Sequential Redundancy I dentification Using Recursive L earning

Wanlin Cao

Dhirgj K. Pradhan

Department of Computer Science
Texas A&M University
College Station, Texas 77843

Abstract

A sequential redundancy identification procedure is pre-
sented. Based on uncontrollability analysis and recursive
learning techniques, this procedure identifies c-cycle re-
dundancies in large circuits, without simplifying assump-
tionsor state transition information. The proposed proce-
dure can identify redundant faultswhich require conflicting
assignments on multiple lines. In this sense, it is a gen-
eralization of FIRES, a state-of-the-art redundancy iden-
tification algorithm. A modification of the proposed pro-
cedure is also presented for identifying untestable faults.
Experimental results on I SCAS benchmarks demonstrate
that these two procedures can efficiently identify a large
portion of c-cycle redundant and untestable faults.

1 Introduction

Identifying sequentially untestable and redundant faults
is a formidable yet important problem. The presence of
untestable and redundant faults complicates automatic test
pattern generation (ATPG). Additionally, redundancies in-
duce many other detrimental effects [14]. Redundancies
increase chip area, power consumption, and often, propa
gation delays in the circuit. Usualy, redundancy implies
inefficient design. The presence of aredundant fault may
preclude detection of other faults in the circuit. Redun-
dancy identification is very useful in synthesis, since a
redundant fault defines a region that can be removed.

Using a traditional sequentiad ATPG tool, the search
space must be exhausted to prove that a targeted fault is
untestable. But even so, none of the practical state-of-the-
art sequential test generators can distingui sh untestableand
redundant faults. Most previous methods for identifying
sequentially redundant and untestable faults[4] [5] [6] are
based on ATPG, requiring large amounts of computations.
Recently, two fault-independent sequential redundant and
untestabl e fault identification algorithms, FIRES [13] and
FUNI [3], have been proposed. Based on uncontrollability
and unobservabhility analysis, FIRES finds redundant faults

This work is supported in part by NSF under Grant MIP 94-06946 and
byONR under Grant NO0014-92-1-1366.

ICCAD '96
1063-6757/96 $5.00 O 1996 |IEEE

whoseactivation or observation requires conflicting assign-
ments on fanout stems. FUNI identifies untestable faults,
whose detection requiresillega states as a necessary con-
dition. Here, by illegal states, it is meant states that cannot
be entered from an unknown state. Unlike ATPG-based
algorithms, these sequential implication-based algorithms
do not need to perform exhaustive search; thus, they can
efficiently find a large portion of redundant or untestable
faults.

A new algorithmfor identifying sequential redundant faults
isproposed here. Thisagorithm uses arecursivelearning-
improved implication. Recursive learning has been shown
to be quite useful for identifying combinationaly redun-
dant faults[11]. Similar to FIRES, our algorithm identifies
sequential redundant faults by detecting conflicts in the
necessary state assignments. The proposed a gorithm per-
forms sequential implication on every flip-flop, and checks
the conflicting states necessary for the detection of faults.
It can identify the conflict requirement on either a fanout
stem or on multiplelines. In this sense, the proposed d-
gorithm can be thought as a generalization of FIRES. Also
presented isamodification of the proposed a gorithm which
can efficiently identify sequential untestable faults. Exper-
imental results depict that for some circuits, the proposed
algorithm outperforms previously reported results.

The paper is organized as follows. Section 2 reviews the
FIRES and FUNI agorithms, and recursive learning tech-
nigque. Section 3 describesthe proposed algorithm. Section
4 presents experimental results, and conclusions are pre-
sented in Section 5.

2 Preiminaries

This Section introduces the terminology used in the paper,
and providesa brief review of previouswork on sequential
untestable and redundancy identification (RID) and recur-
sive learning technique. For RID, only techniquesthat are
based on uncontrollability and unobservability analysisare
reviewed. A detailed review of other RID techniques can
be foundin [14].

—i
ol
ol
=
=

Figure 1: Propagation of Uncontrollability and Unobserv-
ability
2.1 Identifying Combinational Redundancy

Let {X = a,Y =b,Z7 = ¢} beanillegal combination
of valuesin a combinational circuit. Faults for which this
combination of valuesisnecessary for detection are redun-
dant. Let S, S, and S, be the sets of faults that require
X = a,Y = band 7 = ¢, for detection, respectively.
Because the conditions for S, S, and .S, cannot be sat-
isfied simultaneoudly, faultsin Sy, = Sz [Sy[)S- are
redundant.

The faults that belong to S, can be found by uncontrol-
lability and unobservability analysis [1, 2, 3]. Let 0(1)
denote the status of a line that is uncontrollable to value
0(1). Figure 1 illustratesthe uncontrollability propagation
rules. If a gate input cannot be set to the uncontrolling
value of the gate, al the other inputs of the gate become
unobservable (denoted by *). Uncontrollability propa
gates forward and backward, while unobservability only
propagates backward.

A generd procedureto find the redundant faults caused by
an illega combination {I; = v1,l, = vy, ...} is:

1. For every [; = v;, imply [; = 7; to determine all lines
becoming uncontrollable or unobservable. Let S; be the
set of corresponding faults. (Notethat theimplicationsare
performed separately for each value.)

2. Theredundant faults caused by agivenillegal combina-
tionareintheset S = (); S;.

In [10], a combinational redundant fault identification al-
gorithm, FIRE, was proposed. FIRE findscombinationally
redundant faults by performing 0 and 1 analysis on every
fanout stem. If alineis set to 0(1) by the propagation of
both 0 and 1 on astem, then as-a-1 (s-a-0) fault on thisline
isredundant. Both faultson alinemarked as unobservable
by propagating both 0 and 1 are redundant.

2.2 ldentifying Sequentially Redundant and
Untestable Faults

In sequential circuits, untestability and redundancy are two
different concepts. Several different definitionsfor sequen-
tial untestability and redundancy can befound in literature;
this paper uses the definitions containedin [5].

Definition1: A fault fissaid to be detectable if thereexists
an input sequence / such that for every pair of initia states

S and S of the fault-free and faulty circuit, respectively,
the response Z(I, S) of the fault-free circuit to the input
sequence [is different from the response Z/ (1, S¥) of the
faulty circuit (at some time on some output).

Definition 2: A fault isuntestable if it is not detectable.
Definition 3: A fault ispartially testable if there exists an
initial state S/ of the faulty circuit and an input sequence
1 such that for every fault-freeinitial state S, the response
of the fault-free circuit to I, starting from .S, Z(1, 5), is
different from the response of the faulty circuit starting
from S/, Z7(1,S7). (This definition differs from that in
[5], inthat it includestestablefaults. A faultistestableif it
ispartially testablefor all initial states of thefaulty circuit.)
Definition 4: A fault is redundant if it is not partialy
testable.

The concept of ¢c-cycle redundancy [14] isageneraization
of the conventional redundancy defined above.

Definition 5: Consider the set of states {.S.} reachable
after powering up the faulty circuit and applying any se-
quence of ¢ input vectors. (Note that {S.} shrinks as ¢
increases.) Then a fault is c—cycle redundant if it is not
partially testable under the assumption that theinitial states
of thefaulty circuit are restricted to {5; }.

In the following discussion, the iterative array model is
used to represent the sequentia circuit. The combina
tional honcontrolling and unobservability analysis[9, 10]
is extended to sequential circuits by adding the flip-flop
propagation rule. When uncontrollability/unobservability
propagates forward (backward) through a flip-flop, it en-
ters the next (previous) time frame. In sequential circuits,
unobservability propagationisdifferent fromthat of combi-
national circuits. Before propagating unobservability from
the output of a gate to dl its inputs, it must be ensured
that multiple fault-effects from that input, in different time
frames, cannot reach a primary output. Otherwise, faults
that can be detected by (sequential) multiple path sensiti-
zation would be marked as unobservable.

In [14], a sequential redundancy identification procedure,
FIRES, was proposed. FIRES applies sequential uncon-
trollability/unobservability on every fanout stem and finds
e-cycle redundant faults for which a conflicting value as-
signment on the stem is necessary for detection. Since a
fault is present in every time frame, avalidation procedure
is used to guarantee that the uncontrollability and unob-
servability propagation is not invalidated by the fault. The
process of propagating uncontrollability and unobservabil -
ity to determine the uncontrollableand unobservablefaults
isreferred to as sequential implication. In[8], itis proven
that afault identified by FIRES s c-cycle redundant.

In [3], FUNI, a sequential untestable identification algo-
rithm, was proposed. FUNI is composed of two steps.
First, an implicit state enumeration a gorithm, based on the

a=1 d=1’

D=

Figure 2: Recursive Learning Example

Binary Decision Diagram (BDD) [15], is used to identify
illegal states. Then, for every illegal state, the sequentia
implication procedureis applied to find an untestablefault,
by showing that its detection requires an illegal state as a
necessary condition. To reduce the complexity of creat-
ing BDD and theimplicit state enumeration process, FUNI
adopts afunction-partitioning techniqueto dividethe prob-
lem. But for some circuits, because the size of BDD can
be exponentially large, the memory requirement may still
pose a problem.

FUNI only identifies untestable faults; it does not need
the validation procedure in FIRES [14]. FUNI first finds
illegal states, then analyzes every illegal state to determine
the faults whose detection requires the fault-free circuit to
enter that state. Thisrunstherisk of analyzing many illega
states that are “harmless’, that is, they are not necessary
for detecting any faults. In contrast, we first determine
the faults whose detection require a certain state; then we
use recursive learning to attempt to justify that state. If the
justificationfails, thestateisillegal, and thefaultsrequiring
it are untestable.

y=1!

c=1"

2.3 Recursive Learning

ATPG search attempts to justify a given value assignment
by searching for other node value assignments necessary
to maintain the logic consistency of the circuit. These are
known as necessary assignments For example, in order to
justify al at theoutput of an AND gate, al of itsinputsmust
be assigned the value 1. In standard ATPG search, these
assignments are discovered by making direct implications.
A direct implication is a logical conseguence of the truth
table for the logic function. For example, in the case of
alon an AND gate, the only entry in the truth table for
whichitistruefor al inputsassigned the value 1. Indirect
implicationsarelogical consequencesof that do not directly
follow from the logic function truth table, but are caused
by the circuit structure.

AnexampleisshowninFigure2. If theassignmenty =1is
made, it isnot possibleto makeany direct implication about
values g, ¢, d, e, or f. However, there exists the indirect
implicationthat y = 1 = f = 1. Thiscan be discovered
by using recursive learning [11, 12]. The outline of the
algorithmis shown in Figure 3.

r=0
make_all_implications(r,rmaz) {
make all direct implications
set up list U, of all unjustified functions
ifr < rmas
for each function f; in U,
set up list of justifications Cf
for each justifications J; in Cf
make assignmentsin J;
make_all_implications(r+1,7,4z)
if thereis one or several signal f in the circuit, which
assumes samelogic value V for all consistent justifications
Jx inCY thenlearning y; = V; isuniquely
determined in level r
make direct implications for all y; = V; inlevel r
if all justifications are inconsistent
learn given situation of value assignmentsin level r
is inconsistent

Figure 3: Recursive Learning Algorithm

Beginning at the point where direct implication cannot be
made (y, in this case), temporary values are injected into
the circuit for each choice of value assignments that would
justify the current node values. In this case, there are two
choices: settingeither d=1ore=1. Thetemporary assign-
ment is made, and then direct implications are made to set
all necessary assignments; thisis repeated for al choices.
In the example, thetwo choices and their necessary assign-
ments are marked with prime and double prime. If there
is an intersection of the necessary assignments for each
choi ce, thisbecomesanecessary assignment for al choices.
In the example, f = 1 for bothd =1 and e= 1. Giventhe
existence of theindirect implicationy = 1 = f = 1, the
ATPG search can immediately proceed to set f = 1, which
eliminates half the input search space. If, inturn, f isfed
by an OR gate, then the learning procedure can recurse,
attempting to discover further implications; thus, the name
recursive learning. The number of recursionsisreferred to
as the learning level or recursion level. Since the number
of temporary value assignments rises exponentialy with
the recursion level, recursive learning is operated with a
maximum recursion level, to limit the amount of learning
performed.

Thetime complexity is determined by the number of levels
of recursions and fan-ins. However the maximum number
of recursion levelsisbounded by thelevelsof logic. While
it is true that time complexity is exponentia in terms of
levels of recursion, the memory requirement is linear, in
terms of number of gates, asillustrated bel ow.

For the circuit in Figure 4, consider the primary output,
t = 1. We can invoke recursive learning to determine any
indirect implications of this value assignment. The value
t = 1 makes the gate GG7 unjustified. We enter level 1

Kk

9
292 e

Figure4: Levels of Recursive Learning
recursion with two possible justifications: J; = {n =
lLo==z}andJ, = {n =x,0=1}. Forn = 1,weobtan
i = j = 1 through direct implication. With: = 1 and
j = 1, we enter the second level of recursion, and obtain
two sets of justification. Forgate Gy, Js={a = 1,b = «}
or Js = {a = »,b = 1} arethe two possiblejustifications.
Through direct implication, we deduce { = 1. Similarly
with level 2 recursion, we can deduce that G, = 1 implies
G4 = 1. Thus, by direct implication, we obtainthat ¢ = 1
impliesq = 1. Similarly, witho = 1, wehavep = 1. In
either case, wehave s = 1, which isthe consequence of the
intersection implications, resulting from the two possible
justifications, J; and J,, a gate GG7. It can be seen that
theintermediate of implications, such as Gs = 1 implying
Gs = 1, are not learned because the only val ue assignment
a hand ist = 1. The indirect implications learned can
be very useful in ATPG. Given enough recursion level, it
can ediminate all backtracks and can be used to identify
redundant faults [11]. It may aso be noted that unlike
other learning methods, such as functiona learning [16],
recursive learning is self-guided. The algorithm guides
itself to those parts of circuit where useful learning can
occur.

3 TheProposed Algorithm

This section first introduces a c-cycle redundancy identifi-
cation algorithm. Then it is shown how it can be modified
to efficiently find sequential untestable faults.

3.1 Identifying c-Cycle Redundancy

The proposed redundancy identification algorithm (Proce-
dure 1) is asillustrated in Figure 5. Procedure 1 is com-
posed of two steps. Thefirst step performs sequential 0 and
1 analysis on every flip-flop. For every ling, a0-listand a
1-listiscomputed. TheO(1) list of line! storestheflip-flop
assignments that are necessary to set line! to 0(1). If the
effect of aflip-flop’s sequentia uncontrollability propaga-
tion reaches a line and makes it 0(1), then the flip-flop’s
current value is referred to in the line s O(1)-list. If aline
becomes unobservable, then the flip-flop’s current value is
referred to in bothits 0- and 1-lists.

For the circuit shown in Figure 6, Table 1 illustrates some

lines 0and 1-listsafter performing 0 and 1 implicationson
thetwo flip-flops, f and h. It isassumed that the sequential
uncontrollability analysis process begins at time frame 0.

Identifying_Redundancy (7,,)
[* T, = Maximum # of time frames */
/*1* meansline! in time frame */
Step 1:
For every flip-flop F; {
Sequential Imply F; = 0 over T}, time frames;
If aline!' becomes0(1)
then keep F; = 0inlinel"’s0(1)— list;
If aline!' becomesunobservable
then keep F; = Oinline?*’s0-list and 1 list;
Sequential Imply F; = 1 over T}, time frames;
If alinel* becomes0/1
then keep F; = 1inlinel"’s0/1list;
If aline!' becomesunobservable
then keep F; = 1inline!*’s0-list and 1 lists;
}Step 2
For every line* within 7}, time frames {
If line?*’s 0-list or 1-list has more than one flip-flops’
value assignments {
Get state S; (kept in{"’s O-list or 1-list);
Inject S; valuesinto the circuit;
Inject fault * s-a-1 or s-a-0 into al| the time
frames 5 < ¢ (for validation purpose);
Check current value assignments consistency by
using recursive learning;

}

Figure5: Procedure 1 — Identifying Redundancies

After step one, each line' sO-list and 1-list stores some flip-
flops value assignments or a state. The second step of
this algorithm checks whether such a state is consistent.
Thisis achieved by injecting the state into the circuit and
performing logicimplication. If aconflict occurs, thenitis
known that the stateisinconsistent. For alinel, if the state
stored in its O-list (1-list) isinconsistent, then fault | s-a1
(s-a0) isuntestable[6, 8].

The uncontrollability and unobservability propagationsare
valid only for the fault-free circuit. In general, they may
not bevalidin afaulty circuit. Thevaidation of the uncon-
trollability analysisis fault dependent. In procedure 1, the
uncontrollability analysis step (Step 1) gives the condition
for detection afault; and arecursive learning-based impli-
cation is used to check the consistency of the condition (a
state). When afault isidentified, the following validation
check is performed: first, injecting the fault into &l the
time frames that are involved in the above analysis steps;
second, performing the analysis again under the presence
of the fault. In [8], it is proven that, with the vaidation
check, all the faults identified by procedure 1 are c-cycle
redundant.

Figure 6: Find Conflict State by Direct Implication

For the circuit in Figure 6, if state {f = 1,h = 1} is
injected into the circuit and then logicimplicationsare per-
formed, a conflict occurs. Since state {f = 1,h = 1} is
referred to in the O-lists of lines a2, 52, ¢, g and in the 1-
listsd, h,1, j, k,itisknown that faultsa2, 2, ¢, ¢ Sa1 are
untestable, and that faults d, h, i, j, k s-a0 are untestable.
In fact, this example demonstrates the chief difference be-
tween Procedure 1 and FIRES. FIRES performs sequential
implication on one stem at atime. So it will not identify
untestabl e (e-cycle redundant) faults for which conflicting
value assignments on multiple lines are required. For the
circuit in Figure 6, FIRES can only identify faults «2 and
b2 s-a1 as untestable (c-cycle redundant).

time
frame O-list 1-list
c:{f=0r=1} c:{f=0r=1}
al: {f=0h=1} | d:{f=1Lh=1}
-1 bl1: {f =0,h =1}
b2:{f=1Lhrh=1}
a2:{f=1Lh=1}
e:{f=1hr=1} e:{f=1hr=1}
g {f=Lh=1} | g:{f=1h=1}
0 FAf=0r=1} | h:{f=1Lh=1}
i:{h =1} i {f=1Lh=1}
7 {f=1 JAf=Lhr=1
R{f=1Lr=0} | k:{f=1Lh=1}

Figure 7: Find Untestable Faults By Recursive Learning

Thetraditional 3-valuedlogicimplicationwill not find most
conflicts caused by a set of value assignments. In our ago-
rithm, arecursivelearning [11-13] -based logicimplication

procedure is used to find more inconsistent states. For the
circuit shown in Figure 7, direct logic implication will
not identify conflict value assignments {{ = 1,n = 1}.
Using recursive learning analysis, one can determine that
[= 1impliesn = 0. Therefore, the inconsistent state
{l =1, n = 1} will beidentified.

3.2 ldentifying Untestable Faults

The previous Section introduced a c-cycle redundancy
identification procedure. It can find redundant faults for
which conflict value assignments on multiplelines are re-
quired for detection. Removing the validation step from
the procedure, it can aso be used to find untestable faults.
This Section introduces an alternative implementation of
the above idea for identifying untestable faults. Figure 8
summarize the procedure (Procedure 2).

Identifying_Untestable(7,,)
* Trr, = Maximum # of time frames */
/* I meansline!l intime framez */

Step O:
Recursivelear ning pre-processing;
Step 1:

For everyflip-flop F; {
RL -based Sequential Imply F; = 0 over T,,;
If aline!* becomes0(1)
then keep F; = 0inlinel"’s0(1) -list;
If alinel* becomesunobservable
then keep F; = OinlineI*’s O-list and 1-list;
RL -based Sequential Imply F; =1 over Ty,;
If aline?’ becomes0(1)
then keep F; = Linline1"’s0(1)-list;
If alinel' becomesunobservable
then keep F; = 1inline{*’s0-list and 1-list;
}

Step 2:
For everyline I" within T,,, time frames{
If line!*’sO-list or 1-list has more than one
flip-flops' value assignments {
Inject S; valuesinto the circuit;
Check current value assignments
consistency by RL-Based implication;

}

Figure 8: Procedure 2 — Identifying Untestable Faults

The first step in Procedure 2 is a recursive learning pre-
processing step, as in [13]. Although it is necessary to
“pay" for the cost of thispre-processing, thefollowing two
facts make it worthwhile: first, because the entire analysis
and state verification process in Procedure 2 is performed
on the fault-free version of the circuit (see [6]), the infor-
mation learned in the pre-processing step is effective for
the sequential implication and state verification process.
Second, the iterative array model is used in the procedure.

Since all thetime frames have the same structure, the inter-
or intra- time frame learning results can be repeatedly used
over all other time frames.

For the circuit shown in Figure 7, by performing recursive
learning, indirectimplicationlinei = 1= j =0, = 0=
j=1j=0=i=1andj = 1= ¢ = Owill belearned.
The pre-processing step stores this information in lines i
and j. Later, when dealing with linei or j, theimplication
procedure will check and use this stored implication.
Theglobal implicationslearned can al so beused toimprove
the sequentia uncontrollability analysis procedure. 1n[8],
it is pointed out that because of the incompleteness of the
sequential uncontrollability analysis procedure, FUNI may
miss some untestable faults. Our recursive learning-based
uncontrollability analysis procedure has the potentia of
identifying untestable faults that will not beidentified by a
direct uncontrollability analysis procedure. This function
has not yet been implemented.

The main cost of this procedure is in the initial pre-
processing step. Since the global implicationslearned are
very helpful or even essentia to other steps in an ATPG
tool, the extra time spent by our procedure isjust the un-
controllability analysis and logic implicationstime.

4 Experimental Results

We used a prototype implementation of Procedure 1 and
Procedure 2 to identify ¢-cycle redundant and untestable
faultsinthel SCAS89 benchmark circuits. Table2 presents
a comparison with the ¢-cycle redundant faults identified
by FIRES, and the untestable faultsidentified by FUNI. In
Table 2, “# Unt" presents the number of untestable faults
found, and “# Red" presents the number of c¢-cycle re-
dundant faults found. Under “# Unt", “Proc 2" gives the
total number of untestablefaultsidentified by Procedure 2;
“Proc 2*" gives the number of untestable faults identified
by Procedure 2 but not identified by FUNI and FIRES. For
thesmaller circuits, since FUNI can find most illegal states,
Procedure 2 can perform no better than FUNI and FIRES.
But for larger circuits, about half of the untestable faults
identified by Procedure 2 are not found by FUNI or FIRES.
For thesmaller circuits, themaximum timeframesused are
9. For circuits S9234, S13207 and S15850, the maximum
timeframes used is 4.

Our resultsdemonstratethat the proposed redundancy iden-
tification algorithm finds a large number of ¢-cycle redun-
dant faults. Theoreticaly, our algorithm should be able
to identify all the redundant faultsidentified by FIRES. In
practice, only asmall recursion level can be used in recur-
sivelearning; it will not identify some redundant faultsthat
areidentified by FIRES. Procedure 1's ability depends on
therecursion leve of recursive learning and the number of
time frames used in sequentia implication. For example,

for circuit s510, with recursion level 2, 4 redundant faults
were identified; when the recursion level was increased to
3, 6 redundant faults were identified. [14] gives the condi-
tionsfor propagating unobservability through afanout line.
It has not been implemented in our programs. Whenimple-
mented, thisshould result in discovering of more redundant
faults.

Ckts # Red. Flt #Unt. Fit
Name Proc 1 FIRES | Proc2 | Proc2* FUNI
S344 5 0 5 0 5
S349 15 2 17 0 7
S382 2 17 2 0 13
S386 36 27 36 0 36
444 5 11 5 0 23
S510 4 0 4 0 0
S713 17 32 19 0 76
S953 8 0 9 0 0
S1423 3 5 3 3 0
S1494 0 1 0 0 14
S5378 393 366 406 176 398
S9234 201 270 201 89 93
S13207 644 893 847 225 617
S15850 352 328 369 328 629

Table 2: Experimental Results; Comparison with FIRES

and FUNI
Circuit Direct Imp RL Imp(L=1) RL Imp(L=2)
Name | #flt | CPU | #fit CPU #flt | CPU
S344 1 0.35 1 112 5 5.67
S349 0 0.76 17 224 17 10.99
S382 2 0.73 2 3.03 2 15.05
S386 25 3.98 36 9.58 36 47.26
444 2 1.01 5 391 5 17.08
S510 0 3.08 0 10.15 4 33.67
S713 0 0.70 5 1.65 19 5.35
S953 0 17.26 3 65.31 9 126.75
S1423 0 5.81 0 11.62 3 57.62
S5378 | 266 | 11491 | 353 | 274.06 | 406 | 974.02
S9234 | 112 | 9556 | 201 | 191.31 | 201 | 800.07
S13207 | 726 | 22550 | 847 | 610.19 * *
S15850 | 47 | 474.86 | 369 | 1407.09 * *

Table 3: Untestable Faults |dentified with Different
Recursion Levels

Table 3 shows the number of untestable faults identified
by Procedure 2 with different recursion levels. The unit
of the CPU times isin seconds. All the experiments are
performed on Ultrasparc workstations. It is clear that the
recursive learning-based implication can find more incon-
sistent states. For circuits S13207 and S15850, only recur-
sivelearning level 1 was performed.

It may be seen that some of the limitationsof FUNI are al-
leviated. For example, itisdifficult for FUNI to determine
when to stop the illegal state identification process. This
problem can be compounded by the fact that not al illegal
states identified by FUNI will lead to finding untestable

Figure9: Example: Usdess|llega State

For thecircuit shownin Figure 9, FUNI may haveto spend
some time to find that the states {f = 0, = 0} and
{f = 1,h = 1} areillega states. But since the effect of
the sequential implicationof f =0,h =0o0r f =1,k =
1 cannot reach any common lines, these states certainly
will not yield untestable faults. On the one hand, to find
additional untestablefaults,weneed to identify moreillega
states;, however, the process of finding additional illegal
states may be costly, asmoreillegal states may only lead to
illegal states that do not identify any untestable faults. In
extreme cases, even though no additional untestable faults
could be found by new illegal states, FUNI may till try to
find new illegal states.

5 Conclusions

Earlier recursivelearning was shown to be useful for com-
binational ATPG in being able discover redundant faults
in an efficient manner [11]. In this paper we show it can
be quite useful in identifying redundant faults in sequen-
tia circuit as well. The proposed algorithm can be easily
integrated into a synthesis system to remove redundancies.
Compared with FIRES, a state-of -the-art redundancy iden-
tification algorithm, the proposed algorithmismore genera
and can find redundant faults which require conflict value
assignmentson multiplelinesfor detection. Also presented
was a procedure to identify untestable faults. Since the
main cost of this procedureisin theinitial pre-processing
step, and the globa implications learned in this step are
very helpful or even essentia to other steps in an ATPG
tool, the extra time spent by our procedure is ssmply the
uncontrollability analysis and logic implicationstime.

In our current implementations, recursive learning is used
on al the lines of the circuits. Further work in progress
is on using recursive learning at higher level in the local
area of thecircuits. Thiswill allow the procedures to work
efficiently on the larger circuits.

6 Acknowledgement

Our specia thanks to Dr. Miron Abramovici for many
useful discussions and comments. We thank AT& T Bell

Laboratories for the use of GENTEST, and for providing
thefaultlistsof FIRES and FUNI. We also thank Dr. Alain
Dargelas of COMPASSfor using MOSA [17] to verify the
untestable faults.

References

[1] M. Abramovici, J.J. Kulikowski, and R.K. Roy, “The Best
Flip-Flops to Scan," Proc. Intn'l Test Conf., pp.166-173,
Oct. 1991.

[2] M.A. lyer and M. Abramovici, “Sequentialy Untestable
Faults Identified Without Search," Proc. Intn’l Test Conf.,
pp259-266, Oct. 1994,

[3] D.E. Long, M.A. lyer and M. Abramovici, “Identifying
Sequentially Untestable Faults Using Illegal States," Proc.
13th. IEEE VLS Test Symposium,pp.4-11, May 1995.

[4] K.T.Cheng, “On Removing Redundancy in Sequential Cir-
cuits," Proc. 28th. DAC, pp.164-169, June 1991.

[5] I.Pomeranz and S.M.Reddy, “Onldentifying Untestableand
Redundant FaultsIn SynchronousSequential Circuits," 12th
IEEE VLS Test Symposium, pp.8-14, April 1994.

[6] V.Agrawal and S. Chakradhar, “ Combinational ATPG The-
orems for Identifying Untestable Faults in Sequential Cir-
cuits," Proc. of Euro. Test Conf., Apr. 1993.

[7] H.Cho, G.D.Hachtel and F.Somenzi, “ Redundancy Identifi-
cation/Removal and Test Generation for Sequential Circuits
Using Implicit State Enumeration," |EEE Trans. on CAD,
vol.12,n0.7, pp.935-945, July 1993.

[8] M.A.lyer, “On Redundancy and Untestability In Sequential
Circuits," Ph.D. Thesis, Illinois I nstitute of Technology, July
1995.

[9] M.A. lyer and M. Abramovici, “One-Pass Redundancy
Identification and Removal," Proc. Intn’l Test Conf., pp807-
815, Sept. 1992.

[10] M. Abramovici and M.A. lyer, “Low-Cost Redundancy
Identification for Combinational Circuits," 7th. Intn’l. Conf.
on VLS Design, pp.315-318, Jan. 1994.

[11] W.Kunz and D.K.Pradhan, “Recursive Learning: A New
Implication Technique for Efficient Solution to CAD Prob-
lems - Test, Verification, and Optimization," IEEE Trans.
on CAD, vol.13,n0.9, pp.1143-1158, Sept. 1994.

[12] D.K.PradhanandW.Kunz, “Method For Circuit Verification
and Multi-Level Circuit Optimization Based On Structural
Implications,” U.S. Patent, No. 5526514, June 11, 1996.

[13] W.Kunz, “HANNIBAL: An Efficient Tool for Logic Ver-
ification Based on Recursive Learning,” Proc. ICCAD,
pp.538-543, Nov. 1993.

[14] M.A. lyer, D.E. Long and M. Abramovici, “ldentifying
Sequential Redundancies Without Search,” Proc. DAC 96,
June 1996.

[15] Randal E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation”, IEEE Trans. on Computers, vol.
¢-35, no.8, August 1986.

[16] R. Mukherjee, J. Jainand D. K. Pradhan“ Functional Learn-
ing: A New Approachto LearninginDigital Circuits", Proc.
IEEE VLS Test Symp., pp 122-127, April 1994.

[17] A. Dargelas, C. Gauthron, Y. Bertrand, “MOSA, A Multi-
ple Strategy Oriented Sequential ATPG", 1st European Test
Workshop, June 1996.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

