. These tasks can be scheduled on
one processor, regardless of their start times, because the
sum of utilization bound is 0.75 (<0.756). However, if task
4 is replaced with a task which has duration 30 and task
period 200, there is no guarantee that the feasible schedule
exist, because the sum of efficiency bounds is now 0.8 (>
0.756) as indicated by the feasibility theorem.
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Table 1.  Efficiency bound U(n) for resource utilization
under RMS as a function of number of tasks.

# of
tasks

1 2 3 4 5

 U(n) 1.0 0.828 0.779 0.756 0.743

The feasibility theorem is a basis for the synthesis scenario
when the start times of tasks are not knowna priori. It pro-
vides the mechanisms which guarantees feasible solution,
once its conditions are satisfied. The bound presented in the
theorem is a conservative one. For example, it has been
proven that for randomly selected set of tasks the likely
bound for a very large number of tasks is 0.88 [Leh89]. So,
to enable higher probability of accurately predicting the
realistic resource utilization, we multiplied each value in
Table 1 during checking process by 1.14 (1/.88), except, of
course, for the single processor case.

The critical zone theorem can be restated using an equiva-
lent mathematical test which is often more suitable for
implementation than the criteria outlined in the initial ver-
sion of the theorem.

Critical Zone Theorem, revised version [Leh89]: A set of
independent periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all tasks phas-
ings, if and only if

whereCj andTj are the execution time and period of taskτj
respectively and

2.3  Area Prediction from a CDFG

We use estimators at three different levels of accuracy for
predicting the area of a datapath. The fastest estimation is
provided by the estimation tools from high level synthesis
system Hyper [Rab91]. It is well known that area of numer-
ically intensive ASIC design is dominated by interconnect,
control logic, and clock distribution requirements. This
makes prediction of area of the implementation from the
CDFG level of abstraction very difficult task. For area esti-
mation we use two techniques: fast and elaborated. Both

task
 duration
(C)

 period (T)
Utilization
(U = C/T)

task 1 40 160 0.25

task 2 15 75 0.2

task 3 30 150 0.2

task 4 10 100 0.1

Table 2.  An example set of tasks.

∀ i 1 i n,≤ ≤,

C j
1

lTk
-------

lTk

T
-------

j 1=

i

∑ 1≤
k l,( ) εRi

min

Ri k l,( ) 1 k i l,≤ ≤ 1 ... Ti Tk⁄,,={ }
˙

.=



techniques use the Hyper set of estimation tools [Rab91,
Cha95]. The fast technique predicts the number of instances
of hardware primitives at RT-level using min-bound tech-
nique. Consequently, it uses the Hyper-LP statistical model
to estimate the area of implementation. The elaborated
technique first conducts scheduling and after that used the
exact value for the RT level hardware components as input
parameters in the Hyper-LP statistical model for total area.
The first technique is about 20% less accurate than the sec-
ond, but it is an order of magnitude faster.

3  The algorithm

The synthesis problem for rate monotonic scheduling-based
high level synthesis of hard real time systems can be defined
as follows:

Given: A set of M tasks described by their CDFGs and their
hard real-time timing constraints (task period, start and fin-
ish time). The finish time is the end of the task period, and
the start time can take an arbitrary value. It is assumed that
all tasks must be implemented under the hard real-time con-
straints.Goal: Partition the set of tasks in N subsets (N <=
M) so that for each subset can be implemented on one dedi-
cated programmable chip. The cost of implementation (sum
of areas of all chips) must be minimized. It can be shown
that even in the cases when the computational complexity
of the associated high level synthesis tasks are of polyno-
mial complexity, the synthesis of minimal cost implementa-
tion of a set of real-time asks is NP-hard.

To describe our synthesis algorithm, we first present the
search strategy, which is used to propose a partitioning of
tasks in several groups, so that each group is implemented
on one ASIC. We next explain how the critical zone theo-
rem is used to obtain a task level schedule. Finally, we
describe modifications to traditional high level synthesis
tools for the new application domain.

The outline of the algorithm for the synthesis of set of tasks
under hard-real time constraints is given in Figure 1. Our al-
gorithm starts from an initial feasible solution and iteratively
refines the solution to reduce cost while maintaining feasi-
bility. The initial feasible solution is found by allocating
each process to a separate processor elements (PE); it is easy
to determine in this case if there is a feasible solution. Dur-
ing synthesis, each step moves the task from one PE to an-
other. Since only two PEs are involved in a move, it is pos-
sible to determine if the reallocation is feasible. In general,
testing an arbitrary configuration for feasibility is NP-com-
plete.

Our algorithm iteratively applies two phases. The first
phase selects an expensive process and tries to merge that
process’ PE with another PE. This type of move tries to

choose small, inexpensive processes to share the expensive
process’s PE. The second phase tries to merge a process
which has a large slack in meeting its deadline. Processes
with large slacks are more likely to be able to be executed
on another PE, so this move helps reduce cost.

The function select_target(P1) uses several criteria to
determine which PE is the best candidate for possible shar-
ing with P1. We have found five criteria which are impor-
tant in selecting a target PE which is to share a given
process. The criteria in descending order of importance are:

1. The bit width of the operations in the process.Hard-
ware is wasted if two processes operate on data of dif-
ferent bit widths. Also, longer bit width implies longer
cycle time. Matching a task to a PE with function units
of the proper bit width reduces the clock period.

2. The similarity of the type of functional units
required by the processes. If two tasks require the
same type of execution units, it is more likely that their
combined realization will be smaller than the sum of the
individual implementations. In particular, it is important
to match tasks which require hardware and time expen-
sive units such as multipliers.

3. The sources and sinks of data transfers. Similarly, it
is important to match tasks which have similar commu-
nication patterns. For example, if two processes both
send the output of a multiplier to an adder, they have
more in common than a process which sends its multi-
plier output to an adder and another which sends the
multiplier output to a subtracter.

4. A similar number of registers. This can be estimated
in the general case by finding the maximum cutset of the
dataflow graph. Hyper provides facilities for estimation
of all three mentioned types of hardware resources (exe-
cution units, interconnect, and registers) from a CDFG.

RMS_synthesis() {
   find initial feasible solution with 1 process per PE;
   repeat {
      repeat { /* merge expensive processes */
         P1 = select_most_expensive();
         P2 = select_target(P1);
         /* try to move P2’s processes onto P1 */
         if (try_to_merge(P1,P2))
            update_solution(); /* successful move */
      } until (no expensive choices);
      repeat { /* merge processes with slack */
         P1 = select_slack();
         P2 = select_target(P1);
         /* try to move P2’s processes onto P1 */
         if (try_to_merge(P1,P2))
            update_solution(); /* successful move */
      } until (no slack choices);
   } until (no improvement);
}

FIGURE 1. Outline of our synthesis algorithm



5. The sum of their current ratios of time they use the
current set of allocated hardware resources.Two pro-
cesses whose have high ratios will contend for the exist-
ing resources, requiring addition of extra resources.

As we already mentioned earlier high level synthesis tools
and rate-monotonic critical zone scheduling algorithm and
feasibility theorem are used in try_to_merge(P1,P2) and
update_solution(). This process is done in two steps: first
using the fast estimation procedure and if this test is satis-
fied using the elaborated estimation procedure.

The application of the critical zone theorem for rate mono-
tonic scheduling, which is done in thetry_to_merge(P1,
P2) and update_solution() steps, is based on two key
results. The key idea of the corresponding scheduling algo-
rithm is to always schedule first among tasks which are
available for scheduling task with the earliest deadline.
Rate-monotonic analysis guarantees the optimality of the
produced schedule[Liu73].

High level synthesis tools are modified in the following
way to accommodate needs oftry_to_merge (P1,P2) and
update_solution() steps. The number of bits for all tasks is
set to the number of bits in the highest word length require-
ments among individual tasks. All processes are treated as
subroutines during scheduling, and Hyper optimally allo-
cates processes [Rab91], the available time among the indi-
vidual tasks. If required, the hierarchical scheduler allocates
additional hardware resources after merging of two tasks.
However, in this case the decision to update the current
solution is postponed until at least three other proposed
solutions are examined. After scheduling, the required tim-
ing requirements for each individual task are recorded and
their combination is checked using the rate monotonic
scheduling theorems. The solution is updated only after a
feasible task-level rate-monotonic schedule is obtained.
During scheduling at the task level we do not allow pre-
emption of tasks. This is done in order to eliminate the need
for an expensive model of context switching among tasks.
Although, in this way the optimality of the rate monotonic
scheduling can not be guaranteed anymore, the final
achieved results are most often fully satisfactory. Both our
experiments and previously published theoretical and
experimental results [Sha90] indicate that preemption dur-
ing rate monotonic scheduling is rarely required and used,
even when allowed. More importantly, we provide a mech-
anism for rescheduling of all tasks until a need for preemp-
tion is not eliminated.

4  Experimental Results

Table 3 gives descriptions of 16 tasks used to construct five
different task sets, including the number of operations, the

word length, and the initial area when each task is imple-
mented on a separate chip. We used these tasks to construct
the task sets used for the experiments. Table 4 presents the
solutions produced by our rank-order based high level syn-
thesis algorithm. Both the average and the median area
reductions are by factors slightly larger than two, clearly
indicating advantage of combining several tasks on one
ASIC implementation.

The more detailed analysis of obtained solutions indicates
the following interesting facts. The best solutions tend to
group tasks which require the similar number of bits in their
word length. In many cases, although new solution did not
require any additional execution units and no new intercon-
nects compared to the large design of the current designs, the
area of design increased significantly. This can be mainly at-
tributed to increase in the required numbers of registers in
background ROM memory. The increase in the number of
registers was mainly due to a need to store constants for both
designs which are combined. Since in the fixed point de-
signs the area of a register is almost half of the area of an
adder and for short word length a significant part of the area
of a multiplier this aspect has a significant overall impact.

Finally note that in the modern implementation technolo-
gies pin count is an important cost criterion. In all exam-
ples, the number of pins in final designs was equal to the
word-length used in design.

5  Related Work

The directly related work can be mainly traced along the fol-
lowing three lines of research: high level synthesis; system
level synthesis; and scheduling in hard real-time systems.

Within high level synthesis several subdomains are related
to the research described in this paper, including partition-
ing, estimations and area prediction, and design of applica-
tion-specific instructions processors (ASIPs) and
application-specific programmable processors (ASSPs).

High-level synthesis partitioning techniques were pio-
neered by McFarland [McF83] and Camposano and Bray-
ton [Cam87]. Lagnese and Thomas [Lag89], generalized
this work by considering multi-stage clustering and
reported 20% reduction in the number of wiring tracks on a
benchmark example.

Recently, synthesis of ASPPs [Gue93] and ASIPs [Leu94,
Goo95] received a great deal of attention in CAD commu-
nity. While both ASPPs/ASIPs and the technique proposed
in this paper target implementation of several tasks on the
same processor, the similarity between two domains is very
limited. For example, while both ASIP and ASPP designs
assume that the final design will be eventually used to real-



Table 3.  Individual Characteristics of Tasks considered during experimentations

Task # Task
 #
operations # bits

Initial area
(mm2)

1. GE Controller1 48 8 10.47

2. GE Controller2 108 20 38.88

3. Honda Controller1  97 16 27.28

4. Honda Controller2 67 16 23.63

5. Wavelet filter 31 12 15.10

6. Low Pass Filter 32 10 13.65

7. BandPass Filter 38 11 17.82

8. High Pass Filter 42 14 18.24

9. BandStop Filter 30 13 16.37

10. 8X8 DCT 46 24 27.06

11. DAC 354 16 26.62

12. modem 227 20 31.78

13. adaptive modem 200 20 35.52

14. Large Controller 324 32 66.82

15. LMS audio formatter 464 32 73.26

16. Echo-Canceller 212 32 64.57

Table 4.  Experimental result - Area of implementation for ASIC hard-real time designs.

set of
tasks Tasks in the set  Final solution

Final area
(mm2)

Improvement
initial/final

set 1 {1,2,3,4,5,6,7,8} {1,5,6,7} {2,3,4,8} 26.91+61.98 1.86

set 2 {9,10,11,12,13,14,15,16}
{9,10,11,12,13} {15}
{14,15, 16}

60.70+ 98.80 2.47

set
{1,2,3,4,5,6,7,8,9, 10, 11,
12}

{1,5,6,7}, {2,3,4,8,11}
{10,12}

 26.91+74.07
+ 37.55

2.14

set 4.
{5,6,7,8,
9,10,11,12,13,14,15,16}

 {5,6,7,8,9,11} {10,12,13}
{14, 15,16}

52.77 +54.09
+ 98.80

1.98

set 5
{1,2,3,4,5,6,7,8,
9,10,11,12,13,14,15,16}

 {1,3,4,5,6,7,8,9,10}
{2,11,12,13}{14,15, 16}

63.36+49.98
+ 98.80

2.39

ize only one of several (or many) applications, hard real-
time rate monotonic scheduling-based ASIC design allows
several tasks to share the same hardware during their exe-
cution.

Hardware-software codesign has received a great deal of
attention recently [Wol94]. The most relevant system
research subdomain is hardware-software partitioning
[Bar94, Ern93, Gup93, Vah92]. These algorithms try to
identify parts of computations which should be imple-

mented on programmable and ASIC platform so that an
overall optimization function is maximized. However, they
do not address use and influence of hard real-time operating
scheduling constrains and operating systems principles to
optimize the implementation of their ASICs.

Hard-real time scheduling efforts are more than three
decades long. The early work on scheduling of a set of peri-
odic tasks with strict timing constraints on periodicity,
arrival and required time of each task, culminated in a clas-



sic rate-monotonic scheduling algorithm [Liu73]. Conse-
quently, the rate-monotonic scheduling has been
extensively analyzed and generalized in several directions,
mainly by researchers at Carnegie-Mellon University
[Leh89, Sha90].

The most notable practical application of real-time schedul-
ing approaches, an in particular rate monotonic, include the
inclusion of rate monotonic scheduling as the scheduling
policy for the IEEE POSIX real-time operating system
standard and IEEE Futurebus+ standards [IEE93], and use
of the generalized rate monotonic scheduling techniques in
several major advance-technology projects such as Space
Station Program and the European Space Agency on-board
operating system.

Finally, Hu et al. [Hu94] compared several hard real time
scheduling policies during hardware-software partitioning
of the controller for automotive powertrain module, but did
not develop a synthesis algorithm.

6  Conclusions

This paper has introduced synthesis of hardware implemen-
tations of multi-task ASICs. Our methodology integrates
techniques from operating systems—namely, rate-monoton-
ic scheduling—and high level synthesis.We use a steepest-
descent rank-order-based algorithm to optimize the design
of the shared datapath system. Matching the number of bits
for the tasks selected to be implemented on the same plat-
form is critical to cost optimization. ASICs which can exe-
cute multiple tasks are important tools for real-time synthe-
sis. We believe that this synthesis methodology will be use-
ful in the co-synthesis of hard real-time systems.
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