
An Iterative Area/Performance Trade-Off Algorithm for LUT-Based FPGA Technology Mapping

Juinn-Dar Huang, Jing-Yang Jou, and Wen-Zen Shen
Department of Electronics Engineering, National Chiao Tung University, Taiwan

Abstract
In this paper, we propose an iterative area/performance

trade-off algorithm for LUT-based FPGA technology mapping.
First, it finds an area-optimized performance-considered initial
network by a modified area optimization technique. Then, an
iterative algorithm consisting of several resynthesizing
techniques is applied to trade the area for the performance in
the network gracefully. Experimental results show that this
approach can provide a complete set of mapping solutions from
the area-optimized one to the performance-optimized one for
the given design. Furthermore, these two extreme solutions,
the area-optimized one and the performance-optimized one,
produced by our algorithm outperform the results of most
existing algorithms. Therefore, our algorithm is very useful for
the timing driven FPGA synthesis.

1. Introduction
Field Programmable Gate Arrays (FPGA's) are modern

logic devices which can be programmed by the users to
implement their own logic circuits. Because of the short
turnaround time, they become very popular in rapid system
prototyping recently. Many FPGA architectures have been
proposed and the Look-Up Table(LUT)-based architecture is
the most popular one. It consists of many configurable k-LUT's
which can implement an arbitrary function with up to k inputs.
For example, in Xilinx XC3000 architecture [1], k is equal to 5.

Many FPGA technology mapping algorithms have been
proposed in previous studies. According to the objectives, they
can be roughly classified into two categories:
(1) Area Optimization [2-6]: These algorithms minimize the

number of LUT's used to implement the given circuit based
on the assumption that the number of LUT's in the FPGA
design is a good measurement of the area of FPGA
implementations.

(2) Performance Optimization [7-12]: These algorithms
minimize the circuit delay time of the specified design.
Because the propagation delay for every LUT is almost
identical, the most popular delay model used in FPGA
synthesis is the unit delay model. That is, the circuit delay
is estimated by the maximum level of LUT's in the
synthesized circuit. In general, the smaller number of levels
always results in the better performance.
The common limitation of the previously described

algorithms is that only one extreme mapping solution is
produced. These algorithms can provide the relatively good
results for their own objectives but may not provide a solution
based on the designers’ specifications. Thus, a set of mapping
solutions positioned at the comprehensive area/level trade-off
curve should be generated to provide the maximum flexibility
for the designers.

An algorithm, named FlowMap-r, has been proposed to
provide this capability [13]. It starts from a level-optimal
mapping solution produced by FlowMap [11]. Then, it
performs a number of depth relaxation operations to get the
area/level trade-off curve. In this paper, we will use an

alternative approach to achieve this goal. Instead of beginning
from a level-optimal solution, our new approach starts from an
area-optimized solution with level consideration. Then, it
applies a series of resynthesizing operations to gradually reduce
the number of levels without increasing too many LUT's.
Experimental results show that our algorithm can provide better
solutions than those of FlowMap-r. Moreover, our approach
not only can produce a comprehensive area/level trade-off
curve but also can provide competitive level-optimized
solutions compared with those produced by most existing
performance-optimization algorithms.

This paper is organized as follows. Section 2 introduces
some basic terminologies and definitions used in this paper.
Section 3 describes how we get the area-optimized initial
solution with level consideration for a given circuit. In Section
4, our algorithm performing iterative area/performance trade-
off is presented in detail. Section 5 shows the experimental
results and the concluding remarks are given in Section 6.

2. Preliminaries
A combinational Boolean network can be represented by a

directed acyclic graph (DAG), G(V, E). Each node, v ∈ V,
represents a logic function and each directed edge, e(i, j) ∈ E, i
and j ∈ V, represents that node i is a fanin of node j. A
primary input (PI) of the network is a node without any
incoming edge and a primary output (PO) of the network is a
node without any outgoing edge. Node i is a transitive fanin
of node j if there exists at least one path from node i to node j.
A node is k-feasible if the number of its fanin nodes is no more
than k. A network is k-feasible if all nodes are k-feasible in the
network. The level of a node v, l(v), is the number of nodes in
the longest path from a PI node to v. So the level of a PI node
is defined to be 0. The level of the other node v is defined to be
the maximum level of its fanins plus 1, that is,

í ÷ í ö
ö çâïêï ÷

© ª îâù © ª ¯

© ª

= +
∈

²

Thus, the level of each node in the network can be computed in
the topological order. The level of the network N, l(N), is
defined to be the maximum level of the PO nodes. The
required level of a network N, which is user-specified and
denoted as rl (N), indicates the maximum level of the desired
resultant network. Thus, for each PO node v of the network N,
the required level, rl (v), is defined to be rl (N). The required
level of any other node v is defined to be the minimum required
level of its fanouts minus 1, that is,

óí ÷ óí ö
ö çâïðöõ ÷

© ª îêï © ª ¯

© ª
= −

∈
²

Thus, the required level of each node in the network can be
computed in the reverse topological order. A node v is critical
if rl (v) is less than l(v). A critical fanin of f is the fanin of f
which is critical. cfi(f) is the set containing all critical fanins of
f. A cone, cone(v, l), is a subgraph H ⊆ G that contains the
root node v as well as its transitive fanin nodes whose level is
no less than l.

ICCAD ’96
1063-6757/96 $5.00 1996 ΙΕΕΕ

3. The Initial Network Generations
As mentioned in Section 1 that our area-performance trade-

off algorithm starts from an area-optimized mapping solution
with level consideration. To generate such a good initial
network, two key points have to be concerned:
(1) The initial network should also be as compact as the one

obtained by other area-optimization algorithms and should
be generated as fast as possible.

(2) The level should also be considered while generating the
area-optimized initial network.

Considering these two reasons, the chortle-crf algorithm [3] is
selected to be enhanced. It can generally produce a good area-
optimized solution in a short time. Moreover, though it is a
pure area-optimization algorithm, we will show later that it is
easy to be enhanced to take the level information into account.

The chortle-crf algorithm first performs the AND-OR
decomposition to transform the original network into the one
containing nodes representing AND or OR functions only.
Then, it traverses all nodes in the network in the topological
order. For each node, two major decompositions, namely, the
two-level decomposition and the multi-level decomposition, are
applied. In the two-level decomposition phase, the bin-
packing technique with the heuristic reconvergent path
optimization is applied to pack the fanin nodes into a set of k-
feasible nodes. Then, it applies the multi-level decomposition
to further reduce the number of k-feasible nodes required to
implement the function represented by this node. In these two
phases, minimizing the number of k-feasible nodes is the only
objective, that is, no attempt on level-optimization is made. If
the level information is properly considered during area-
optimized mapping, the performance could also be improved at
the same time.

To achieve this kind of level reduction, two modifications
should be made to the original chortle-crf algorithm:
(1) In the two-level decomposition phase, the bin-packing
algorithm incorporated with the heuristic Maximum Sharing
Decreasing (MSD) algorithm is used. The MSD algorithm
selects the fanin nodes to be packed under some criteria
targeting for the area optimization. At this time, if two
candidate fanin nodes have the same priority, the one with the
lower level is chosen. Thus, the resultant nodes are potentially
with the smaller level.
(2) In the multi-level decomposition phase, the modifications
are as follows:

(i) An ordered list of packed fanin nodes is obtained by
sorting on the number of their fanin nodes in decreasing
order. When two candidates have the same number of fanin
nodes, the one with the smaller level is ordered before the
one with the larger level.
(ii)The first node in the list is moved out to connect to the
first (k-1)-feasible packed fanin node with the maximum
number of fanins in the list.
(iii) Repeat (i) and (ii) until only one node is in the list.
In order to evaluate the quality of our modified chortle-crf

algorithm MODIFIED, several different approaches are
introduced for comprehensive comparisons. The algorithm
ORIGINAL represents the original chortle-crf which ignores
the level information. The resultant network produced by this
approach will have the average performance in terms of levels.
The approach WORST is specially designed to find the possibly

worst case of ORIGINAL. It is modified in the opposite
directions we propose.

The algorithms described above has been implemented in
SIS environment which is developed by UC Berkeley [2, 14].
An experiment over a set of MCNC and ISCAS benchmark
circuits is performed to evaluate all these approaches. All
benchmark circuits are first optimized by the MIS standard
multi-level optimization script [14]. Then, all approaches are
independently applied to make them 5-feasible. Thus, each
node in the network can be implemented by a 5-LUT. The
mapping results of different approaches are shown in the first
three columns of Table I. Over twenty-five benchmark circuits,
all three approaches use almost the same number of LUT's. It
is because all of three implement the identical chortle-crf
algorithm from the area point of view. However, from the
performance point of view, they produce quite different results.
On average, MODIFIED uses 10% fewer levels than that of
ORIGINAL. Moreover, MODIFIED uses 15% fewer levels
than that of WORST. By the way, the amounts of CPU time
consumed by these three approaches are almost identical.

According to previous experiments, some circuits must be
collapsed into the two-level form, then be decomposed by
Roth-Karp decomposition to get the better mapping solutions
both in area and performance. However, the time complexity
of the collapsing could be exponential for the circuits with the
large number of PI's. So we only apply this collapsing
operation to small circuits with a limited number of PI's, for
example, 10. Therefore, we develop an approach MIXED,
which applies not only the modified chortle-crf algorithm but
also a modified Roth-Karp decomposition algorithm [5-6] to
such collapsed circuits. The results of our initial network
generation are shown at column MIXED of Table I. In order to
evaluate the quality of our level-considered area-optimized
initial networks, the mapping results generated by one of the
most popular area-optimization algorithms, mispga [2], are
shown at column mispga of Table I. On average, our MIXED
algorithm uses a little fewer LUT's and 17% fewer levels than
that of mispga, respectively. Moreover, MIXED only takes 520
seconds to complete this experiment while mispga takes 3950
seconds on a SUN SPARC 20 workstation. The experimental
results clearly show that our MIXED algorithm can efficiently
provide an excellent area-optimized starting point of a given
circuit for the later area/performance trade-off operations.

4. Iterative Area/Performance Trade-Off Algorithm
After introducing the algorithm to get the level-considered

area-optimized initial network, we will present our iterative
area/performance trade-off algorithm. Starting with an area-
optimized k-feasible network, our goal is to develop an
algorithm to reduce the level of the network without increasing
too many extra k-feasible nodes. The delay model used here is
the unit delay model, that is, the delay time is estimated by the
level of the resultant network. The outline of our algorithm is
presented in Figure 1.

Given a network, our algorithm reduces its level by one
each time until the desired target level is achieved or there is no
improvement can be made. If an unachievable low value is set
as the target level, say 0, then the complete set of area/level
trade-off solutions from the area-optimized one to the level-
optimized one can be obtained. In the following, we will
describe this algorithm in detail.

Iterative_Area/Level_Trade-Off(network Net, required_level
Target_Level) {

Original_Level ← l(Net);

N ← Duplicate(Net);
L1: while(l(N) > Target_Level) {

rl (N) ← l(N) - 1;
Label_Node_Level(N);
Identify_Critical_Node(N);

Critical_Node_List ← Gain_Calculation(N);
Sort_In_Decreasing_Order(Critical_Node_List);

 L2: foreach(candidate node v in Critical_Node_List) {

for(Remap_Level ← l(v) - 1; Remap_Level > 0;
Remap_Level --) {

New_Cone_List ← Remap cone(v, Remap_Level)
with several resynthesizing techniques;

cone(v', New_Level) ← The one with the minimum
level in New_Cone_List;
if(l(v') < l(v)) {

N ← replace cone(v, Remap_Level) with
cone(v', New_Level);
mark Local_Success;
exit L2; /* exit foreach loop */

}
}

}
if(Local_Success is marked) {

if(l(N) < l(Net)) replace Net with N; }
/* Also A Global Success */

else
exit L1; /* exit while loop */

}
if(l(Net) == Target_Level)

return Success;
else if(l(Net) < Original_Level)

return Partial_Success;
else

return Failure;
}

Figure 1 : Our iterative area/level trade-off algorithm.

In our algorithm, the required level of the given network is
assigned to its current level minus 1 at each iteration while the
current level is still larger than the target level. The level of
each node in the network is labeled in the topological order.
Then, under the given required level of the network, the
required level of each node is calculated in the reverse
topological order. Hence, critical nodes can be easily identified.
A function Gain_Calculation is then defined to calculate the
gain for each critical node. Conceptually, this gain is designed
to represent how much the performance of the entire network
can be improved if the level of the corresponding node can be
reduced by one. Hence, the critical node with the largest gain
will be selected to be resynthesized first. The principle of
Gain_Calculation is based on the fact that reducing the level of
a node by one is equivalent to reducing the level of each of its
critical fanin nodes by one. So, the gain of a critical node v is
distributed to all of its critical fanins by the following formula:

èâêï ö èâêï ÷ äçê ÷ ö äçê ÷© ª © ª° © ª © ª¯¡ ¡ ¡+ = ∀ ∈

The gain of a node does not directly propagate forward to all of
its critical fanins. It is because that if the gain is just simply

propagated to its critical fanins, the node with largest gain will
always appear near PI nodes, and obviously, this is not always
true.

The gain of each critical PO node is assigned to 1 by default.
Then, the gain of each other critical node can be calculated in
the reverse topological order. The critical nodes are then sorted
by their gains in decreasing order. If two nodes have the same
gain, the one with smaller level is listed first. It is because that
the effect of the level reduction near PI nodes could potentially
be propagated to the other part of the network and has bigger
impact.

For each critical node in the sorted list, a number of
performance optimization techniques are applied to reduce its
level. However, most performance optimization techniques
developed for the semi-custom design, such as buffer insertion,
gate sizing and fanout replication, etc., cannot be directly
applied to the LUT-based FPGA architecture under the unit
delay model. Thus, the partial resynthesizing is the most
possible way to reduce the level of a node. That is, to
resynthesize the critical node and some of its transitive fanin
nodes together. In our algorithm, a greedy strategy is used to
select the transitive fanin nodes which should be resynthesized.
At first, only the candidate node v and its critical fanin nodes,
that is, cone(v, l(v) - 1), are resynthesized to reduce the level of
v. If the attempt fails, cone(v, l(v) - 2) is selected to be
resynthesized next. This process is not terminated until the
level of v is reduced or the attempt also fails even for cone(v, 1).

Currently, three resynthesizing techniques are applied to the
selected partial network for level reduction. The first technique
is based on chortle-d algorithm [7]. It performs the AND-OR
decomposition first. For each node in the topological order, its
fanin nodes of the same level are grouped into separate strata.
The bin packing technique with the reconvergent path
optimization is then applied to minimize the number of nodes
in each stratum. Finally, it connects the outputs of nodes in
stratum l to unused inputs of nodes in stratum l + 1. Notice
that additional nodes may be added to stratum l + 1 to provide
unused inputs. This process is completed when there is only
one node in the highest stratum. However, some of such
additional nodes can be collapsed to its fanout nodes while the
network is still k-feasible. Therefore, an extra pass, which finds
those nodes and collapses them into their fanout nodes, is
appended to the original chortle-d algorithm to further reduce
the number of nodes. Thus, the major drawback of chortle-d,
using too many nodes to trade the levels, is partially improved.

The second technique is our modified chortle-crf algorithm,
MODIFIED, described in Section 3. The area overhead is
generally smaller than that of chortle-d based algorithm if it can
successfully reduce the level of the candidate node.

The third technique is the modified Roth-Karp
decomposition. As we described before, some networks should
be collapsed into the two-level form, then be decomposed by
Roth-Karp decomposition to get the better mapping solutions.
So, if the number of PI nodes of the selected partial network is
under a predifined upper bound, it is first collapsed then
decomposed by a modified Roth-Karp decomposition
algorithm proposed in [5-6].

After applying all resynthesizing techniques, the best
mapping solution, in which the level of the root node is
minimum, is selected. If the level of the root node is identical
in two different solutions, the one with smaller number of

increasing nodes is selected. If the level of the root node in the
newly synthesized cone is smaller than that of the original root
node v, the new cone is added to replace the old one in the
duplicated network N and a local success is marked. If a local
success results in a global success, i.e., the level of the
modified network N is smaller than that of the original network
Net, then the original network is updated. After a local or a
global success, the whole procedure starting from the level
labeling is repeated because the network has been modified.
This process is continued until the level of the final
resynthesized network is no more than the target level, or is
terminated after an iteration in which no local success can be
obtained by resynthesizing all candidate critical nodes. Finally,
the algorithm returns the last saved network as the resultant
network as well as a status flag which is set according to the
given target level, the level of the original network and the
level of the resultant network.

5. Experimental Results
Our area/level trade-off algorithm has also been

implemented in SIS environment. In order to evaluate its
quality, a set of comprehensive mapping solutions from the
area-optimized one to the level-optimized one is produced for
each benchmark circuit described in Section 3. All solutions
should retain 5-feasible to be implemented by the 5-LUT
FPGA architecture. The results are shown in Table II. The
column L|Aopt shows the level of the area-optimized initial
network. The remaining columns represent the numbers of 5-
feasible nodes required to implement the circuit for the
designated level. From Table II, it is found that our algorithm
can really provide a wide range of mapping solutions to be
chosen by the designers. Some benchmark circuits such as
5xp1 and 9sym, etc., do not have a lot of trade-off design
points because the best designs are found for both area and
level. The most dramatic case is the mapping results of the
benchmark circuit e64 in which the levels of mapping results
produced by our algorithm vary from 17 to 3. Table III shows
the comparisons between the results produced by our algorithm,
denoted as ALTO (stands for Area/Level Trade-Off), with those
produced by another area/level trade-off algorithm named
FlowMap-r [13], denoted FM-r. For most of the benchmark
circuits, the mapping solutions of ALTO outperform those of
FlowMap-r on the same level.

Finally, in order to show how good the level-optimized
results ALTO can achieve, the results produced by previously
proposed level optimization algorithms, including chortle-d [7],
mispga-delay [8], FlowMap [11] and FlowSYN [10], are listed
in Table IV for comparison. For 18 benchmark circuits, ALTO
on average requires 17% and 56% fewer levels and LUT's than
those of chortle-d, respectively. For 24 benchmark circuits,
ALTO on average requires 19% fewer levels and 34% fewer
LUT's than those of mispga-delay. For 17 benchmark circuits,
ALTO on average requires 11% and 28% fewer levels and
LUT's than those of FlowMap. The only exception is that
FlowSYN on average requires 4% fewer levels but 25% more
LUT's than those of ALTO for 17 benchmark circuits. However,
our algorithm is iterative and constructive in nature, it can be
applied to much more varieties of circuits than other algorithms.

For 25 benchmark circuits, ALTO totally takes 4931
seconds to obtain the level-optimized networks from their area-

optimized ones in a SUN SPARC 20 workstation. The time
varies from 2 seconds to 1906 seconds for an individual circuit.

The experimental results clearly show that ALTO can
effectively produce a better set of area/level trade-off mapping
solutions than those of FlowMap-r for most circuits.
Furthermore, two extreme solutions, the area-optimized one
and the level-optimized one, produced by ALTO either
outperform or are competitive with those produced by other
existing area-optimization algorithms and level-optimization
algorithms, respectively.

6. Conclusions
In this paper, we propose an iterative area/level trade-off

algorithm for LUT-based FPGA technology mapping. The
approach begins with finding a level-considered area-optimized
network for the given circuit by performing the modified
chortle-crf algorithm. Our iterative area/level trade-off
algorithm ALTO is then applied to get the set of complete
area/level trade-off mapping solutions. Experimental results
show that ALTO can provide not only an excellent area/level
trade-off curve but also the level-optimized solutions which
compete favorably with those provided by most existing level
optimization algorithms. Thus, this algorithm is working well
on the timing driven technology mapping for the LUT-based
FPGA architecture.

References
[1] The Programmable Logic Data Book, Xilinx Inc., San Jose, 1993.
[2] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-

Vincentelli, "Improved logic synthesis algorithms for table look
up architectures," in Proc. Int. Conf. Computer-Aided Design,
pp. 564-567, Nov. 1991.

[3] R. J. Francis, J. Rose, and Z. Vranesic, "Chortle-crf : fast
technology mapping for lookup table-based FPGA's," in Proc.
28th Design Automation Conf., pp. 227-233, June 1991.

[4] Y. T. Lai, M. Pedram, and Sarma B. K. Vrudhula, "BDD based
decomposition of logic functions with application to FPGA
synthesis," in Proc. 30th Design Automation Conf., pp. 642-647,
June 1993.

[5] W.-Z. Shen, J.-D. Huang, and S.-M. Chao, "Lambda set selection
in Roth-Karp decomposition for LUT-based FPGA technology
mapping," in Proc. 32nd Design Automation Conf., pp. 65-69,
June 1995.

[6] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, "Compatible class
encoding in Roth-Karp decomposition for two-output LUT
architecture," in Proc. Int. Conf. Computer-Aided Design, pp.
359-363, Nov. 1995.

[7] R. J. Francis, J. Rose, and Z. Vranesic, "Technology mapping of
look-up table-based FPGAs for performance," in Proc. Int. Conf.
Computer-Aided Design, pp. 568-571, Nov. 1991.

[8] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, "Performance directed synthesis for table lookup
programmable gate arrays," in Proc. Int. Conf. Computer-Aided
Design, pp. 572-575, Nov. 1991.

[9] P. Sawkar, and D. Thomas, "Performance directed technology
mapping for look-up table based FPGAs," in Proc. 30th Design
Automation Conf., pp. 208-212, June 1993.

[10] J. Cong, and Y. Ding, "Beyond the combinatorial limit in depth
optimization for LUT-based FPGA designs," in Proc. Int. Conf.
Computer-Aided Design, pp. 110-114, Nov. 1993.

[11] J. Cong, and Y. Ding, "FlowMap: an optimal technology
mapping algorithm for delay optimization in lookup-table based
FPGA designs," in IEEE Trans. on Computer-Aided Design, vol.
13, no. 1, pp. 1-12, Jan. 1994.

[12] C. Legl., B. Wurth, and K. Eckl, “A Boolean approach to
performance-directed technology mapping for LUT-based FPGA
designs,” in Proc. 33rd Design Automation Conf., pp.730-733,
June 1996.

[13] J. Cong, and Y. Ding, "On area/depth trade-off in LUT-based
FPGA technology mapping," in IEEE Trans. on VLSI Systems,
vol. 2, no. 2, pp. 137-148, June 1994.

[14] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, "MIS : a multi-level logic optimization system," in IEEE
Trans. on Computer-Aided Design, vol. 6, no. 11, pp. 1062-1081,
Nov. 1987.

Table III : Comparisons between ALTO and FlowMap-r.
L L L-1 L-2 L-3

CKT #lvl alto fm-r alto fm-r alto fm-r alto fm-r

5xp1 4 - 22 - 23 19 - - -
C499 7 70 - - 130 - 151 - -
C880 11 - 172 93 179 93 195 96 211
alu2 9 - 140 - 148 - - 61 -
alu4 11 199 244 208 245 209 - 259 -

apex6 7 216 - 216 220 227 221 229 232
apex7 6 60 - 60 76 77 80 - -
count 5 31 57 32 73 47 - - -
des 9 858 934 845 969 801 987 784 1003

duke2 7 116 151 117 161 128 172 156 187
rd84 6 - 38 - 42 - 43 13 -
rot 10 193 - 199 210 204 213 214 218

Table IV : Comparisons among ALTO and other level
optimization algorithms.

chortle-d mispga-d FlowMap FlowSYN ALTO
CKT #lut #lvl #lut #lvl #lut #lvl #lut #lvl #lut #lvl

5xp1 26 3 21 2 22 3 20 2 19 2
9sym 63 5 7 3 60 5 7 3 7 3

9symml 59 5 7 3 55 5 7 3 7 3
C499 382 6 199 8 68 4 133 5 70 7
C880 329 8 259 9 124 8 232 8 96 8
alu2 227 9 122 6 155 9 113 6 61 6
alu4 500 10 155 11 253 9 249 9 259 8

apex6 308 4 274 5 238 5 257 4 229 4
apex7 108 4 95 4 79 4 89 4 77 4

b9 47 3 36 3
clip 54 4 33 3

count 91 4 81 4 31 5 75 3 47 3
des 2086 6 1397 11 1310 5 893 4 784 6

duke2 241 4 164 6 174 4 187 4 156 4
e64 139 7 212 5 144 3

f51m 23 4 15 3
misex1 19 2 17 2 16 2 15 2 14 2
misex2 37 3 37 2
misex3 251 6
rd73 8 2 8 2
rd84 61 4 13 3 46 4 13 3 13 3
rot 326 6 322 7 234 7 262 6 214 7

sao2 45 5 38 3
vg2 55 4 39 4 29 3 45 4 26 3
z4ml 25 3 10 2 5 2 6 2 5 2

chortle-d 5045 94 2228 78
mispga-d 3608 116 2395 94
FlowMap 2899 84 2084 75
FlowSYN 2603 72 2084 75

Table I : Initial networks obtained by different algorithms.
MODIFIED ORIGINAL WORST MIXED mispga

CKT #lut #lvl #lut #lvl #lut #lvl #lut #lvl #lut #lvl

5xp1 25 4 26 4 26 4 19 2 18 3
9sym 54 8 53 9 53 9 7 3 7 3

9symml 57 7 59 10 59 9 7 3 7 3
C499 70 7 70 7 70 7 70 7 70 7
C880 93 10 88 10 88 10 93 10 81 10
alu2 107 15 110 16 109 20 61 6 102 14
alu4* 162 14 173 17 168 20 162 14 167 19
apex6 212 9 204 10 204 10 212 9 201 10
apex7 60 6 60 7 60 7 60 6 57 6

b9 35 4 35 4 35 4 35 4 35 4
clip 31 5 32 5 33 5 31 5 27 6

count 31 5 31 6 31 6 31 5 31 5
des* 849 13 877 19 878 22 849 13 867 21

duke2 116 7 115 6 115 7 116 7 115 7
e64 80 17 80 17 80 17 80 17 80 17

f51m 27 4 30 4 30 4 15 3 24 5
misex1 15 3 16 3 16 3 15 3 17 3
misex2 32 3 30 4 30 4 32 3 31 3
misex3 144 13 151 14 151 15 144 13 153 16
rd73 19 4 22 4 23 4 8 2 6 2
rd84 53 7 54 7 56 8 13 3 10 3
rot 187 12 183 13 184 13 187 12 182 15

sao2 37 5 38 6 38 6 37 5 42 5
vg2 22 4 21 5 21 5 22 4 21 5
z4ml 5 2 5 2 5 2 5 2 5 2
Total 2523 188 2563 209 2563 221 2311 161 2356 194

* alu4 and des are initially optimized by script.rugged.
Others are initially optimized by script.algebraic.

Table II : Area/level trade-off curves generated by ALTO.
L|Aopt L L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8

CKT #lvl #lut #lut #lut #lut #lut #lut #lut #lut #lut

5xp1 2 19 -
9sym 3 7 -

9symml 3 7 -
C499 7 70 -
C880 10 93 93 96 -
alu2 6 61 -
alu4 14 162 180 181 199 208 209 259 -

apex6 9 212 213 216 216 227 229 -
apex7 6 60 60 77 -

b9 4 35 36 -
clip 5 31 32 33 -

count 5 31 32 47 -
des 13 849 852 859 876 858 845 801 784 -

duke2 7 116 117 128 156 -
e64 17 80 81 82 83 84 85 86 87 88

f51m 3 15 -
misex1 3 15 14 -
misex2 3 32 37 -
misex3 13 144 149 161 167 173 201 218 251 -
rd73 2 8 -
rd84 3 13 -
rot 12 187 188 193 199 204 214 -

sao2 5 37 34 38 -
vg2 4 22 26 -
z4ml 2 5 -

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

