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Abstract alternative approach to achieve this goal. Instead of beginning

In this paper, we propose an iterative area/performancdrom a level-optimal solution, our new approach starts from an
trade-off algorithm for LUT-based FPGA technology mapping. area-optimized solution with level consideration. Then, it
First, it finds an area-optimized performance-considered initialapplies a series of resynthesizing operations to gradually reduce
network by a modified area optimization technique. Then, anthe number of levels without increasing too many LUT's.
iterative algorithm consisting of several resynthesizing Experimental results show that our algorithm can provide better
techniques is applied to trade the area for the performance igolutions than those dflowMap-r. Moreover, our approach
the network gracefully. Experimental results show that thisnot only can produce a comprehensive area/level trade-off
approach can provide a complete set of mapping solutions frongurve but also can provide competitive level-optimized
the area-optimized one to the performance-optimized one fosolutions compared with those produced by most existing
the given design. Furthermore, these two extreme solutionsperformance-optimization algorithms.
the area-optimized one and the performance-optimized one, This paper is organized as follows. Section 2 introduces
produced by our algorithm outperform the results of mostsome basic terminologies and definitions used in this paper.
existing algorithms. Therefore, our algorithm is very useful for Section 3 describes how we get the area-optimized initial

the timing driven FPGA synthesis. solution with level consideration for a given circuit. In Section
4, our algorithm performing iterative area/performance trade-
1. Introduction off is presented in detail. Section 5 shows the experimental

Field Programmable Gate Arrays (FPGA's) are modernresults and the concluding remarks are given in Section 6.
logic devices which can be programmed by the users to
implement their own logic circuits. Because of the short 2. Preliminaries
turnaround time, they become very popular in rapid system A combinational Boolean network can be represented by a
prototyping recently. Many FPGA architectures have beendirected acyclic graph (DAG)3(V, E). Each nodey OV,
proposed and the Look-Up Table(LUT)-based architecture isrepresents a logic function and each directed efig¢) O E, i

the most popular one. It consists of many configurkthleT's andj OV, represents that nodeis a fanin of nodg. A
which can implement an arbitrary function with ugktmputs. primary input (Pl) of the network is a node without any
For example, in Xilinx XC3000 architecture [X]is equal to 5. incoming edge and grimary output (PO) of the network is a

Many FPGA technology mapping algorithms have been node without any outgoing edge. Nddis atransitive fanin
proposed in previous studies. According to the objectives, theyf nodej if there exists at least one path from node node;j.
can be roughly classified into two categories: A node isk-feasibleif the number of its fanin nodes is no more
(1) Area Optimization [2-6]: These algorithms minimize the thank. A network isk-feasible if all nodes arefeasible in the

number of LUT's used to implement the given circuit basednetwork. Thdevel of a nodev, I(v), is the number of nodes in

on the assumption that the number of LUT's in the FPGAthe longest path from a PI nodevto So the level of a PI node
design is a good measurement of the area of FPGAs defined to be 0. The level of the other nededefined to be

implementations. the maximum level of its fanins plus 1, that is,
(2) Performance Optimization [7-12]: These algorithms J(v)= max J(u)+l
minimize the circuit delay time of the specified design. uDamin(v) ’

Becquse the propagation delay for every LUT ?S aImOStThus, the level of each node in the network can be computed in
identical, the most popular delay model used in FPGA o topological order. The level of the netwaik I(N), is

synthesis is thenit delay model. That is, the circuit delay  yefined to be the maximum level of the PO nodes. The

is estimated by the maximum level of LUT's in the (o0 ireq level of a networkN, which is user-specified and
synthesized CIrICUIt. In general, the smaller number of Ievelsdenoted asl(N), indicates the maximum level of the desired
always results in the better performance. _ resultant network. Thus, for each PO nuds the network\,
The common limitation of the previously described o required levelrl(v), is defined to bel(N). The required

algorithms is that only one extreme mapping solution is a6l of any other nodeis defined to be the minimum required
produced. These algorithms can provide the relatively 9°°dlevel of its fanouts minus 1. that is

results for their own objectives but may not provide a solution _ )
based on the designers’ specifications. Thus, a set of mapping f(v)= L i (u)=1.
solutions positioned at the comprehensive area/level trade-oﬁl_h th ired I( | of h node in th work b
curve should be generated to provide the maximum flexibility us, the required level ot each node in the network can be
: computed in the reverse topological order. A nodsecritical
for the designers. ) . ” . . .
if rl(v) is less tharl(v). A critical fanin of f is the fanin off

An algorithm, namedrlowMap-r, has been proposed to N o . o .
provide this capability [13]. It starts from a level-optimal which is critical. cfi(f) is the set containing all critical fanins of

mapping solution produced bflowMap [11]. Then, it f. A cone condy, |), is a subgrapld O G that contains the

performs a number adepth relaxation operations to get the roolt nodﬁv'ﬁs well as its transitive fanin nodes whose level is
areal/level trade-off curve. In this paper, we will use an no less tha
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3. The Initial Network Generations worst case ofORIGINAL It is modified in the opposite
As mentioned in Section 1 that our area-performance tradedirections we propose.
off algorithm starts from an area-optimized mapping solution ~ The algorithms described above has been implemented in
with level consideration. To generate such a good initial SIS environment which is developed by UC Berkeley [2, 14].
network, two key points have to be concerned: An experiment over a set of MCNC and ISCAS benchmark
(1) The initial network should also be as compact as the oneircuits is performed to evaluate all these approaches. All
obtained by other area-optimization algorithms and shouldbenchmark circuits are first optimized by the MIS standard

be generated as fast as possible. multi-level optimization script [14]. Then, all approaches are
(2) The level should also be considered while generating thendependently applied to make them 5-feasible. Thus, each
area-optimized initial network. node in the network can be implemented by a 5-LUT. The

Considering these two reasons, tmertle-crf algorithm [3] is mapping results of different approaches are shown in the first
selected to be enhanced. It can generally produce a good arediwee columns of Table I. Over twenty-five benchmark circuits,
optimized solution in a short time. Moreover, though it is a all three approaches use almost the same number of LUT's. It
pure area-optimization algorithm, we will show later that it is is because all of three implement the identichbrtle-crf
easy to be enhanced to take the level information into account. algorithm from the area point of view. However, from the
The chortle-crf algorithm first performs the AND-OR performance point of view, they produce quite different results.
decomposition to transform the original network into the one On averageMODIFIED uses 10% fewer levels than that of
containing nodes representing AND or OR functions only. ORIGINAL Moreover, MODIFIED uses 15% fewer levels
Then, it traverses all nodes in the network in the topologicalthan that o WORST By the way, the amounts of CPU time
order. For each node, two major decompositions, namely, th&€onsumed by these three approaches are almost identical.
two-level decomposition and the multi-level decomposition, are  According to previous experiments, some circuits must be
applied. In the two-level decomposition phase, bie- collapsed into the two-level form, then be decomposed by
packing technique with the heuristic reconvergent path Roth-Karp decomposition to get the better mapping solutions
optimization is applied to pack the fanin nodes into a skt of both in area and performance. However, the time complexity
feasible nodes. Then, it applies the multi-level decompositionof the collapsing could be exponential for the circuits with the
to further reduce the number kffeasible nodes required to large number of PI's. So we only apply this collapsing
implement the function represented by this node. In these twe@peration to small circuits with a limited number of PI's, for
phases, minimizing the number lofeasible nodes is the only ~example, 10. Therefore, we develop an apprddtkED,
objective, that is, no attempt on level-optimization is made. If which applies not only the modifiechortle-crf algorithm but
the level information is properly considered during area- also a modified Roth-Karp decomposition algorithm [5-6] to
optimized mapping, the performance could also be improved asuch collapsed circuits. The results of our initial network
the same time. generation are shown at columXED of Table I. In order to
To achieve this kind of level reduction, two modifications evaluate the quality of our level-considered area-optimized
should be made to the originaiortle-crfalgorithm: initial networks, the mapping results generated by one of the
(1)In the two-level decomposition phase, the bin-packing most popular area-optimization algorithmsjspga [2], are
algorithm incorporated with the heurisfidaximum Sharing shown at colummispgaof Table I. On average, oMIXED
Decreasing (MSD) algorithm is used. The MSD algorithm algorithm uses a little fewer LUT's and 17% fewer levels than
selects the fanin nodes to be packed under some criterifhat ofmispga respectively. MoreoveMIXED only takes 520
targeting for the area optimization. At this time, if two Seconds to complete this experiment whilispgatakes 3950
candidate fanin nodes have the same priority, the one with théeconds on a SUN SPARC 20 workstation. The experimental
lower level is chosen. Thus, the resultant nodes are potentialljesults clearly show that oMIXED algorithm can efficiently
with the smaller level. provide an excellent area-optimized starting point of a given
(2)In the multi-level decomposition phase, the modifications circuit for the later area/performance trade-off operations.
are as follows:
(i) An ordered list of packed fanin nodes is obtained by 4. lterative Area/Performance Trade-Off Algorithm
sorting on the number of their fanin nodes in decreasing After introducing the algorithm to get the level-considered
order. When two candidates have the same number of fanimrea-optimized initial network, we will present our iterative
nodes, the one with the smaller level is ordered before thearea/performance trade-off algorithm. Starting with an area-
one with the larger level. optimized k-feasible network, our goal is to develop an
(ii) The first node in the list is moved out to connect to the algorithm to reduce the level of the network without increasing
first (k-1)-feasible packed fanin node with the maximum too many extrk-feasible nodes. The delay model used here is

number of fanins in the list. the unit delay model, that is, the delay time is estimated by the
(iii) Repeat (i) and (ii) until only one node is in the list. level of the resultant network. The outline of our algorithm is
In order to evaluate the quality of our modifielortle-crf presented in Figure 1.

algorithm MODIFIED, several different approaches are Given a network, our algorithm reduces its level by one

introduced for comprehensive comparisons. The algorithmeach time until the desired target level is achieved or there is no

ORIGINAL represents the originaihortle-crf which ignores improvement can be made. If an unachievable low value is set

the level information. The resultant network produced by thisas the target level, say 0, then the complete set of area/level

approach will have the average performance in terms of levelstrade-off solutions from the area-optimized one to the level-

The approachWWORSTis specially designed to find the possibly optimized one can be obtained. In the following, we will
describe this algorithm in detail.



Iterative_Area/Level_Trade-QffetworkNet, required_level
Target_Level{
Original_Level < I(Ne?;
N <« DuplicatgNet);
L1: while((N) > Target_Level{
rI(N) < I(N)-1;
Label_Node_Levé\);
Identify_Critical_NodéN);

Critical_Node_List« Gain_CalculatioN);
Sort_In_Decreasing_OrdéCritical_Node_Lis};
L2: foreach(candidate noden Critical_Node_Lis}y {

for(Remap_Levek— I(v) - 1;Remap_Levet 0;
Remap_Levet) {

New_Cone_List— Remapcondyv, Remap_Levégl
with several resynthesizing techniques;

condV', New_Levél « The one with the minimum

level inNew_Cone_List

if(1(v) <1W) {
N « replacecondv, Remap_Leveghwith
condV', New_Leveét
markLocal_Success
exitL2; /* exit foreach loop */

}

}

if( Local_Succesis marked ) {
if(I(N) <I(Ned) replace NetwithN; }
/* Also A Global Success */

else
exitL1; [* exit while loop */

}

if(I(Nef) == Target_Leval
returnSuccess

else if{(Nef) < Original_Leve)
returnPartial_Success

else
returnFailure;

Figure 1 : Our iterative area/level trade-off algorithm.

propagated to its critical fanins, the node with largest gain will
always appear near Pl nodes, and obviously, this is not always
true.

The gain of each critical PO node is assigned to 1 by default.
Then, the gain of each other critical node can be calculated in
the reverse topological order. The critical nodes are then sorted
by their gains in decreasing order. If two nodes have the same
gain, the one with smaller level is listed first. It is because that
the effect of the level reduction near Pl nodes could potentially
be propagated to the other part of the network and has bigger
impact.

For each critical node in the sorted list, a number of
performance optimization techniques are applied to reduce its
level. However, most performance optimization techniques
developed for the semi-custom design, such as buffer insertion,
gate sizing and fanout replication, etc., cannot be directly
applied to the LUT-based FPGA architecture under the unit
delay model. Thus, the partial resynthesizing is the most
possible way to reduce the level of a node. That is, to
resynthesize the critical node and some of its transitive fanin
nodes together. In our algorithm, a greedy strategy is used to
select the transitive fanin nodes which should be resynthesized.
At first, only the candidate nodeand its critical fanin nodes,
that is,condv, I(v) - 1), are resynthesized to reduce the level of
v. If the attempt failscondyv, I(v) - 2) is selected to be
resynthesized next. This process is not terminated until the
level ofvis reduced or the attempt also fails everctmdyv, 1).

Currently, three resynthesizing techniques are applied to the
selected partial network for level reduction. The first technique
is based orthortle-d algorithm [7]. It performs the AND-OR
decomposition first. For each node in the topological order, its
fanin nodes of the same level are grouped into separate strata.
The bin packing technique with the reconvergent path
optimization is then applied to minimize the number of nodes
in each stratum. Finally, it connects the outputs of nodes in
stratuml to unused inputs of nodes in strattm 1. Notice
that additional nodes may be added to strdtsirl to provide
unused inputs. This process is completed when there is only
one node in the highest stratum. However, some of such
additional nodes can be collapsed to its fanout nodes while the
network is stillk-feasible. Therefore, an extra pass, which finds

In our algorithm, the required level of the given network is
assigned to its current level minus 1 at each iteration while th
current level is still larger than the target level. The level of

each node in the network is labeled in the topological order.”'™ . ) .
Then, under the given required level of the network, theYSing too many nodes to trade the levels, is partially improved.

required level of each node is calculated in the reverse 'he second technique is our modifigitbrtle-crfalgorithm,
topological order. Hence, critical nodes can be easily identifiedMOPIFIED, described in Section 3. The area overhead is
A function Gain_Calculationis then defined to calculate the 9€nerally smaller than that dfiortle-dbased algorithm if it can
gain for each critical node. Conceptually, this gain is designegStccessfully reduce the level of the candidate node.

to represent how much the performance of the entire network 1€ third technique is the modified Roth-Karp
can be improved if the level of the corresponding node can péiecomposition. As we described before, some networks should

reduced by one. Hence, the critical node with the largest gairP® collapsed into the two-level form, then be decomposed by
will be selected to be resynthesized first. The principle of ROth-Karp decomposition to get the better mapping solutions.
Gain_Calculationis based on the fact that reducing the level of SO if the number of Pl nodes of the selected partial network is

a node by one is equivalent to reducing the level of each of jt¢/nder @ predifined upper bound, it is first collapsed then
critical fanin nodes by one. So, the gain of a critical noge ~ d€composed by ‘a modified Roth-Karp decomposition

distributed to all of its critical fanins by the following formula; ~ &l90rithm proposed in [5-6]. . _
' ' ' i After applying all resynthesizing techniques, the best
gamm(u) + =gﬁiﬂ(V)/|Cﬁ(V)|,Du Ucfi (v). mapping solution, in which the level of the root node is
The gain of a node does not directly propagate forward to all ofMinimum, is selected._ If the level of th_e root node is identical
its critical fanins. It is because that if the gain is just simply in two different solutions, the one with smaller number of

éhose nodes and collapses them into their fanout nodes, is
appended to the originahortle-d algorithm to further reduce
the number of nodes. Thus, the major drawbacthoftle-d



increasing nodes is selected. If the level of the root node in th@ptimized ones in a SUN SPARC 20 workstation. The time
newly synthesized cone is smaller than that of the original rootvaries from 2 seconds to 1906 seconds for an individual circuit.
nodev, the new cone is added to replace the old one in the The experimental results clearly show thatTO can
duplicated networlN and alocal successs marked. If alocal effectively produce a better set of area/level trade-off mapping
success results in global successi.e., the level of the solutions than those ofFlowMap-r for most circuits.
modified networkN is smaller than that of the original network Furthermore, two extreme solutions, the area-optimized one
Net then the original network is updated. After a local or a and the level-optimized one, produced E-TO either
global success, the whole procedure starting from the levebutperform or are competitive with those produced by other
labeling is repeated because the network has been modifie@xisting area-optimization algorithms and level-optimization
This process is continued until the level of the final algorithms, respectively.

resynthesized network is no more than the target level, or is

terminated after an iteration in which no local success can be 6. Conclusions

obtained by resynthesizing all candidate critical nodes. Finally, In this paper, we propose an iterative area/level trade-off
the algorithm returns the last saved network as the resultanilgorithm for LUT-based FPGA technology mapping. The
network as well as a status flag which is set according to theapproach begins with finding a level-considered area-optimized
given target level, the level of the original network and the network for the given circuit by performing the modified

level of the resultant network. chortle-crf algorithm.  Our iterative areallevel trade-off
algorithm ALTO is then applied to get the set of complete
5. Experimental Results areallevel trade-off mapping solutions. Experimental results

Our areallevel trade-off algorithm has also been show thatALTO can provide not only an excellent area/level
implemented in SIS environment. In order to evaluate itstrade-off curve but also the level-optimized solutions which
quality, a set of comprehensive mapping solutions from thecompete favorably with those provided by most existing level
area-optimized one to the level-optimized one is produced foroptimization algorithms. Thus, this algorithm is working well
each benchmark circuit described in Section 3. All solutionson the timing driven technology mapping for the LUT-based
should retain 5-feasible to be implemented by the 5-LUT FPGA architecture.

FPGA architecture. The results are shown in Table Il. The
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