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Abstract all structures has been developed up to now. Although the
correlation between performaneand coefficient choice

This paper presents a new a|gorithm dtain optimized hasoften been treated/,ery fewworks have dealt with a
network scaling in single loop, 1_bit Sigma Delta Analé@mplete analytical description tfe correlatiorbetween

to Digital Converters (SD ADC) of ordehree or more. Performance, stability, converter ordemd thechoice of
The algorithm is based on a novel mathematidile coefficients ((ai,bi)) most probably due to the
description of stability and performance criteria of the Sgpmplexity ofthe system. Hein [7] was one tfe first to
ADC and on the application of non linear interactivBresent a thorough description of these correlations by
optimization techniques. The feasibility of the ne¥@nsidering the nonlinear properties of the SD. Although
a|gorithm has been confirmed in practicahis work was limited tahe case of a second order SD, it
implementations. The method bringsw insight on the has the great credit of bringing into light theed for a
correlation between system stability, performance, systé@oretical support in order to better understand the
order and the choice of theetwork Sca”ng_ Our method i§nﬂuence of these coefficients on the global mechanism of
extendible to cascaded SD as well as SD based on fli& modulator. It is mostprobably the insufficient

topologies. knowledge of these influences whichs made itlifficult
to implement stable singe loop SD of order three or more.
Introduction Interactive optimization techniques fdhe design of

integrated circuits [8] enable performance optimization in
the presence of constraints, through an adequate choice of
>pircuit parameters. This principle &so applicable to
systems and therefore to our specific problem.

This paper presents for the first time an algorithm for the
determination of an optimum network scaling in single
loop SD ADC of ordethree or more. The algorithm is

applications. Neverthelesse needor higherresolution basfed on a dnew mathemat?cal .deﬁcrig;i)cq)g of the
has lead to thelevelopment of new topologies based o eriormanceandvarious constramts In the 1 USES
loop filter design [2,3,4andcascading of lower order SD Interactive optimization techmqges ftire Qeterm|nat|on
ADCsI[5]. Unfortunately, architectures based on filterOf the optimalcoefiicients ((ai.bi)) of a giveith order
topologiesare considered as conditionaditable systems SD ADC. o

which have manifestedecovery only after prolonged The charagtenzaﬂon B a_table and performant Nth
overload conditions[4] or have required additional resef"d’ SD is presented in I Part tescribes the

circuitries in practice [3] to guaranteecoveryafter an undamental steps of theew algorithm. The new
overload. As for Cascaded SD ADC, stability iSmathematlcal analysis of the stabilignd performance

guaranteed at theost of precise circuitnatching,more constraints and the application of interactive optimization

performant analog componengsid largedie area as techpi_ques to th_ease ofthe SD isdescribed ip Il The
compared to an equivalent sind®p SD. Therefore, if feaS|b|_I|ty of th.IS .method _hasbgen confirmed in
the stability problem ihigher order singléoop SD ADC behavioraland circuit _Ievel simulations .othe SD,and

is solved wecan get mordenefits out of a singléop proven through experimental results. This shall be treated
structurethan thealternative topologies. Unless precised,In part IV.

the term " singleloop, 1-bit SD ADC " refers to the . o
conventional architectures illustrated in figure 1 . . Stability and performance characterisation
Optimized network scaling of a single loop, 1-bit SD

ADC of order N (fig.1) consists in determining the Figure 1 presents an ideal Nth order siriglep, 1_ bit
adequate coefficients ((ai,bi)), whigfuarantee stability SD ADC. The latter isomposed of Ndenticallow pass
and highperformance. Performance in a SD is related tanalog filters represented by the ideal transfer function

its resolution given in bits. The idethat stability in H(z) = z? , the 1_bit quantizeand al-bit DAC. The

Single Loop, 1-bit SD ADCs obrder greatethan two
have notbeen used up to now because of stabilit
problems[1]. Slow or absence of recoveafter an
overload provokedhrough powerup, high input signal
amplitudes or a shopower distribution failurdnasmade
these higher order structures unreliabler practical

higher order singldoop SD ADC can be assured in 1-z71
practical implementations through an adequaevork coefficient set ((ai,bi)) representise gainfactors in the
scaling is recent[6]. Yet no rigorous method applicable téeedbackandfeed forwardpaths of the converter. X(t) is




the input signal, itallowedinput range is designated by performanceand theset of coefficients ((ai,bi)) of the
[-Xmax, Xmax]. The Nth order SD is a non-linesstem  corresponding Nth order SD is described.

because othe presence of the 1-bit quantizénless
specifiedthe designation Nth order SD, SD or SD ADC

SD
shall refer to these structures.
1-bit Quantizer
Yo Linear Model | Non Linear System Equatil:)ns
Linear Non overload Conditiong
] System Equations | Recovery Conditions

1-bit DAC

[Stable Pole ConditighjPerformance Functiors

Fig.1 An Nth Order Single Loop, Single Bit SD ADC

Non Linear Problem
Application of Interactije

Optimization Techniqueq
using Candi

A stable Nth order SD has tobey the following
constraints :

* Linear range operation of the integrators under normal
operating conditionsNon Overload Criteria

Performance and Condition Functions -

« The rootlocus ofthe equivalent lineasystem must Figure 3. Algorithm of the Methodology
remain inside the unitircle under normal operating . ] ]
conditions ‘Stable Pole Criteria We shall see that stability constraints are mathematically

« In case of overloadhe integrators must presenvery ~ €xpressed with inequalities which tenddwwn scale the
fast recovengafter return to normal operatimpnditions : ~ coefficients ((ai,bi)), while performance considerations
Fast Recovery Criteria are mathematicallyexpressed with functionsvhose
The fastrecovery behavior is afmportant stability maximization or minimization requires an upscaling of

characteristicand igelated to theself control of the the coefficients. o _
converter. A solution which best meets the conflicting requirements

A performant Nth order SD must present : for stability and highperformance is obtained through
« A minimization of the inband quantization noied a numerical optimization techniques[8]. Step three deals

wide dynamic rangePerformance Criteria with the application of non-linear interactive
optimization techniques to thease ofthe SDfor the

By dynamic range we mean the positive input range determination of the optimal coefficients.

[0, Xmax] for whichthe SD functions properly. We shall

only considerthe inband quantization noise reduction.lll. Mathematical analysis of the stability and
Circuit noises such as switch noigeermal andflicker  performance constraints

noise are independent of tlohoice ofthe coefficients

((ai,bi)) which we wish to optimizand can beeduced  The System EquationsThe behavior of the SD can be
through specific design techniqud8, 10] sothat their  gjiged intotwo parts: a globaind alocal behavior. The
Igvel remains below the quantization noidevel of a global behavior of the SDives ageneralview of the
given SD. performancendpole stability inthe SD. It considers the

. ) SD as a black bowhich links the inputs to an output via
Il. The fundamental steps in the algorithm transfer functions. Thibehavior can bdescribed by the

equivalent lineamodel (figure 4) where the non-linear
Optimizing higher order SDADCs consists in quantizer is modelled by a white noiseurce E(z) and
guaranteeing  simultaneously the  stability —andithe 1_bit DAC by a gain factor Vref.[11].
performance criteria giveabove.Figure 3 illustrates the

based orthe equivalent mathematicalodels ofthe SD

which are of two types : an equivaléinear modeland a Fig. 4. Equivalent linear model of the SD

non-linear model.

The second step deduces frdive equationsbove the  In this description the SD appears asyatemwith two
stability and performance criteria. At this stage the sourceE(z). The output Y(z) of the equivalent model is
optimization problem is defined: with the help of theseexpressed in (13and (2) where STF(Zand NTF(z) are
functions and inequalities, the correlatiobetween the respectivelythe Signal and thBloise transfer functions
system stability, the system order, the system

three fundamental steps in our design methodology. X b 0 2+ O .

The first stepconsists in defining appropriatgystem 7" - 7"

equations of a giveNth order SDThese equations are al g 24 .

performanceand condition functions related tspecified inputs: the analog input X(8nd the quantizationoise



of the system. The characteristic equation of thes Noise in baseband [0, fb]

equivalent system is defined by (2.1 o
a A y(@D NO:I|NTF(f)XE(f)|2df (6)
b N
| _1 0
Y(z)= allle( 3 xX(z) + (ZD(Z)) xE(2) (1)« The Signal to Noise Ratio Peak Value
STH3J NTH(2) SNR — Max (|STF( f)x X(f)|fqofb]) — blxmax Xi (7)
Wlth peakc ™ NO - a‘1Vref No
=(z-N X x v [N I - % (2)
D@ =(z-1)"+ (< vred {(H) +[JZO(H> izl,:lz g H In which NTF, STF arelefined by the z-transformed
D(z)=0 (2.1) expressions given in (1) and (2).

The calculation of (6) and (7) gives

A global behavior analysis of the SBased on the
equivalent linearmodel is insufficient for a complete N =|e m M—(N+%) MY N b, - 8)
understanding of theystem. An observation dhe local ° | TRMS ON+1 1 Vref Dz '
behavior of the SDgives more details about the
interactions inside thesystem. For exampleecovery 1
considerations, linear range operation of the integratorsnR,,,., = [ X _VZNJ’Nlez] x[ﬁ bi] (9)
the amplitude variations in each integrator or the Erms TT [
existence of saturation in &@pecific integrator are \Where:
informations which cannot be obtained from tlebal f,
behavior model. It is therefore mandatory to perform’ M= 2% f
. o b
local behavior analysis in order to have a bette|Ehe order of the SD.
understanding of the SD. L , ce. . =_B is the mean square value of the
The local behavior of the SD ikescribed withthe help RMS = 1o
of the state variable equations defined as the output Statﬁﬁantization error= quantizer step size)
of the integratordor a given sampling timand are
defined by the following non-linear series :

=1

is the Oversampling ratiand N

*Xmax represents the maximum input
amplitude that the SD can support.

vi(m=v(n-2)+hv,(n-1)-avrek sghtrD) (3) The frequencyand order dependent terms in the first
Vo(n) = x( n), i 0[1,N] parentheses of relations (8hd (9) arewell-known [5].

_ B _ The terms in the second parentheses oa8)(9) reveal
u(n) = n-2)+ iy w(n-2)- @ Vvrek sg(n g H])) “) new relationdinking the inband quantizationoise and
where : _ the signal to noise ratio peak value to the omfed the
* Vj(n) is the sampledvalue at time t= n*Ts (Ts= coefficients inthe SD. This implieshat performance is
sampling period)of the state variable corresponding todependent on thehoice ofthe network scaling ((ai,bi)).

the i_th integrator. We seethat the quantizationoise is minimizednd the
* u(n) is the sampled value at time t= n*Ts (Ts=gjgnal to noise ratio peak value is maximized when the
sampling period) of the state variable corresponding to N N
the Nth integrator. terms al[ b.] and (ﬂ bJ are maximized. This
» sgn(.) represents the mathematical operation of the 1- 1=2 i=1
bit quantizer: means that theoefficients inthe feed forwardpath of an
Nth SD order must be maximized asell as the
{if x 20" sgn (x)=+ 1 coefficient inthe firstfeedbackpath. Ourperformance
) . functions are therefore defined as:
if x <0 sgn(x)=-1

N

* fiay, by, g, by) = al(l_l b] (10.1)
The integrators are limited to a certain clippilegel N'=2
which we shall represent by the letter L. The equations fz(bl,bz,.,bN_l,tN)z[n b] (10.2)
defined in (1) to (5) form the system equations. i=1

In the past theoefficients were chosen suttiat these
Performance functions: We shall consider the functions were equal to one gt the relation8) and
performance of the SD from the resolution pointiefv. ~ (9) were only dependent on &hd N.Realized structures
That is, high resolution is synonymous ofjood ©f order three or more whichad thisproperty were
performance. High resolution is obtained when thdnstable [10]. Weseethat maximization of(10.1) and
inband quantization noise is minimizadd thedynamic ~ (10.2) is bounéd by stability constraints.
ranged is maximized. The performance functions are
deduced fronthe noise contribution at the output of the Stable pole condition : The poles ofthe equivalent

converterand the Signal tbloise Ratio peak value |inearsystemare theeroes othe characteristic equation
defined as follows:



defined in (2). In discrete timgystemghe conditions for more state variables present amplitudes latgen the

pole stability can be obtained by applying thery  maximumallowed output swing LThe integrator clips
stability test [12] to (2.1). Another possibility is the use ofthis amplitude to the value L. Linesange operation and
Routh-Hurwitz Criteria [12], which is applicable to the clipping behavior of a given integrator amespectively

bilinear transformation of (2.1) .We have chogtis  summarized by expressions (16) and (17):

method. The reasdor our choice wathe possibility of N if |v*i(n)| <L < vi(n)=vi(n (16)
applying the LienardChipart principle [13] to the '
equivalent Routh Hurwitzmatrix of the polynome  OnOIN, if|vi(n)|>L = v(n)=Lxsgrgvi( n) (17)

defined in (2).Thishasenabled us to reduce the number
of inequalities which must be verified he Routh
Hurwitz criteria by 1/4, due to relationtimking certain
subdeterminants of the Routh Hurwitz Matrix with each
other.

The bilinear transformation is defined by :

where y* (n) is thevalue of the state variable defined in
(3) or (4) at sampling time t= n*Tand y(n) represents
the value actually present at the output of ik
integrator in an Nth order SD.

Non overload under normal operating conditions implies

T that relation (16) be satisfied by the state variables
Z=1+§W (11) defined in (3)and (4). That is, thetate variables must
1-Tw vary in the range [-L, L].
2 A linearization of (3)and(4) and astudy of upper and

The transformed characteristic equation is given by : lower bounds ofhe state variablesas performed. The

consideration of worse cases fohich a state variable
D(z)=00F M - D(w)=q W'+ g W™ +...qw=0  (12)  reaches an extreme (-L, L or 0) have lead to a set of

inequalities which link thecoefficients ofthe system.
Where thecoefficients ciare function of theariables These relations form th@on overload and recovery

((ai,bi)). criteria. As an example we shall treat thasic steps in
The equivalent Routh Hurwitz Matrixand its sub the study of the state variable equation of the last
determinants Di of the equation defined in (12)are : integrator defined in (4).
We recall the state variable equation u(n) of the last loop:
//Dl DN
L u(n) = U n=2)+ by wo( =)~ & Vrek sdn(und) (4)
/l
Cnoi | Cu-sf Cuesfr 0 Let us consider the case for which u(n-1) = L.
v Cnoz| Cwea] o O According to (5) we get sgn(u(n-1))=+and u(n)
0 Sww Suwea| 9 becomes: U= k b yy( n1)- @ Vref 0)
0 0 C.o The state variableny.1 is bounded by the clipping level
(13.1) L: -L=svy4(n-)<L (D)
According to the Routh Hurwitz Criteria, thpoles of  Therefore relation () can beounded as follows :
the equivalent lineasystemare stable if thefollowing L —(b, L +ay Vref)< u(n) < L+(hb, L- g, Vref) (1)

inequalities are respected : The state variable u(n) musbbey the relation

-L<u(n)<L, therefore the upperand lower

* Ui D[O’N]’ ¢ >0 (14.1) boundaries, which argaluesthat u(n) can takemust
satisfy :

«0i O[O,N],D; >0 (14.2)

The Lienard Chipartmodified criteria reduce the |L-(byL+ayVre|<L and [L+(byL-ayVrej|<L (1V)

inequalities in (14.2) by testingnly the sign of thesven

(or odd) sub_determir?ants. The stableole criteria are  Relation (V) is satisfied if : p & @ Vrek2 land
therefore defined by : byL-ay Vref< 0 W)

"0 D[O’N]’ ¢ >0 (15.1) A similar study forthe case u(n-1) = -land thecase

u(n-1) = 0 is done. The resulting inequalities are

«0(2%i) {ON], Dy >0 or [(2xi+ 30 IN], Dz,1> 0(15.2) SL(Jmnzarized below : e
L

Non overload and recovery criteria : These byLtayVref< L, byl-g,Vref<0, anrefSE Vi)
conditions are deducted from the local behavior of the SDThe common region tall the inequalitieslefined in
which is described bthe state variable equations given(VI) is graphically represented in Fig. 5. Weethat the
in (3) and (4). We recall that in stable SD, the plane is divided inwo regions: an overloaghd a non
integrators outputs must lieelow the clippinglevel L  overload region. Clipping isavoided when the
under normal operating conditions. Clipping is a sign ofcoefficients (g;,by) are chosen in theon overload
instability in the globakystemand occurs when one or region.



PNS stability and performance requirements tigher order
by Lo ayvref=L SD ADCs, a nonlinear optimizaticiwol can be applied
associated with a simulaterhose role is to analyze the
dynamic behavior of a SD for a given set of parameters.
For our purpose we have used CANDI[14] which is based
on nonlinear interactive optimization. The simulator
which we have written computéise dynamidehavior
of a given SD with the help of the state variable
equations defined in (3)and (4) as well as the
performanceand condition functions obtained in the
mathematical analysis described ipart 1. The
optimization problem was described in a specification file
. integrated in CANDI. Throughsuccessive interactive
Region approximations thdifference betweethe specified goal
° vz - anvret and the state of the givé\th order SD is minimized and
an optimum value which best meets our specifications is
Fig.5 Parameter limitation due to non overload obtained. Figure 6 illustrates theasic steps of the
considerations interactive optimization. The various analysis methods in
CANDI enabled us to determine coefficientsth a

The study ofthe state variable equations defined in (3)minimum sensitivity tothe parameter deviations present
has lead to similar resulfer the coefficients ((ai,bi)), in practice.

N L= aNVref

b, L+ aNVref =L

N

L -

leading to triangular shaped regions withfferent . caot SIMULATOR
summits and base values. A common result t@i8)) (4) | Spectcaion e W_n_Lsmula@n of the SD
is that thefeedbacksignal of a giverinner loop must be o peroman
. . . . ‘ Description of the optimization
greater in amplitudehan themaximum corresponding |, [ oueu=newarsie o
. . blem: 2
feed forward signal. That is : o the Performance and
g . ‘ Parameter Definition New P Val 4 ‘ Condition Functions
b]_Xmax < alvref and O |D[ 21 l\], b— < a1 \/ref (18) ‘ Condition and Goal Functions ew Parameter Valug/
. . A I
In case of overload ithe systemthe feedbacksignal \t 3 | Optimization Curve |
. . Interactive Optimization
must be large enough to reduce the increase of amplltuée — cracive pimizato
. . Imization [
in thefeed forwardpaths. The larger thieedbacksignal | P onlaton |
amplitude in comparison to tHeed forwardsignal, the | & |
stronger the control of the quantizer on thmbal >l |

system, thereforethe faster theecovery after an
overload.Recoveryspeed inthe innerloopsand in the
system as a whole is therefore dependerthenratio of
the correspondingfeed forwardsignal to thefeedback i _
signal in the same way as is the stabilltgis means that Performance comparlson:A stablehigher order SD

if the stability constraintare met, a fasecovery is must present superior performance than a_lower Qrder SD
obtained at the same time. for it to be competitive. This may not be evident since the

functions defined in (10.13nd (10.2) decrease with the
order of the SD due to stability constraints. In other
words the down scaling of the coefficients in higher order
must not cause performance degradation dfigher
order system in comparison to a lowerder SD. This

Figure 6: Interactive Optimization in Candi

Existence of conflicting constraints: According to
(10.1)and (10.2)high performance requires lardeed
forward coefficientsand a largdeedback coefficient in

the first loop. By consideringthe nonoverload and thabnceth timalcoefficients of a ai q
recovery constraints, the maximization of (10.1) and means habncethe oplimalcoetiicients ot a given order
are obtained we must calculate timénimum value of

(10.2) requires tahoosethe values ofthe coefficients _ X ; .

close tothe peak of the triangle regions defined as i he _oversampllng ratio Mbr whichthe givenNth order

Fig. 5.However,the closer we get tthe peak the tighter Dis a_dvantageous as _compared to a lower Ord‘?r-

becomethe stability and recovery constraints. Moving For t_hls_we hz_avecpn5|dered the ratio of the _mband
guantization noise in aith Order SD to the inband

away from the peak results irfooser stability and o L .
recovery constraints but also performance degradation?uunir:itgnaﬂo_n noise in an N+1th order SD defined by the

We realize that thstability and performance constraints
scale the coefficients in contradictory directions. a,[h

Stability, however, is a necessary condition.system p, = _No(SD oforder N) =2__yM =RxM  (19)
which is instable is not usabé@dtherefore the notion of N,(SD of order N +1 a ﬁ b,

performance is useless when stability is not guaranteed. ! 3

Application of interactive optimization techniques:  The N+1th order SDeducesthe quantization noise in
We seethat we areconfronted to a typicahonlinear the baseband morthan an Nthorder SD when h is
problem. In order to find a solution whitiest meets the greaterthan 1. Thismpliesthat M must be greatehan

N+1




1/R. Similarly the SNBeakOf an N+1th order is greater to-Noise-Ratio (SNR) peak valuetbie new 3rd, 4th and
than that of an Nth order when M is greater than a factdsth order SD ard07dB, 121dBand 132dB respectively

1/Q: and correspond to resolutions of 18, 20 and 22 bits.
T:llb' 2400 - 1 L L i - o g a4 i
SNR ., (SD of order N 1 _ 1 1™ " 20 Non Performant Zone_ ' ' _Performant Zone' "' ' |
g = X | [ I | [ A | | NI NEEE
SNRpeak( SD Of Order m N+1 , 200 ] S B B R S B A R F PR 7SD57\J A
[b' T T AT T A
1! 180

This impliesthat anN+1 order SD is more performant 5 160r - -/~ - = - [/~
than an Nthorder SD for values ofhe oversampling 2 140 - -~ s
ratio M which are greater thenvalue P defined as the =~ 120

maximum of 1/R and 1/Q. 100

80
IV. Results 60 - 1ot
The results on 3rd4th and 5ttorder SD which have 40( - - - i
been optimized using the method proposed here. 20 T

0

10

Performance and stability constraints: Figure 7
compares the inband quantization noise reduction Figure 7 -
(represented here by the inverse of the inband
guantization noise)for the different structures, as a
function of the oversampling ratio M. The plane is
separated itwo regions, a non performant regiand a
performant region. Wesee that higherorder SD are
interesting only when the oversampling ratio M is greatel 160
than acritical value Myjt~30. This value is much 140
greaterthan 2which is predicted fothe noise term of @
higher order Syiven in [5]. The reason of this shifing 5 **°
is related to stability constraints which have down-scale( = 100
the coefficients ofthe higher order SEnd therefore 80
limited the value of the terms (10.4ihd (19) belowone.

Inband quantization noise reduction for SD
ADCs optimized with the new algorithm

200

180

This results in performance degradationhigher order 6 b s T
SD for oversampling ratios smalléran 30. In practice A0F - mto e e B e e
however, the typical values of M are betweem6d128, 20l - - G L o Lo

so theuse of our optimizefligher order SD is still e Lo L
attractive. 10 10 10 10
We have mentioned in the performance considerations M

that thecoefficientterms in (10.1)and (10.2) werenon- Figure 8:Noise reduction comparisson
existent in the noisand signal taoise ratio peakalue

calculations present in the literature. Thias basically SNR Curve VS-Input

due to thefact that these factors werlaken equal to 1.
Figure 8 showshe difference in noise reduction in our
optimized stable3rd order SDand theone described in
the literaturefor which (10.1) is equal to 1[5)he noise
reduction in a convention&nd order SOHSD2) is taken

in Fig. 8 as a reference. Due to stability constraints, th
noise reduction calculations given in the literature are
unrealistic because they lead to instable structures[i]
Thus the noise reduction in third order SD which
verifies the stability constraints B0dB lessthan the
level predicted bythe noise expression in [8hd the E
performant zone is shifted from values of M gredtan °_1:38 s W A U e e A
é(_poilgt A8|;1 Fig. 8) to values of M greater than 25 (point INPUT [dBV]

in Fig. 8). ; . -

The Signal-to-Noisdatio curves othe optimizedrd, Figure 92 SNR Curves for M=128
4th and 5thorder structures for an Oversampling ratio of
M=128 are presented in figure 9. The simulatiorese
done using Tosca [15] which simulatde behavior of
SD ADCs. The grapbhowsthatfor M= 128,the Signal-

SNR[dB]

Non overloadand recovery behaviors:Our 3rd, 4th
and 5thorder SD ADCs haveimilar local behaviors.
The case of oudth order SD igpresented here. Only one



concrete example of a singtwop 4th order SD habeen  simulations have shown similaecovery behaviors as in
described inthe recent literature [6]. We shalbmpare fig. 10b. and confirmed the fast recovery in our structure.
the behavior of both converters under the same operating
conditions. From Fig.9 we have sedatfor M=128, our e : Ty
4th order SD has 8ignal-to-Noise- Ratio peak value of g P R R R o
121dB. This is 6dB (1 bit extra resolution) of :
improvement in oudth order SD asompared to [6]
under the same conditions. We shaliw showthat
significant improvements in thescovery behavior are
also visible in our new structure. Vgball fromnow on
designate thetth order SD of [6] bgd4sand our 4th
order by sd4. 2

ins1

behavior of both converters under normal operating
conditions, during armverloadand during theecovery =
phase after an overload@he observation is done at the “o 100 200 300 400 500 600 700 800
output of the four integrators which compose the SD. The
integrator clippinglevel is defined by L= 2V. Wehall
designate the input of sdésd theconsecutive output of
its four integrators byins', 'insl’, 'ins2', 'ins3' and 'ins4'.
In the same manner, we shall designate by 'in’, 'in1', 'in2
'in3' and 'in4'respectivelythe input of sddand the
outputs of its four integrators. Due the symmetrical
behavior of the converter wenly consider positive
variations at the input. Avorse case configuration has
been considered fdhe test. The input signal is initially
set to the maximum amplitude Xmax the SD can suppol -
without overloading. We shall call this phase the norma =29
operating phase which lasts till sampling time389*Ts A
(Ts= sampling period). From t = 300*Ts to t= 500*Ts an
overload signal of 2V isforced atthe input of the
converters.This phase is designated as theerload

e}
=]

£0

o
<

£0

phase. Theoverload phase idollowed by a normal Figure 10b
operating phase where the input signal returns to Xmax. genavior of the integrators under different input
The results are plotted in Figures 10a and 10b. conditions in (10a) sd4s (10b) sd4

The simulationshowthat theoutput of the integrators
in both converters stayelow their clippinglevel in the

normal operating phase. During tleerload phase all whose coefficients were determined  with  our

integrators in sd4se_main frozen at the_clip_pin@vel. methodologyhas been realized in a 5Vium p-well
The overload behavior of our structure is different. TheCMOS process, to demonstratiee feasibility of our

first three integrators clip frequently but do memain in method. Circuit level simulationsnder SABER [17]

a frozen state, as fahe last integrator, saturatioloes  .,qirmed the behavior of thaternalnodes as shown in

not deeur. Looking athe recovery behaviomfter t= g4 10p The integratorsvere realized with Switched
500*Ts, weobserve arimmediaterecovery of sd4 (after capacitor Integrators[18]. Due to stronbermal and

t= 6*Ts) as compared to sd4s, where normal operatiofcyer nojse present in the operational amplifiers of these
occurs after 50 sampling periods. We explain th§neqrators our resolutiomas limited by circuit noise
difference in recovery byhe difference in clipping  giher than byguantization noiseHowever the main
behaviorduring overload inthetwo structuresand by the o561 for our implementation was to demonstrate the
behavior of our last stage which never saturates ggiapjlity of our method from the stability point view,
opposed to the one in sd4s. Since the last integrator NeVEhce the stability problem ihigher order SDwas the

saturates, the input to the 1-bit quantizer wiver . inyeason for which these structures weet used up
overload.This impliesthat thel-bit quantizer maintains ;; how. No reset circuits were used in our SDhsd the

a continuous control of theystem vidhe feedbackpaths o161 of the stability was left tihe converter itself. The
andtherefore enables a quickezcovery inthe previous -« red spectrum of the designed SD is presented in

stages of the SD after theverload phase. Behavioral pigre 11, The form of the spectrum is characteristic of a
simulations of both ADCs after powerup have been done; e noiseshaping’ operation in a SD ADC. The

the highest dc input Xmax is injected at the input of the,,yerter showed no instability for worse case conditions
SD and the integrators are initiallyet to 2V. The j, he allowed operatingange ancexhibited immediate
recovery after overload.

Practical realization: In practice athird order SD
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[6] Op't Eynde, W.Sansen," WAnalog Interfaces fobDigital

Signal Processing System|uwer Academic Publisher8]

1993.

[7] S. Hein, A. Zakhor, "Sigma Delta ModulatorsKluwer

Academic Publisher§1993;

‘ ‘ ‘ ‘ [8] K.J. Antreich, P. Leibner, F. Pérnbacher, "Nominal Design

4100 R oo ol o] of Integrated Circuits on Circuit Level by an Interactive
j j j j Improvement Method"|EEE Trans. Circuit Syst CAS-35

20 s ST ST ST 1988.

a0 o L L ] [9] P. J.Hurst, R. A. Levinson, "Delta Sigma/Ds with

reduced sensitivity to op amp noise and galEEE Proc.

f(Hz) X 10 ISCAS'8%p 254-257, May 1989.

Figure 11 Measured Output Spectrum of the 3rd [10] M. W. Hauser,"Technology scaling and performance

order SD limitations  in MOS delta -sigma  analog-digital

convertersJEEE Proc. ISCAS'90p. 356-359 May 1990.

[11] B. P. Agrawal, K. Shenoi, " Designethodology oEAM",

IEEE Trans Communvol COM-31, pp. 360-370 March 1983.

. . [12] C. L. Phillips, "Digital Control System Analysis and
A new algorithm has been described for the Design”,Prentice Hall Int. Ed[11990.

determination of an optimum _network scal_ing in SI:)[13] Netz, " Formelnder Elektrotechnik und ElektronikEd.
ADCs of order three or mor&his method brings new 0car1990.

insight into the correlations linking internal parameters[14]
with the stabilityand perf_ormar_lc_:e _|rh|_gher order SD Unterstutzung des Entwurfs analoger integrierter Schaltungen”,
ADCs and hashownthatinstability in higher order SD ntzArchiv Bd. 11(1989)H.3

found in the pastvas due to inadequate network scaling.[l5] V. F. Dias, V. Liberali, F. Maloberti"Tosca Version

It has also shownthat performance predictions made 1.0(b)" Department of Electronics Univ. of Pavia.

until now are unrealistic due tstability constraints. We [16] Matlab-SimulinkIMathworks Inc.

believe that the application of this methodology to [17] SABER, Release 3.2, Analogy Inc., 1993

cascaded SD could alsbring more insight to the [18] B. E. Boser, B.AWooley, "The design of Sigma Delta

understanding of the correlationbetween _the modulators Analog-to-Digital ConverterdEEE J. Solid State
performance of these structurasd thenetwork scaling  ~i it vol SC-23 pp 1298-1308 Dec. 1988.

and thus help thelesigner tochoose a solution which
best meetds specification. It also appears promising to
apply this method tohigher order SDADCs based on
filter topologies since it maliminate the need for
additional reset circuitries. The reliability of our method
has been confirmed in simulationand through a
practical implementation of a thirdrder SD, whose
network scaling was based on this method.
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