
Circuit Partitioning with Logic Perturbation

David Ihsin Cheng, Chih-Chang Lin, and Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering

University of California, Santa Barbara

Santa Barbara, CA 93106

Abstract
1

Traditionally, the circuit partitioning problem is done
by �rst modeling a circuit as a graph and then partition-
ing is performed on the modeling graph. Using the con-
cept of alternative wires, we propose an e�cient method
that is able to preserve a local optimal solution in the
graph domain while a di�erent graph, representing the
same circuit, is generated. When a conventional graph
partitioning technique reaches a local optimal solution,
our proposed technique generates a di�erent graph that
is logically equivalent to the original circuit, and that
has equal or better partitioning solution. Faced with a
di�erent graph which is newly generated, together with
a currently good partitioning solution, a conventional
graph partitioning technique may then escape from the
local optimum and continue searching for better solu-
tions in a di�erent graph domain. The proposed tech-
nique can be combined with almost any graph parti-
tioner. Experiments show encouraging results.

1 Introduction

Circuit partitioning is the process of dividing a given
circuit into subcircuits. As the size of modern circuits
increases, partitioning is gaining more and more impor-
tance. For example, it has been observed([1]) that, in a
multiple chip emulation system, the utilization of chip
area is only 10%-20% because of the limitation on the
number of pins, which corresponds to the number of
nets being partitioned.

Traditionally, the circuit partitioning problem is
done by �rst modeling a circuit as a graph (or
hypergraph)2 and then partitioning is performed on the
modeling graph. Graph partitioning problems, for dif-
ferent objective functions (e.g.: min-cut, minimum ra-
tio cut), are known to be NP-hard ([8] [19]). Many
heuristics have been proposed, including iterative im-
provement based ([7][19]), clustering based ([20]), and
spectrum (eigenvector) based ([9]). Excellent results
have been reported. All these graph partitioning algo-
rithms strictly abide by the modeling graph, with no
attempt to change the graph.

1This work has been supported in part by NSF grant MIP

9419119 and in part by Xilinx through the California MICRO

program.
2We will call this graph the modeling graph throughout the

paper.

Another class of algorithms does not strictly abide
by the modeling graph. In [10], [14], and [15], nodes
are allowed to be replicated, and, as a result, the mod-
eling graph is changed. [14] extends the Fiduccia-
Mattheyses(FM) algorithm by associating with every
node three gains, moving, duplicating, and unduplicat-
ing. During each step of a greedy run of iterative im-
provement, the best gain of the node with one of the
three actions is then selected. [10] and [15], on the other
hand, select nodes to be duplicated implicitly. Given an
existing partition, [10] uses the max-
ow min-cut theo-
rem to �nd the optimal set of nodes that should be repli-
cated. In contrast, [15] �nds the optimal set of nodes to
be replicated without the restriction to any prior par-
tition. Although both the optimalities in [10] and [15]
are guaranteed only on graphs (not hypergraphs) with-
out size constraints, modi�ed heuristics are proposed in
[10] and [15] on hypergraphs with size constraints. Ma-
jor improvements have been reported with some penalty
on area increase due to node replications.

We use the term graph domain to refer to the infor-
mation concerning only connections among nodes, and
the term logic domain to refer to the information con-
cerning the function performed by each node. From
this viewpoint, all the algorithms mentioned above only
use graph domain information. Modeling a circuit par-
titioning problem as a graph partitioning problem, in
spite of its simplicity, sometimes loses optimality. Since
each vertex, which models a gate in a given circuit, ac-
tually performs some logic function, partitioning on a
graph unnecessarily gives up potential useful logic do-
main information. In Section 2, we discuss our moti-
vation of using logic domain information to assist the
graph-only partitioning methodology and also point out
the loose coupling between the stages of logic synthesis
and partitioning. In this viewpoint, our technique can
also be viewed as a �rst step toward integrating these
two stages.

In this paper, using the concept of alternative wires in
the logic domain, we propose an e�cient method that is
able to preserve a locally optimal solution in the graph
domain while a di�erent graph, representing the same
circuit, is generated. When a conventional graph par-
titioning technique reaches a locally optimal solution,
our proposed technique generates a di�erent graph that
is logically equivalent to the original circuit, and that
has equal or better partitioning solution. Faced with a
di�erent graph which is newly generated, together with

a currently good partitioning solution, a conventional
graph partitioning technique may then escape from lo-
cal optimum and continue searching for better solutions
in a di�erent graph domain. Essentially, instead of abid-
ing by a strict graph model, we take advantage of the
fact that a node is free to merge or split with other nodes
and that a wire is free to be replaced by its alternative
wires, as long as we keep the functionality correct.

To the best of our knowledge, the only studies that
utilize logic information in the partitioning problem are
[2], [5], and [13]. In [2], the problem of assigning primary
inputs (PIs) and primary outputs (POs) to a multi-chip
environment is investigated. The proposed method es-
sentially tries all the combinations of assignments of PIs
and POs to a given multi-chip environment. Calculating
the minimum necessary communication lines between
the partitioned blocks for each assignment, the method
can then choose the optimal PIs and POs assignment.
There are two weaknesses in this method. First, even
though the method avoids physically exhausting all the
combinations of assignments by integrating all solutions
into a logic function, the computational cost is much
more expensive than traditional graph domain parti-
tioning. Second, the area estimation for each parti-
tioned block is di�cult because the proposed method
starts even before any logic optimization and technol-
ogy mapping processes. In [5], by collapsing and then
decomposing some nodes around the cut lines in a given
partition, a technique that locally combines logic and
graph domain information to improve the partitioning
is proposed. Although this technique generates very
good partitioning results, it has the drawbacks of the
large increase in area and the computational expensive-
ness. In [13], the concept of \functional replication"
was proposed in a FPGA partitioning environment. Ex-
ploiting the fact that, in FPGAs, the con�gurable logic
blocks(CLBs) may perform more than one functions,
a technique is proposed to replicate part of a CLB by
looking into the functional dependencies inside a CLB.
This technique generates very good results. However
it is limited to FPGA partitioning only, and the logic
domain information is limited to the functional depen-
dencies only.

We have implemented our technique and combined it
with the well known Fiduccia-Mattheyses (FM) graph
domain partitioning algorithm [7]. This combined algo-
rithm iteratively improves a given partition by switch-
ing between logic domain and graph domain. Exper-
imental results on MCNC benchmarks generate very
good �nal solutions. Also, our proposed technique does
not have area penalty as in the replication based tech-
niques.

2 Motivation

As stated in Section 1, strictly abiding by a modeling
graph sometimes loses optimality. Suppose we want to
perform technology-independent logic optimization fol-
lowed by a stage of 2-way partitioning. Consider Fig.
1, where two equivalent circuits are shown, both with
no redundancies. Ignore the dotted wire and treat the
thick wire as a regular wire for now. As far as the num-
ber of 2-input gates and the number of connections are
concerned, the circuit in Fig. 1(a) is not better than

c

d

a

b

(a) An alternative wire in an irredundant circuit

g1

g2
g3

g4

c

d

a

b
g1

g2
g3

g4

(b) No gain for logic synthesis, but gain for partitioning.

e f
g5 g6 g7

g8

o1

o2

e f

g6 g7’

g8

o1

o2

g5’

Figure 1: Two equivalent circuits

the one in Fig. 1(b), nor vice versa. The logic opti-
mizer, therefore, may reach and terminate at either of
the circuits. Suppose that logic optimizer terminates
at the circuit in Fig. 1(a). Let the stage after logic
optimization be the partitioning stage. The optimum
solution for the graph modeling the circuit in Fig. 1(a)
is with cost 3, as indicated by the wavy line. However,
if the logic optimizer terminates at the circuit in Fig.
1(b), the optimum solution on the modeling graph is
with cost 2, as indicated by the wavy line.

The above example demonstrates two problems.
First, a graph partitioner, even a perfect one that always
�nds the optimum solution in the graph domain, may
generate sub-optimal solution when the search space in-
cludes logic domain. At the partitioning stage, although
it is impossible to capture all logic domain information,
it is desirable to have an algorithm that is able to e�-
ciently extract a small portion of the logic domain in-
formation and assist a graph partitioner in a positive
way. Second, the relationship between the stages of
logic optimization and partitioning is loosely coupled.
On one hand, the process of area or timing minimiza-
tion in logic synthesis uses only logic information with-
out considering the potential di�culties the subsequent
graph model would encounter when the circuit needs
to be partitioned. On the other hand, the graph parti-
tioning stage operates on the modeling graph without
considering the logic functions performed in vertices.
In other words, the traditional separation of the logic
domain information and the graph domain information
actually traded simplicity of modeling for quality of par-
titioning.

The concept of alternative wires is a good tool in
solving the above problems. A wire wi is an alterna-

tive wire of wire wj if the addition of wi, together with
the removal of wj, does not change the circuit behav-
ior. Before we formally present our technique, let us
demonstrate the e�ect of alternative wires in the above
example. In Fig. 1(a), assume we obtain the optimal

solution of cut cost 3 in the graph domain (cutting in
the middle of the �gure, as mentioned before). Using
the alternative wire information in the logic domain, we
know that the dotted wire g3!g7 is an alternative wire
for the thick wire g1!g5. Realizing that the partition-
ing cost is reduced by 1, we then remove gate g5, which
is no longer needed, and decompose the new 3-input
AND gate g7 to two 2-input AND gates g50 and g70, so
that the area estimation on both sides remains correct.
In the logic domain, we have performed a logic transfor-
mation from the circuit in Fig. 1(a) to the one in Fig.
1(b). In the graph domain, we have changed the graph
modeling the circuit in Fig. 1(a) to the one modeling
the circuit in Fig. 1(b). This di�erent graph can fur-
ther be given back to the graph partitioner to continue
searching for better solutions in the new graph domain,
which may have brought the graph partitioner out of
a local optimum in the previous graph domain. Since
the replacement of a wire by its alternative wire may
bring the partitioner out of a local optimum, we also
call such a replacement a perturbation. Note that the
e�ect of perturbations on the balance of areas among
partitioned blocks is very small because the operations
using alternative wires involve only a very small per-
centage of nodes.

3 Alternative Wires

The concept of alternative wires has been used in
several works in logic synthesis (e.g.: [3][4][6]). In this
section, we �rst very brie
y review the technique to �nd
alternative wires (for details, see [4]). We then discuss
a simple statistics on alternative wires.

3.1 Brief Review

The concept of alternative wires is very similar to the
concept of redundancy addition and removal [6]. In a
combinational circuit, a wire is redundant if and only
if the corresponding stuck-at fault is untestable. To re-
move a target wire wi that is irredundant, we want to
add a redundant wire wj that can make wi become re-
dundant. Wire wj is therefore an alternative wire of
wire wi. We can use automatic test pattern genera-
tion (ATPG) based method to achieve the purpose of
redundancy addition and removal.

Given a stuck-at (s a) fault f , de�ne mandatory as-
signments to be the unique values certain nodes have to
hold for a test pattern to exist. For a given s a fault f ,
the set of mandatory assignments, denoted as SMA(f),
can be computed with several techniques [11][17][12]. A
good number of mandatory assignments can be found
in a very e�cient manner with the use of direct implica-
tions, such as the 9-valued model in [11][17]. More com-
plete SMA(f) can be achieved if more running time is
allowed with indirect implications, such as the technique
of recursive learning[12]. A s t fault f is untestable, and
therefore redundant, if SMA(f) can not be consistently
justi�ed.

Given a target wire wt to be removed, �rst we cal-
culate the SMA(wt s a fault). Then a set of candi-
date connections is identi�ed from the obtained SMA.
Each candidate connection, when added to the circuit,

wires # a
cir n w have(%) alt(avg) fo fo

1355 463 812 48(6%) 90(1.9) 1.8 7.0
2670 982 1346 132(10%) 347(2.6) 1.4 4.8
3540 1112 2102 328(15%) 1402(4.3) 1.9 6.4
5315 1651 2809 204(7%) 497(2.4) 1.7 4.8
6288 2097 4098 195(4%) 547(2.8) 2.0 6.1
7552 1971 3417 312(9%) 817(2.6) 1.7 5.3
apx6 820 1271 122(9%) 344(2.8) 1.5 5.3
frg2 866 1301 203(15%) 557(2.7) 1.5 5.6
rot 770 1161 148(12%) 359(2.4) 1.5 4.3
x1 358 575 91(15%) 239(2.6) 1.6 4.4
x3 884 1399 206(14%) 729(3.5) 1.6 5.6

Avg (11%) (2.8) 1.7 5.4

Table 1: Alternative wires statistics

causes inconsistency of SMA(wt s a fault) and thus
makes wt's s a fault untestable. However, adding such
a candidate connection may change the circuit's behav-
ior. Therefore a redundancy check is needed to verify
whether a candidate connection is redundant or not. If
a candidate connection is redundant, it can be added
to remove the target wire wt. For example, in Fig.
1(a), let the thick wire g1! g5 be the target wire.
By direct implication, we have SMA(g1! g5 s a 1)
= fg1 = 0; a = 0; b = 0; g5 = 0; g4 = 0; g2 = 0; g3 =
0; g6 = 0; g7 = 0g. The dotted wire g3!g7 is a candi-
date connection. To verify if g3!g7 is redundant or not,
we check SMA(g3!g7 s a 1) and conclude it is incon-
sistent. We then know wire g3!g7 s a 1 is untestable
and hence redundant. We can safely add the redundant
wire g3!g7 without changing the circuit behavior. The
addition of wire g3!g7 forces wire g1!g5 to become
redundant, and therefore can be safely removed.

3.2 Alternative Wires Statistics

To demonstrate how much we are able to perturb a
circuit's modeling graph, Table 1 lists some statistics
of the alternative wires on the larger MCNC bench-
mark circuits we choose for experiments. In Table 1, the
�rst three columns list the circuit names, the number
of nodes, and the number of wires, respectively3. Col-
umn \wires have" lists the number of wires that have
at least one alternative wire, and column \(%)" lists
the percentage of these wires with respect to the total
number of wires. Column \alt" lists the total number
of alternative wires. Column \(avg)" lists the average
number of alternative wires for those wires that do have
alternative wires. Take the entry \1355" as an exam-
ple, the circuit has 463 nodes and 812 wires. Only 48
wires (\wires have") among the total 812 wires, have at
least one alternative wire. Some of these 48 wires have
more than one alternative wires, and the total number

3The preprocessing steps of these circuits will be described in

Section 5.

of alternative wires is 90 (\alt"). Dividing 90 by 48, on

average each of these 48 wires has 1.9 (\(avg)") alter-

native wires. As indicated by the entry \avg" at the

bottom of Table 1, on average 11% of the wires have

alternative wires, and we can expect to have 2.8 alter-

native wires for each of these 11% wires. This provides

a large number of perturbations, all of which keep the

functionality of the circuit intact, but each of of which

generates a di�erent graph than the previous model-

ing graph. Note that these simple statistics are only

referring to the �rst perturbation. Once the �rst per-

turbation happens, the relationship of alternative wires

among all wires in the circuit changes and the statistics

may be di�erent. Also note that many of the pertur-

bations may have negative gains on the partitioning.

During an iterative improvement, since we can easily

know the gain of a perturbation, we can simply skip

these negative perturbations. This point will become

clearer in the next section.

4 Algorithm

The design automation environment we consider is a

stage of technology-independent logic optimization fol-

lowed by a stage of multi-way partitioning. The cost

function of partitioning is the total number of pins re-

quired in each partitioned block. Moreover, we also as-

sume that there will be a technology-dependent logic

optimization and technology mapping step after the

partitioning stage so that, at the partitioning stage, we

have the freedom of changing the logic. The input to our

algorithm is a logic circuit consisting of 2-input gates.

4.1 The Gain of a Logic Perturbation

Recall that a perturbation is the replacement of a tar-

get wire by one of its alternative wires. Fig. 2, where

thick lines represent target wires and dotted lines rep-

resent alternative wires, shows several situations when

perturbations happen. Given an initial partition, we

can view perturbations as the replacement of pairs of

wires with all nodes sitting �xed in all the partitioned

blocks (Fig. 2(a)). Since our cost function is the to-

tal number of pins required in each partitioned block, a

perturbation can have a gain of 2, 1, 0, -1, or -2. For

simplicity, we do not go into the details but explain the

gain situations by examples. Denote the target wire

by wt and the alternative wire by wa. A perturbation

has a gain of 2 when the removal of the target wire wt

decreases 2 pins needed while the addition of the alter-

native wire wa does not increase the need of any pin.

An example is shown in Fig. 2(b), where the removal

of wt decrease one pin from block A and another from

block C, while the source and destination nodes of wa

reside in the same block (block B). A perturbation has a

gain of 1 when the removal of wt decreases 2 pins while

the addition of wa increases 1 pin, or when wt decreases

1 pin while wa does not change pin needs. An example

is shown in Fig. 2(c). Similarly, one example for each

of the situation of the gains of 0, -1, and -2 is shown

in Fig. 2(d), (e), and (f), respectively. Note that, as

discussed in Section 3.2, we will only focus on attempt-

ing to remove the cut wires, and therefore all the target

wires in Fig. 2 are in between blocks.

A B

C

A B

C

(a) perturbations (b) gain=2

A B

C

(c) gain=1

(e) gain= -1

A B

C

(d) gain=0

(f) gain= -2

A B

C

Wt

Wa

Wt
Wt

WtWt

Wa

Wa

Wa

Wa

Figure 2: Perturbations and gains

4.2 The Complete Algorithm

Fig. 3 shows our complete algorithm of combining

the alternative wire technique with the FM method.

The �rst step in our algorithm is to perform FMmethod

for a given n times and save the best m partitions (Line

1). Setting the initial best partition to in�nity (Line 2),

we then try to improve each of these m partitions with

logic perturbations (Lines 3-20). For each of these m

partitions, we record the number of perturbations per-

formed using the variable n perturbation, and loop un-

til the number of perturbations reaches a given k times

(Lines 6-17). For each perturbation trial, we �rst ran-

domly select a cut wire wt as a target wire on the cur-

rent partition (Line 7). Trying to remove the target

wire, we then �nd the set of alternative wires WA (Line

8) for wt. If there are no alternative wires for wire wt,

we continue to another perturbation trial (Line 9 when

WA = �). If there are some alternative wires for wire

wt (Line 9 when WA 6= �), we pick the one whose re-

placement of wire wt gives the largest gain (Line 10).

Then we check if this largest gain would deteriorate the

current partition. If it does, we continue to the another

perturbation trial (Line 11 when wa's gain < 0). If it

does not (Line 11 when wa's gain � 0), we then realize

the replacement (Line 12). Recall that each perturba-

tion essentially changes the modeling graph, therefore

at this point the FM method has a new search domain.

Switching back to the graph domain, we perform FM

AlgorithmFM-with-logic-perturbation (n, m, k)
1. perform FM n times; save best m partitions;
2. best partition = 1;
3. for i= 1 to m f

4. curr partition = i-th best partition;
5. n pertubations = 0;
6. while (n perturbations < k) f
7. randomly select a cut wire wt;
8. �nd all alternative wires WA for wt;
9. if (WA 6= �) f
10. pick alt. wire wa 2 WA with largest gain;
11. if (wa's gain � 0) f
12. replace wt with wa in curr partition;
13. curr partition = FM(curr partition) ;
14. n perturbation = n perturbation+ 1;
15. g

16. g

17. g

18. if (curr partition < best partition)
19. best partition = curr partition;
20. g

Figure 3: Algorithm of FM with logic perturbation

one time and then increment the number of perturba-
tions (Lines 13-14). At the end of each of the m best
initial partitions, we check if the resulting partition is
better than the best partition seen so far, and record
the better one (Lines 18-19).

5 Experimental Results

We have implemented the algorithm in Section 4 and
conducted an experiment using 12 larger MCNC bench-
marks on a Sun Sparc 5 with 128 MB memory. For each
benchmark circuit, we �rst run script.boolean in SIS
[18], then we decompose the circuits to 2-input gates.
The resulting circuit is passed to a very good 2-input
gate optimizer from [3] to further optimize the circuit.
These optimizations are important because the alterna-
tive wire technique can be used as logic optimization
tool, and, as a consequence, our algorithm in Section 4
may encounter cases where we can remove some gates
and decrease the number of gates in the circuit. This
would make our algorithm have both a role of parti-
tioner and a partial role of a logic optimizer. To make
fair comparisons to other partitioners, also for the sake
of isolating the partitioning problem, these circuits are
fully optimized as far as the number of 2-input gates is
concerned. The number of nodes and number of wires
are shown in Table 1 in Section 3.2.

We would like to exhaust the graph domain informa-
tion in order to justify the power of the logic domain
information. To exhaust the graph domain informa-
tion, we ran our FM program, which is able to handle
multi-way partitions, for 250 times on each circuit. This
provides a very good, if not optimal, set of solutions in
the graph domain. We set the tolerance of area imbal-

FM perturb
model area best cpu area best(%) cpu

C1355 41:59 46 821 40:60 32(30%) 29
C2670 40:60 102 1816 40:60 88(14%) 320
C3540 41:59 188 3056 44:56 150(20%) 192
C5315 40:60 142 4890 40:60 112(21%) 317
C6288 45:55 170 6242 40:60 140(18%) 457
C7552 40:60 146 7494 40:60 124(15%) 526
apex6 44:56 8 1468 41:59 8(0%) 14
frg2 42:58 30 1446 41:59 28(7%) 42
rot 43:57 64 1289 43:57 58(9%) 39
x1 40:60 54 511 40:60 48(11%) 18
x3 41:59 10 1651 42:58 10(0%) 48
avg (13%)

Table 2: Comparison of 2-way partitioning

FM perturb
model area best cpu area best(%) cpu

C1355 16:24 141 975 16:24 134(5%) 69
C2670 16:24 240 2307 16:24 214(11%) 401
C3540 16:24 465 4488 16:24 437(6%) 298
C5315 16:24 524 6765 16:24 472(10%) 527
C6288 16:23 786 7197 16:24 738(6%) 607
C7552 18:24 506 9005 16:23 450(11%) 792
apex6 16:23 139 2745 17:24 113(19%) 127
frg2 17:24 121 2639 16:23 103(15%) 60
rot 16:24 159 2057 16:24 143(10%) 35
x1 16:24 139 825 16:23 129(7%) 37
x3 16:24 183 3038 16:24 158(14%) 79
avg (10%)

Table 3: Comparison of 5-way partitioning

ance on the FM method to be �20% of the average area
in each partitioned block. We then ran the algorithm in
Section 4 with n = 250, m = 3, and k = 25. The results
of 2-way and 5-way partitions are shown in Tables 2 and
3, respectively. The column \FM" in each Table is the
result of the FM method, and the column \perturb" is
the result of our algorithm. In both of these columns we
have three subcolumns in common. Subcolumn \area"
shows ratio of the the areas, in terms of the percentage
of the whole circuit, of the smallest partitioned block
versus that of the largest. Because we set the imbalance
tolerance to 20% of the average area in each partitioned
block, the maximal ratios are 40%:60% and 16%:24% in
2-way and 5-way partitions. Subcolumn \best" shows
the best cost, in terms the total number of pins required
for every partitioned blocks. Subcolumn \cpu" lists the
cpu time (in seconds). To compare our result with the
FM result, subcolumn \(%)" under column \perturb"
lists the percentage of improvement.

In the 2-way partitioning case shown in Table 2, we
obtained on average 13% of improvement over the best
partition of 250 FM runs. In 9 out of 11 circuits we
obtained some improvement, and the only 2 circuits,
apex6 and x3, have extremely low number of cut lines
that is almost impossible to improve. One interesting
point not shown in the Table is that almost all the large
amount of improvement did not come directly from our
perturbation gains, but from FM working on our per-
turbed graphs. Take C1355 as an example, the best
of 250 FM runs (on the same initial graph) generates
a partition with cost 46. The intermediate cost in our
algorithm of the run that brought this cost down to 32
were

� A perturbation was found to have gain 0. This did
not change the cost but has replaced one cut wire
by its alternative wire, thereby changed the graph.

� Faced with a di�erent graph, FM quickly brought
the cost down to 38.

� A perturbation was found with gain 1. This
brought the cost down to 37.

� Taking a di�erent graph again, FM brought the
cost down to 32, which is our �nal result.

Furthermore, if we regard the result of the 250 FM runs
as the best any partitioner can do in the graph domain,
our experiment clearly indicates that partitioning with
logic domain information, to some degree, remedies the
gap between the logic optimization stage and the par-
titioning stage. In the 5-way case, as can be seen from
Tables 3, our algorithm obtained 10% of improvement.
Note that in all cases we do not have area overhead, as
opposed to the replication-based approaches.

6 Conclusion

We have proposed an algorithm, based on the tech-
nique of alternative wires, to perturb and assist a graph
partitioner with logic domain information. Perturbing
the circuit with logic domain information changes the
modeling graph, and therefore many times brings graph
partitioners out of local optima. Note that when logic
domain information is included in the arena, it is not
only the iterative-based methods that can be stuck at
local optima. Any graph partitioner, in some sense,
may deal with a \bad" modeling graph from the very
beginning, thereby stucking at a local optimum. Our
technique can be combined with almost any graph par-
titioner, and the experimental results show very good
improvements. In addition to the encouraging experi-
mental results, we believe this could be a �rst step to-
ward integrating the logic optimization stage and the
partitioning stage in a design automation process. Fu-
ture research direction, therefore, will be on building a
more closely-coupled relationship between logic synthe-
sis and partitioning.

References

[1] J. Babb, R. Tessier, and A. Agarwal, \Virtual
Wires: Overcoming Pin Limitations in FPGA-
based Logic Emulators," IEEE Workshop on FP-
GAs 1993.

[2] M. Beardslee, B. Lin, and A. Sangiovanni-
Vincentelli, \Communication Based Logic Parti-
tioning," EDAC-92.

[3] S.C. Chang and M. Marek-Sadowska, \Perturb
and Simplify: Multi-level Boolean Network Opti-
mizer," ICCAD-94.

[4] S.C. Chang, K.T. Cheng, N.S. Woo, and M. Marek-
Sadowska, \Layout Driven Logic Synthesis for FP-
GAs," DAC-94.

[5] D.I. Cheng, S.C. Chang, and M. Marek-Sadowska,
\Partitioning Combinational Circuits in Graph
and Logic Domains," Proc. SASIMI-93.

[6] K.T. Cheng and L.A. Entrena, \Multi-level Logic
Optimization by Redundancy Addition and Re-
moval," ECDA-93.

[7] C.M. Fiduccia and R.M. Mattheyses, \A Linear
Time Heuristic for Improving Network Partitions,"
DAC-82.

[8] M. Garey and S. Johnson, \Computers and In-
tractability: A guide to the Theory of NP-
completeness," 1979.

[9] L. Hagen and A.B. Kahng, \Fast Spectral Meth-
ods for Ratio Cut Partitioning and Clustering",
ICCAD-91.

[10] J. Hwang and A. El Gamal, \Optimal Replication
for Min-Cut Partitioning," ICCAD-92.

[11] T. Kirkand and M.R. Mercer, \A Topological
Search Algorithm For ATPG," DAC-87.

[12] W. Kunz and D.K. Pradhan, \Recursive Learning:
An Attractive Alternative to the Decision Tree for
Test Generation in Digital Circuits," ITC-92.

[13] R.Kuznar, F. Brglez, and B. Zajc, \Multi-way
Netlist Partitioning into Heterogeneous FPGAs
and Minimization of Total Device Cost and Inter-
connect," DAC-94.

[14] C. Kring and A.R. Newton, \A Cell-Replicating
Approach to Mincut-Based Circuit Partitioning,"
ICCAD-91.

[15] L.T. Liu, M.T. Kuo, C.K. Cheng, and T.C. Hu,
\A Replication Cut for Two-Way Partitioning," to
appear in IEEE Tran. on CAD.

[16] P. Muth, \A Nine-Valued Circuit Model for Test
Generation," IEEE Tran. on Computers, Jun.
1976.

[17] M. Schulz and E. Auth, \Advanced Automatic
Test Pattern Generation and Redundancy Iden-
ti�cation Techniques," Fault Tolerant Computing
Symposium, pp. 30-34, 1988.

[18] E.Sentovich, etc., \SIS: A System for Sequential
Circuit Synthesis" Memorandum No. UCB/ERL
M92/41, UC, Berkeley.

[19] Y.C. Wei and C.K. Cheng, \Ratio Cut Partitioning
for Hierarchical Designs," IEEE Tran. on CAD,
July 1991.

[20] C.W. Yeh, C.K. Cheng, and T.T.Y. Lin, \A prob-
abilistic Multicommodity-Flow Solution to Circuit
Clustering Problems," ICCAD-92.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

