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Abstract all structures has been developed up to now. Although the
correlation between performance and coefficient choice
has often been treated, very few works have dealt with a
complete analytical description of the correlation between
performance, stability, converter order and the choice of
the coefficients ((ai,bi)) most probably due to the
complexity of the system. Hein [7] was one of the first to
present a thorough description of these correlations by
considering the nonlinear properties of the SD. Although
his work was limited to the case of a second order SD, it
has the great credit of bringing into light the need for a
theoretical support in order to better understand the
influence of these coefficients on the global mechanism of
the modulator. It is most probably the insufficient
knowledge of these influences which has made it difficult
to implement stable singe loop SD of order three or more.

This paper presents a new algorithm to attain optimized
network scaling in single loop, 1_bit Sigma Delta Analog
to Digital Converters (SD ADC) of order three or more.
The algorithm is based on a novel mathematical
description of stability and performance criteria of the SD
ADC and on the application of non linear interactive
optimization techniques. The feasibility of the new
algorithm has been confirmed in practical
implementations. The method brings new insight on the
correlation between system stability, performance, system
order and the choice of the network scaling. Our method is
extendible to cascaded SD as well as SD based on filter
topologies.

 Interactive optimization techniques for the design of
integrated circuits [8] enable performance optimization in
the presence of constraints, through an adequate choice of
circuit parameters. This principle is also applicable to
systems and therefore to our specific problem.

Introduction

 Single Loop, 1-bit SD ADCs of order greater than two
have not been used up to now because of stability
problems[1]. Slow or absence of recovery after an
overload provoked through powerup, high input signal
amplitudes or a short power distribution failure has made
these higher order structures unreliable for practical
applications. Nevertheless the need for higher resolution
has lead to the development of new topologies based on
loop filter design [2,3,4] and cascading of lower order SD
ADCs[5]. Unfortunately, architectures based on filter
topologies are considered as conditionally stable systems
which have manifested recovery only after prolonged
overload conditions[4] or have required additional reset
circuitries in practice [3] to guarantee recovery after an
overload. As for Cascaded SD ADC, stability is
guaranteed at the cost of precise circuit matching, more
performant analog components and larger die area as
compared to an equivalent single loop SD. Therefore, if
the stability problem in higher order single loop SD ADC
is solved we can get more benefits out of a single loop
structure than the alternative topologies. Unless precised,
the term " single loop, 1-bit SD ADC " refers to the
conventional architectures illustrated in figure 1 .

 This paper presents for the first time an algorithm for the
determination of an optimum network scaling in single
loop SD ADC of order three or more. The algorithm is
based on a new mathematical description of the
performance and various constraints in the SD and uses
interactive optimization techniques for the determination
of the optimal coefficients ((ai,bi)) of a given Nth order
SD ADC.
 The characterization of a stable and performant Nth
order SD is presented in I. Part II describes the
fundamental steps of the new algorithm. The new
mathematical analysis of the stability and performance
constraints and the application of interactive optimization
techniques to the case of the SD is described in III. The
feasibility of this method has been confirmed in
behavioral and circuit level simulations of the SD,and
proven through experimental results. This shall be treated
in part IV.

I. Stability and performance characterisation
 Optimized network scaling of a single loop, 1-bit SD
ADC of order N (fig.1) consists in determining the
adequate coefficients ((ai,bi)), which guarantee stability
and high performance. Performance in a SD is related to
its resolution given in bits. The idea that stability in
higher order single loop SD ADC can be assured in
practical implementations through an adequate network
scaling is recent[6]. Yet no rigorous method applicable to

 Figure 1 presents an ideal Nth order single loop, 1_ bit
SD ADC. The latter is composed of N identical low pass
analog filters represented by the ideal transfer function
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, the 1_bit quantizer and a 1-bit DAC. The

coefficient set ((ai,bi)) represents the gain factors in the
feedback and feed forward paths of the converter. X(t) is



the input signal, its allowed input range is designated by
[-Xmax, Xmax]. The Nth order SD is a non-linear system
because of the presence of the 1-bit quantizer. Unless
specified the designation Nth order SD, SD or SD ADC
shall refer to these structures.

performance and the set of coefficients ((ai,bi)) of the
corresponding Nth order SD is described.
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Fig.1 An Nth Order Single Loop, Single Bit SD ADC

 A stable Nth order SD has to obey the following
constraints :
• Linear range operation of the integrators under normal
operating conditions : Non Overload Criteria

Figure 3. Algorithm of the Methodology• The root locus of the equivalent linear system must
remain inside the unit circle under normal operating
conditions : Stable Pole Criteria  We shall see that stability constraints are mathematically

expressed with inequalities which tend to down scale the
coefficients ((ai,bi)), while performance considerations
are mathematically expressed with functions whose
maximization or minimization requires an upscaling of
the coefficients.

• In case of overload, the integrators must present a very
fast recovery after return to normal operating conditions :
Fast Recovery Criteria
 The fast recovery behavior is an important stability
characteristic and is related to  the self control of the
converter.  A solution which best meets the conflicting requirements

for stability and high performance is obtained through
numerical optimization techniques[8]. Step three deals
with the application of non-linear interactive
optimization techniques to the case of the SD for the
determination of the optimal coefficients.

 A performant Nth order SD must present :
• A minimization of the inband quantization noise and a
wide dynamic range : Performance Criteria

 By dynamic range we mean the positive input range
[0, Xmax] for which the SD functions properly. We shall
only consider the inband quantization noise reduction.
Circuit noises such as switch noise, thermal and flicker
noise are independent of the choice of the coefficients
((ai,bi)) which we wish to optimize and can be reduced
through specific design techniques [9, 10] so that their
level remains below the quantization noise level of a
given SD.

III. Mathematical analysis of the stability and
performance constraints

The System Equations: The behavior of the SD can be
divided into two parts: a global and a local behavior. The
global behavior of the SD gives a general view of the
performance and pole stability in the SD. It considers the
SD as a black box which links the inputs to an output via
transfer functions. This behavior can be described by the
equivalent linear model (figure 4) where the non-linear
quantizer is modelled by a white noise source E(z) and
the 1_bit DAC by a gain factor Vref.[11].

II. The fundamental steps in the algorithm

 Optimizing higher order SD ADCs consists in
guaranteeing simultaneously the stability and
performance criteria given above. Figure 3 illustrates the
three fundamental steps in our design methodology.
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Fig. 4. Equivalent linear model of the SD

 The first step consists in defining appropriate system
equations of a given Nth order SD. These equations are
based on the equivalent mathematical models of the SD
which are of two types : an equivalent linear model and a
non-linear model.
 The second step deduces from the equations above the
performance and condition functions related to specified
stability and performance criteria. At this stage the
optimization problem is defined: with the help of these
functions and inequalities, the correlation between the
system stability, the system order, the system

 In this description the SD appears as a system with two
inputs: the analog input X(z) and the quantization noise
source E(z). The output Y(z) of the equivalent model is
expressed in (1) and (2) where STF(Z) and NTF(z) are
respectively the Signal and the Noise transfer functions



of the system. The characteristic equation of the
equivalent system is defined by (2.1)

• Noise in baseband [0, fb]
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 In which NTF, STF are defined by the z-transformed
expressions given in (1) and (2).D(z)=0 (2.1)
 The calculation of (6) and (7) gives

 A global behavior analysis of the SD based on the
equivalent linear model is insufficient for a complete
understanding of the system. An observation of  the local
behavior of the SD gives more details about the
interactions inside the system. For example recovery
considerations, linear range operation of the integrators,
the amplitude variations in each integrator or the
existence of saturation in a specific integrator are
informations which cannot be obtained from the global
behavior model. It is therefore mandatory to perform
local behavior analysis in order to have a better
understanding of the SD.
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 is the Oversampling ratio and N

the order of the SD.
•eRMS =

∆
12

 is the mean square value of the

quantization error (∆= quantizer step size)

 The local behavior of the SD is described with the help
of the state variable equations defined as the output states
of the integrators for a given sampling time and are
defined by the following non-linear series :

•Xmax represents the maximum input
amplitude that the SD can support.

v n v n b v n a Vref sgn u ni i i i ib g b g b g b gc h= − + − − × −−1 1 11  (3)  The frequency and order dependent terms in the first
parentheses of relations (8) and (9) are well-known [5].
The terms in the second parentheses of (8) and (9) reveal
new relations linking the inband quantization noise and
the signal to noise ratio peak value to the order and the
coefficients in the SD. This implies that performance is
dependent on the choice of the network scaling ((ai,bi)).
We see that the quantization noise is minimized and the
signal to noise ratio peak value is maximized when the
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 are maximized. This

means that the coefficients in the feed forward path of an
Nth SD order must be maximized as well as the
coefficient in the first feedback path. Our performance
functions are therefore defined as:

v0 n x nb g b g= ,   i ∈ [1,N]

u n u n b v n a Vref sgn u nN N Nb g b g b g b gc h= − + − − × −1 1 1 (4)

where :
• vi(n) is the sampled value at time t= n*Ts (Ts=
sampling period)of the state variable corresponding to
the i_th integrator.
• u(n) is the sampled value at time t= n*Ts (Ts=
sampling period) of the state variable corresponding to
the Nth  integrator.
• sgn(.) represents the mathematical operation of the 1-
bit quantizer:
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 The integrators are limited to a certain clipping level
which we shall represent by the letter L. The equations
defined in (1) to (5) form the system equations.
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 In the past the coefficients were chosen such that  these
functions were equal to one so that the relations (8) and
(9) were only dependent on M and N. Realized structures
of order three or more which had this property were
instable [10]. We see that  maximization of  (10.1) and
(10.2) is bounded by stability constraints.

Performance functions: We shall consider the
performance of the SD from the resolution point of view.
That is, high resolution is synonymous of good
performance. High resolution is obtained when the
inband quantization noise is minimized and the dynamic
ranged is maximized. The performance functions are
deduced from the noise contribution at the output of the
converter and the Signal to Noise Ratio peak value
defined as follows:

Stable pole condition : The poles of the equivalent
linear system are the zeroes of the characteristic equation



defined in (2). In discrete time systems the conditions for
pole stability can be obtained by applying the Jury
stability test [12] to (2.1). Another possibility is the use of
Routh-Hurwitz Criteria [12], which is applicable to the
bilinear transformation of (2.1) .We have chosen this
method. The reason for our choice  was the possibility of
applying the Lienard Chipart principle [13] to the
equivalent Routh Hurwitz matrix of the polynome
defined in (2).This has enabled us to reduce the number
of inequalities which must be verified by the Routh
Hurwitz criteria by 1/4, due to relations linking certain
sub determinants of the Routh Hurwitz Matrix with each
other.

more state variables present amplitudes larger than the
maximum allowed output swing L. The integrator clips
this amplitude to the value L. Linear range operation and
clipping behavior of a given integrator are respectively
summarized by expressions (16) and (17):

 n IN,  if  v  *
i∀ ∈ ≤ ⇔ =n L v n v ni ib g b g b g* (16)

 n IN, if  v    v )*
i

*
i∀ ∈ > ⇔ = ×n L v n L sgn nib g b g b g( (17)

where vi* (n) is the value of the state variable defined in
(3) or (4) at sampling time t= n*Ts and vi(n) represents
the value actually present at the output of the i-th
integrator in an Nth order SD.
 Non overload under normal operating conditions implies
that relation (16) be satisfied by the state variables
defined in (3) and (4). That is, the state variables must
vary in the range [-L, L].

 The bilinear transformation is defined by :
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 A linearization of (3) and (4) and a study of  upper and
lower bounds of the state variables was performed. The
consideration of worse cases for which a state variable
reaches  an extreme (-L, L or 0) have lead to a set of
inequalities which link the coefficients of the system.
These relations form the non overload and recovery
criteria. As an example we shall  treat the basic steps in
the study of the state variable equation of the last
integrator defined in (4).

The transformed characteristic equation is given by :
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Where the coefficients ci are function of the variables
((ai,bi)).
 The equivalent Routh Hurwitz Matrix and its sub
determinants Di of the equation defined in (12)are :

We recall the state variable equation u(n) of the last loop:

c c c

c c c

c c

c

N N N

N N N

N N

− − −

− −

− −

1 3 5

2 4

1 3

0

0

0

0 0

0 0

L

L

L

M M M O M

L L

Do
D1

D2
D N

(13.1)

u n u n b v n a Vref sgn u nN N Nb g b g b g b gc h= − + − − × −−1 1 11 (4)

Let us consider the case for which u(n-1) = L.
According to (5) we get sgn(u(n-1))=+1 and u(n)
becomes : u n L b v n a VrefN N Nb g b g= + − −−1 1 (I)

The state variable vN-1 is bounded by the clipping level
L :  − ≤ − ≤−L v n LN 1 1( ) (II)

 According to the Routh Hurwitz Criteria, the poles of
the equivalent linear system are stable if the following
inequalities are respected :

 Therefore relation (I) can be bounded as follows :
L b L a Vref u n L b L a VrefN N N N− + ≤ ≤ + −b g b g b g (III)

The state variable u(n) must obey the relation :
− ≤ ≤L u n L( ) , therefore the upper and lower
boundaries, which are values that u(n) can take, must
satisfy :

•∀ ∈ >i N ci0 0, ,   (14.1)

•∀ ∈ >i N Di0 0, , (14.2)

L b L a Vref LN N− + ≤b g  and  L b L a Vref LN N+ − ≤b g (1V)The Lienard Chipart modified criteria reduce the
inequalities in (14.2) by testing only the sign of the even
(or odd) sub determinants. The stable pole criteria are
therefore defined by :

Relation (IV) is satisfied if : b L a Vref LN N+ ≤ 2  and
b L a VrefN N− ≤ 0 (V)

•∀ ∈ >i N ci0 0, ,   (15.1)
 A similar study for the case u(n-1) = -L and the case
u(n-1) = 0 is done. The resulting inequalities are
summarized below :•∀ × ∈ > ∀ × + ∈ >+2 0 0 2 1 1 02 2 1i N D or i N Di ib g b g, , , ,           (15.2)

b L a Vref LN N± ≤ ,  b L a VrefN N− ≤ 0,  a Vref
L

N ≤
2

(VI)
Non overload and recovery criteria : These
conditions are deducted from the local behavior of the SD
which is described by the state variable equations given
in (3) and (4). We recall that in a stable SD, the
integrators outputs must lie below the clipping level L
under normal operating conditions. Clipping is a sign of
instability in the global system and occurs when one or

 The common region to all the inequalities defined in
(VI) is graphically represented in Fig. 5. We see that the
plane is divided in two regions: an overload and a non
overload region. Clipping is avoided when the
coefficients (aN,bN) are chosen in the non overload
region.



NVref

NL

L/2

L/2

N L+ NVref =L

0

b

a

b a

Non Overload 

L

L N L = NVrefb a

N L .- NVref =Lb a

Region

stability and performance requirements in higher order
SD ADCs, a nonlinear optimization tool can be applied
associated with a simulator whose role is to analyze the
dynamic behavior of a  SD for a given set of parameters.
For our purpose we have used CANDI[14] which is based
on nonlinear interactive optimization. The simulator
which we have  written computes the dynamic behavior
of a given SD with the help of the state variable
equations defined in (3) and (4) as well as the
performance and condition functions obtained in the
mathematical analysis described in part II. The
optimization problem was described in a specification file
integrated in CANDI. Through successive interactive
approximations the difference between the specified goal
and the state of the given Nth order SD is minimized and
an optimum value which best meets our specifications is
obtained. Figure 6 illustrates the basic steps of the
interactive optimization. The various analysis methods in
CANDI enabled us to determine coefficients with a
minimum sensitivity to the parameter deviations present
in practice.

Fig.5 Parameter limitation due to non overload
considerations

The study of the state variable equations defined in (3)
has lead to similar results for the coefficients ((ai,bi)),
leading to triangular shaped regions with different
summits and base values. A common result to (3) and (4)
is that the feedback signal of a given inner loop must be
greater in amplitude than the maximum corresponding
feed forward signal. That is :
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 In case of overload in the system the feedback signal
must be large enough to reduce the increase of  amplitude
in the feed forward paths. The larger the feedback signal
amplitude in comparison to the feed forward signal, the
stronger the control of the quantizer on the global
system, therefore the faster the recovery after an
overload. Recovery speed in the inner loops and in the
system as a whole is therefore dependent on the ratio of
the corresponding  feed forward signal to the feedback
signal in the same way as is the stability. This means that
if the stability constraints are met, a fast recovery is
obtained at the same time.

Figure 6: Interactive Optimization in Candi

Performance comparison: A stable higher order SD
must present superior performance than a lower order SD
for it to be competitive. This may not be evident since the
functions defined in (10.1) and (10.2) decrease with the
order of the SD due to stability constraints. In other
words the down scaling of the coefficients in higher order
must not cause performance degradation of a higher
order system in comparison to a lower order SD. This
means that once the optimal coefficients of a given order
are obtained  we must calculate the minimum value of
the oversampling ratio M for which the given Nth order
SD is advantageous as compared to a lower order.

Existence of conflicting constraints: According to
(10.1) and (10.2), high performance requires  large feed
forward coefficients and a large feedback coefficient in
the first loop. By considering the non overload and
recovery constraints, the maximization of (10.1) and
(10.2) requires to choose the values of the coefficients
close to the peak of the triangle regions defined as  in
Fig. 5. However, the closer we get to the peak the tighter
become the stability and recovery constraints. Moving
away from the peak results in looser stability and
recovery constraints but also performance degradation.
We realize that the stability and performance constraints
scale the coefficients in contradictory directions.
Stability, however, is a necessary condition. A system
which is instable is not usable and therefore the notion of
performance is useless when stability is not guaranteed.

 For this we have considered the ratio of the inband
quantization noise in an Nth Order SD to the inband
quantization noise in an N+1th order SD defined by the
function h :

h
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Application of interactive optimization techniques:
We see that we are confronted to a typical nonlinear
problem. In order to find a solution which best meets the

The N+1th order SD reduces the quantization noise in
the baseband more than an Nth order SD when h is
greater than 1. This implies that M must be greater than



1/R. Similarly the SNRpeak of an N+1th order is greater
than that of  an Nth order when M is greater than a factor
1/Q :

to-Noise-Ratio (SNR) peak value of the new 3rd, 4th and
5th order SD are 107dB, 121dB and 132dB respectively
and correspond to resolutions of 18, 20 and 22 bits.
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Figure 7 : Inband quantization noise reduction for SD
ADCs optimized with the new algorithm

This implies that an N+1 order SD is more performant
than an Nth order SD for values of the oversampling
ratio M which are greater then a value P defined as the
maximum of  1/R and 1/Q.

IV. Results
The results on 3rd, 4th and 5th order SD which have
been optimized using the method proposed here.

Performance and stability constraints: Figure 7
compares the inband quantization noise reduction
(represented here by the inverse of the inband
quantization noise), for the different structures, as a
function of the oversampling ratio M. The plane is
separated in two regions, a non performant region and a
performant region. We see that higher order SD are
interesting only when the oversampling ratio M is greater
than a critical value Mcrit~30. This value is much
greater than 2 which is predicted for the noise term of
higher order SD given in [5]. The reason of this shifting
is related to stability constraints which have down-scaled
the coefficients of the higher order SD and therefore
limited the value of the terms (10.1) and (19) below one.
This results in performance degradation in higher order
SD for oversampling ratios smaller than 30. In practice
however, the typical values of M are between 64 and 128,
so the use of our optimized higher order SD is still
attractive. 10
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 We have mentioned in the performance considerations
that the coefficient terms in (10.1) and (10.2) were non-
existent in the noise and signal to noise ratio peak value
calculations present in the literature. This was basically
due to the fact that these factors were taken equal to 1.
Figure 8 shows the difference in noise reduction in our
optimized stable 3rd order SD and the one described in
the literature for which (10.1) is equal to 1[5]. The noise
reduction in a conventional 2nd order SD (SD2) is taken
in Fig. 8 as a reference. Due to stability constraints, the
noise reduction calculations given in the literature are
unrealistic because they lead to instable structures[1].
Thus the noise reduction in a third order SD which
verifies the stability constraints is 20dB less than the
level predicted by the noise expression in [5] and the
performant zone is shifted from values of M greater than
2 (point A in Fig. 8) to values of M greater than 25 (point
B in  Fig. 8).

Figure 8:Noise reduction comparisson

Figure 9 : SNR Curves  for M=128
 The Signal-to-Noise Ratio curves of the optimized 3rd,
4th and 5th order structures for an Oversampling ratio of
M=128 are presented in figure 9. The simulations were
done using Tosca [15] which simulates the behavior of
SD ADCs. The graph shows that for M= 128, the Signal-

Non overload and recovery behaviors: Our 3rd, 4th
and 5th order SD ADCs have similar local behaviors.
The case of our 4th order SD is presented here. Only one



concrete example of a single loop 4th order SD has been
described in the recent literature [6]. We shall compare
the behavior of both converters under the same operating
conditions. From Fig.9 we have seen that for M=128, our
4th order SD has a Signal-to-Noise- Ratio peak value of
121dB. This is 6dB (1 bit extra resolution) of
improvement in our 4th order SD as compared to [6]
under the same conditions. We shall now show that
significant improvements in the recovery behavior are
also visible in our new structure. We shall from now on
designate the 4th order SD of [6] by sd4s and our 4th
order by sd4.

simulations have shown similar recovery behaviors as in
fig. 10b. and confirmed the fast recovery in our structure.
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 We have simulated under Matlab_Simulink [16] the
behavior of both converters under normal operating
conditions, during an overload and during the recovery
phase after an overload. The observation is done at the
output of the four integrators which compose the SD. The
integrator clipping level is defined by L= 2V. We shall
designate the input of sd4s and the consecutive output of
its four integrators by 'ins', 'ins1', 'ins2', 'ins3' and 'ins4'.
In the same manner, we shall designate by 'in', 'in1', 'in2',
'in3' and 'in4' respectively the input of sd4 and the
outputs of its four integrators. Due to the symmetrical
behavior of the converter we only consider positive
variations at the input. A worse case configuration has
been considered for the test. The input signal is initially
set to the maximum amplitude Xmax the SD can support
without overloading. We shall call this phase the normal
operating phase which lasts till sampling time t= 300*Ts
(Ts= sampling period). From t = 300*Ts to t= 500*Ts an
overload signal of 2V is forced at the input of the
converters. This phase is designated as the overload
phase. The overload phase is followed by a normal
operating phase where the input signal returns to Xmax.
The results are plotted in Figures 10a and 10b.

Figure 10a
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Figure 10b
Behavior of the integrators under different input

conditions in (10a) sd4s (10b) sd4
 The simulations show that the output of the integrators
in both converters stay below their clipping level in the
normal operating phase. During the overload phase all
integrators in sd4s remain frozen at the clipping level.
The overload behavior of our structure is different. The
first three integrators clip frequently but do not remain in
a frozen state, as for the last integrator, saturation does
not occur. Looking at the recovery behavior after t=
500*Ts, we observe an immediate recovery of sd4 (after
t= 6*Ts) as compared to sd4s, where normal operation
occurs after 50 sampling periods. We explain the
difference in recovery by the difference in clipping
behavior during overload in the two structures and by the
behavior of our last stage which never saturates as
opposed to the one in sd4s. Since the last integrator never
saturates, the input to the 1-bit quantizer will never
overload. This implies that the 1-bit quantizer maintains
a continuous control of the system via the feedback paths
and therefore enables a quicker recovery in the previous
stages of the SD after the overload phase. Behavioral
simulations of both ADCs after powerup have been done:
the highest dc input Xmax is injected at the input of the
SD and the integrators are initially set to 2V. The

Practical realization: In practice a third order SD
whose coefficients were determined with our
methodology has been realized in a 5V, 1µm p-well
CMOS process, to demonstrate the feasibility of our
method. Circuit level simulations under SABER [17]
confirmed the behavior of the internal nodes as shown in
fig. 10b. The integrators were realized with Switched
Capacitor Integrators[18]. Due to strong thermal and
flicker noise present in the operational amplifiers of these
integrators our resolution was limited by circuit noise
rather than by quantization noise. However the main
reason for our implementation was to demonstrate the
reliability of our method from the stability point of view,
since the stability problem in higher order SD was the
main reason for which these structures were not used up
to now. No reset circuits were used in our SD so that the
control of the stability was left to the converter itself. The
measured spectrum of the designed SD is presented in
Figure 11. The form of the spectrum is characteristic of a
stable 'noise shaping' operation in a SD ADC. The
converter showed no instability for worse case conditions
in the allowed operating range and exhibited immediate
recovery after overload.
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