
 A Delay Model for Logic Synthesis of Continuously-Sized Networks

Joel Grodstein, Eric Lehman, Heather Harkness, Bill Grundmann, and Yosinatori Watanabe

Digital Equipment Corporation, 77 Reed Rd, Hudson, MA

model will enable us to use a modified tree-mapping tech-
nology to efficiently produce continuously-sized netlists
satisfying certain electrical noise and power constraints.Abstract: We present a new delay model for use in logic

synthesis. A traditional model treats the area of a library
cell as constant and makes the cell's delay a linear
function of load. Our model is based on a different, but
equally fundamental linearity in the equation relating
area, delay, and load: namely, we may keep a cell's delay
constant by making its area a linear function of load.
This allows us to technology map using a library with
continuous device sizing, satisfies certain electrical noise
and power constraints, and in certain cases is compu-
tationally simpler than a traditional model. We give
results to support these claims. A companion paper [14]
uses the computational simplicity to explore a wide
search space of algebraic factorings in a mapped network.

Our own application is for continuously-sized, full-
custom designs. However, the delay model is also
applicable to other methodologies, such as high-end
standard cell, where there are many sizes of each cell.
Essentially, it applies to any technology where cell sizing
to obtain a desired delay is viable.

Constant-delay modeling has been used frequently in
technology-independent algorithms. For example, Wang
[15,pg.167] proposed decomposing a network into
bounded-fanin NAND gates, assigning a unit delay to
each level of logic, and determining and restructuring
critical regions with the resulting arrival times.

Singh[12, pp.13-19] has measured the accuracy of
various technology-independent delay models. He
concluded that the unit-delay model on bounded-fanin
gates was the most accurate. His speedup[8] made
technology-independent decomposition decisions by first
breaking down the network into two-input NAND gates,
and then modeling each NAND gate as a unit delay.

1. Introduction. Most technology mapping algorithms
for logic synthesis have been targeted at technologies
with a limited number of cell sizes. A straightforward
modeling technique will then model each library element
with a unique cell, whose area is fixed and whose delay
varies with output loading. A class of technology-map-
ping algorithms called tree-mapping [1,2,3] is well suited
to such a model. Given a tree-structured network and a
fixed cell library, tree-mapping algorithms run in time
linear in the number in the number of circuit nodes. They
are also linear in the number of library cells, which is of
course not a problem for these reasonably-small libraries.

Saldanha et. al.[10] used path sensitization to make the
longest real path in a network false. [10]'s initial
implementation uses a unit-delay model on technology-
independent two-input NAND gates. [10] argues that the
unit-delay model is a reasonable heuristic, citing Singh's
results from [16].At the other end of the performance spectrum, full-

custom design can achieve high device densities and
clock speeds [13]. However, it requires, among other
things, the ability to create gates of any desired size. This
conceptually implies an unbounded number of library
cells, and clearly precludes the direct use of a tree
mapper, whose execution time is linear in the library size.
One alternative is to approximate the continuous library
with a discrete, near-continuous (and very large) cell
library. However, this produces suboptimal results (since
the library is still not continuous), and is also slow.

Each of the above approaches uses the constant-delay
model as a simple, fast approximation to real delay. This
simplicity allows them to quickly consider many different
structurings of a technology-independent network. Our
approach is different. We use the constant-delay model in
a technology-mapped realm as the synthesis tool's most
exact library representation. We will present, in Section
2, circuit simulation data to show that ours is a valid
timing model. Section 3 demonstrates the model's use for
technology mapping, and Section 4 gives results.

We propose a new model for continuously-sized CMOS
gates. In this model, a cell's delay will be held constant.
As the cell's load changes, the cell's size automatically
grows exactly enough to hold delay constant; making its
area a function -- in fact a linear function -- of load. This

A companion paper [14] takes a different approach. Just
as previous works have used a simple delay model to
explore many different structurings of a technology-
independent network, [14] uses our delay model's compu-

tational simplicity to explore a wide space of network
restructurings in the mapped realm.

delay of a NAND2 gate is held constant; as the output
load changes, we change the gate size as necessary.
SPICE simulation shows the relationship to be almost ex-
actly linear. Intuitively, driving a constant amount more
output load in the same time requires driving a constant
amount more current, which requires a constant amount
more device size. We give the following theorem [6].

2. Our Delay Model. We have spent several years using
a technology mapper based on [2] to synthesize the
control logic of high-performance microprocessors. Our
design methodology allows continuous sizing and the
mapper did not, so we gave the mapper a large library of
discrete gate sizes. As we included more cell sizes in our
library, the mapper obtained progressively better results,
but at the cost of more CPU time.

Theorem I. Given a gate obeying the Elmore[5]
delay model: i.e., all transistors can be modeled as
resistors with R µ (1/ device_width), the capacitance
on any node varies linearly with device width, and the
delay to the gate output q is the elmore

ττ == ∑∑ RiqCi
i

, where Riq is the resistance of the

common path between any internal node i and q.
Then, if the external loading Cext is treated as an
independent variable, and the device sizes are scaled
as needed to keep t constant, it will result in gate area
varying linearly in Cext.

The mapper in [2] models the minimal arrival time at any
node as a piecewise-linear (PWL) function of load. These
PWL functions typically resemble Figure 1. Each node
has many segments, each representing the use of a
progressively larger cell as the node loading increases.
Almost every size of gate is represented in the PWL
arrival function at every node. Larger NAND2s typically
have a higher base delay but a lower load-dependent
delay; thus there will be some load at which any given
size is optimal. We next plot multiple delay lines for the same gate in

Figure 2 (all plots are for a recent CMOS technology;
delay numbers are scaled for proprietary reasons). If we
then take a vertical line representing some given constant
output load, we notice that as the gate speed gets faster, it
requires more area increase to keep making it faster by a
constant delay increment Dt. At some point, it becomes
quite impossible to make the gate any faster.

 Figure 1 - PWL solution at a node

Unfortunately, this data representation becomes more re-
dundant as we add more gate sizes to the library. The
graph essentially implies that we should use a NAND2
and size it based on the actual loading. Our new model
essentially lets us represent the solution at any node with
exactly this information.

Any delay model must represent the relationship between
cell area, load, and delay. A common model has the size
of a gate being constant, and the gate's delay then varying
linearly with output load. This model is intuitive and is
accurate to a first order [9, pg.254].

 Figure 2 - W vs. load, constant DThere is another fundamental linear relationship between
the variables of area, load, and delay. We can hold the

Any gate drives two loads -- the external load that we
have plotted against, and also its self-loading
capacitance. The self-loading consists of its internal cell
wiring, parasitic and internal channel capacitances. For
good cell layouts, we can assume these are dominated by
effects proportional to device size. We now define a gate's
self-loading ratio in unitless terms as the ratio of
Cself_load / (Cext + Cself_load). It represents the
proportion of the electrical energy which is charging
internal loads, as opposed to doing "real" work. We now
state another theorem[6]:

We can thus use Figure 3 to pick a worst allowable self-
loading and directly translate it into the fastest
"reasonable" delay for that gate type. At the other end,
making the gate delay slower and slower gives us
diminishing area savings, as noted in Figure 3. This, and
the fact that slower transition times result in reduced
noise immunity to electrical coupling effects [7], give us a
maximum "useful" gate delay.

Consider next the following definition of a delay-power
efficiency product. Pick a given external load Cext. Allow
the size of the driving gate to vary and define d as the
gate's delay at any given size. Define dmin as the gate
delay at the 100% self-loading point and drel in unitless
terms as d/dmin. Next define Erel in unitless terms as
Erel=E / CextVdd

2. Finally, define the delay-power
efficiency as (drel * Erel)

-1. Figure 4 plots Erel as a
function of gate delay for a NAND2 gate swept over a
wide range of gate sizes. Four plots at four different loads
are superimposed. We see that the delay-power efficiency,
as well, is a function of gate delay only, virtually
independent of load.

Theorem 2: Given a gate obeying the Elmore model
as before. Then, at any given gate delay, its unitless
self-loading ratio is an invariant. That is, self-loading
ratio depends only on delay, and is independent of
external loading as long as the gate size is increased
to keep delay constant.

 Figure 3 - Self-load vs. delay

Figure 3 shows this graphically (the four plots lie on top
of each other). Theorem 2 also explains the phenomenon
observed in Figure 2. As a gate gets faster, its self loading
increases. It thus takes more extra area to make it faster
by the same constant increment Dt.

 Figure 4 -Efficiency vs. delay

2.2. Range of the delay model. When we combine the
narrow peak of the delay-power efficiency curve with the
aforementioned lower and upper bounds on gate delay,
we find that the ratio between the fastest and slowest
useful delays is on the order of 3:1 for every CMOS
technology we have seen. We can now explain Singh's
conclusion [12] that the unit-delay model is so
reasonable. With a narrow delay range, simply counting
the depth of a circuit in gates will approximate the real
delay; especially since variations in gate delays tend to
cancel over a long path.

2.1. Electrical and power constraints. We can also
relate self-loading ratio to power. Self-loading
capacitance implies work which is "useless" in that it is
not charging external loads. Thus, keeping the self-
loading ratio low implies a high ratio of useful work to
self-loading work. Figure 3 tells us that when designing
for minimum self-loading ratio, it is sufficient to consider
a gate's delay only -- its area may be whatever it needs to
be for the proper delay, without affecting the ratio.

3. Incorporation into a Tree-Mapping Technology
Mapper. Our global strategy will be straightforward. A
conventional delay model would use constant-area cells,
and attempt to approximate the continuous area range by
having many discrete cells. Instead, we use several
constant-delay cells, and approximate the continuous
delay range. Our mapper produces a wirelist containing
cells with known delays, which are assigned their correct
sizes by a simple sizing technique such as [9, pp 252].

constant-delay library. The constant-area library has
approximately 16 sizes for each gate type. The constant-
delay library has two. We have taken several networks
from a low-power, high-performance microprocessor
currently in design, and processed them with our
technology mapper using the constant-delay library.

For comparison purposes, we have then converted the
results to the best possible equivalent using the constant-
area library. At nodes which are speed-critical, we choose
the next-larger cell size to reduce delay. At nodes which
are bounded by the methodology's slowest possible delay,
we likewise round up to the next larger cell to avoid
violating electrical constraints. At other nodes, we round
to the nearest legal discrete cell size.

Both the constant-area and constant-delay models relate
area, load, and delay. Given a library with enough cells,
either model can take any two of the three variables and
predict the third, and thus are functionally equivalent in
the limit case of densely-populated libraries. However,
given the 3:1 range in cell delay and a nearly 100:1 range
in cell area, our library can be far smaller than
conventional ones -- for a methodology allowing
continuous sizing.

Table 1 shows the results. Column 1 gives the name of
each example (the very bottom row gives geometric
means of all examples). Column 2 gives the example's
size. Columns 3 and 4 compare the minimum cycle time
which can be produced by each library. Throughout the
table, columns labelled "CD" give results for the
constant-delay, continuously-sized library and columns
labelled "CA" are for the discretely-sized, constant-area
library. Note that, as expected, upsizing gates to the next
discrete size past what our library designer considered to
be the point of diminishing returns produced very little
effect; a geometric mean of only 1.3% delay
improvement. This will be dwarfed by routing effects
when the network layout is done. In fact, one network
even had a slightly slower delay with the larger cells.
This is attributed to an increase in the back-biased
source/drain diffusion diode capacitances associated with
the larger devices.

We incorporate our delay model within a tree-mapping
technology mapper [1,2]. Tree mappers can be used to
optimize many different cost functions: e.g., area, delay,
and area under a delay constraint.

Since our model essentially reverses the roles of area and
delay, minimal-area tree mapping can now be done very
similarly to existing min-delay algorithms (e.g., [2] ch.
2). Min-delay mapping is analogously done with an
existing min-area algorithm (e.g., [1]).

Min-area mapping under a delay constraint is perhaps the
most useful and difficult problem. There are several met-
hods in the literature of dealing with it, e.g., [2, p.22] and
[4]. We focus on the two-pass algorithm in [4]. For the
first pass, [4] chose a constant value K, and assumed that
the expected load at all tree-internal nodes was equal to
K. This reduced the delay of each cell to a constant, and
allowed [4] to store simple (arrival time, area) pairs for
the solutions at each node instead of piecewise-linear fun-
ctions. The inaccuracies due to [4]'s simplified model
were assumed to be minimal, and were heuristically adj-
usted on a later pass. We keep the first pass from [4] ex-
actly. Our cells have their native constant delays. Their
area is heuristically assumed constant and equal to the
slope of their actual area vs. load line. We then eliminate
the second pass of [4] altogether and, as mentioned,
replace it by a sizing technique similar to [9, pg.252].

Columns 5 and 6 give the area results for each library. As
expected, the constant-delay library used significantly less
area (14.8%) than did the discrete library. This is
partially because the constant-delay library was able to
use exactly the smallest cell size on noncritical nodes,
where the constant-area library had to use the next larger
size. It is also due to the constant-delay library avoiding
area overkill on critical nodes. Columns 7 and 8 give the
total power expended for each circuit. They disregard
switching probabilities and use a simple model where
power µ CV2. Note that the power measurements are
roughly in line with the area measurements.

Finally, columns 9 and 10 compare delay-model
complexity. Column 9 gives the total number of solution
points used by our MADC mapper. Column 10 contrasts
this to a min-delay piecewise-linear mapper such as in
[2]. As mentioned in Section 2, the piecewise-linear
mapper uses at least one solution point for each cell
strength in the library at every node while calculating the

4. Results and Conclusions. We have built a technology
mapper using these ideas on top of SIS [11]. It is based
on a tree mapper which minimizes area under a delay
constraint (MADC), as described in Section 3.3, and
followed by a simple device sizer based on [9, pg.252].
We have then built both a constant-area library and a

minimum-delay solution. A true MADC solution such as
proposed in [2, pg. 22] would be substantially more
expensive still. As expected, the computational gain from
the 3:1 range in delays vs. the 100:1 range in areas is
substantial. We observe that it is so substantial that it
enables a true MADC mapper to use 15% fewer solution
points than a simpler min-delay mapper. This com-
putational simplicity will be used to good effect in [14].

3. Keutzer, K., "DAGON: Technology Binding and Local
Optimization by DAG Matching", Proc. DAC 1987, pp. 341.

4. Chaudhary,K. and M. Pedram,"A Near-Optimal Algorithm
for Technology Mapping Minimizing Area under Delay
Constraints," Proc. DAC 1992, pp. 492.

5. Elmore, W.C., "The Transient Response of Damped Linear
Networks ... ," J. Appl. Phys., V19, #1,Jan. 1948

6. Proofs available on request from the authors.
7. Grundmann, B, and YT Yen,"XREF/Coupling: Capacitive

Coupling Error Checker", Proc ICCAD, 1990, p.244.
In conclusion, we have developed a new delay model. Our
model keeps the delay of any cell constant by varying the
cell's size in proportion to changes in its output load. We
have shown the model to be both accurate and
computationally efficient, and motivated it with circuit-
integrity and power considerations. We have used it to
give insight into previous technology-independent delay
modeling, and demonstrated its use in technology
mapping. A companion paper [14] uses its computational
simplicity to explore a wide range of structurings of a
mapped network.

8. Singh, KJ, et. al.,"Timing Optimization of Combinational
Logic," ICCAD-88, pp 282

9. Glasser, L. and D. Dobberpuhl, "The Design and Analysis of
VLSI Circuits", Addison Wesley, 1985

10.Saldanha,A., H.Harkness, P.McGeer, et. al., ,"Performance
Optimization Using Exact Sensitization", Proc. DAC 1994

11.Sentovich,E.et.al., Sequential Circuit Design using Synthesis
and Optimization," Proc ICCD 1992, pp 328.

12. Singh,K.J.,"Performance Optimization of Digital Circuits,"
PhD Thesis, U.C.Berkeley, 1992.

13. Bowhill, et. al., "A 300Mhz 64b Quad-Issue CMOS RISC
Microprocessor," Proc ISSCC 1995, pp.182.

References 14.Lehman,E.,Y.Watanabe,J.Grodstein,and H.Harkness,"Logic
Decomposition During Technology Mapping," ICCAD 1995.1. Rudell, R., "Logic Synthesis for VLSI Design," Memo

UCB/ERL M89/49, U.C. Berkeley, 1989 15. Wang, A., "Algorithms for Multi-level Logic Optimization,"
Memo UCB/ERL M89/50, U.C.Berkeley, 1989.2. Touati, H., "Performance-Oriented Technology Mapping,"

Memo UCB/ERL M90/109, U.C. Berkeley, 1990.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

