
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

Sequential Redundancy Identification Using Recursive Learning

Wanlin Cao Dhiraj K. Pradhan
Department of Computer Science

Texas A&M University
College Station, Texas 77843

Abstract

A sequential redundancy identification procedure is pre-
sented. Based on uncontrollability analysis and recursive
learning techniques, this procedure identifies c-cycle re-
dundancies in large circuits, without simplifying assump-
tions or state transition information. The proposed proce-
dure can identify redundant faults which require conflicting
assignments on multiple lines. In this sense, it is a gen-
eralization of FIRES, a state-of-the-art redundancy iden-
tification algorithm. A modification of the proposed pro-
cedure is also presented for identifying untestable faults.
Experimental results on ISCAS benchmarks demonstrate
that these two procedures can efficiently identify a large
portion of c-cycle redundant and untestable faults.

1 Introduction
Identifying sequentially untestable and redundant faults
is a formidable yet important problem. The presence of
untestable and redundant faults complicates automatic test
pattern generation (ATPG). Additionally, redundancies in-
duce many other detrimental effects [14]. Redundancies
increase chip area, power consumption, and often, propa-
gation delays in the circuit. Usually, redundancy implies
inefficient design. The presence of a redundant fault may
preclude detection of other faults in the circuit. Redun-
dancy identification is very useful in synthesis, since a
redundant fault defines a region that can be removed.
Using a traditional sequential ATPG tool, the search
space must be exhausted to prove that a targeted fault is
untestable. But even so, none of the practical state-of-the-
art sequential test generators can distinguish untestable and
redundant faults. Most previous methods for identifying
sequentially redundant and untestable faults [4] [5] [6] are
based on ATPG, requiring large amounts of computations.
Recently, two fault-independent sequential redundant and
untestable fault identification algorithms, FIRES [13] and
FUNI [3], have been proposed. Based on uncontrollability
and unobservability analysis, FIRES finds redundant faults

This work is supported in part by NSF under Grant MIP 94-06946 and

byONR under Grant N00014-92-1-1366.

whose activation or observation requires conflicting assign-
ments on fanout stems. FUNI identifies untestable faults,
whose detection requires illegal states as a necessary con-
dition. Here, by illegal states, it is meant states that cannot
be entered from an unknown state. Unlike ATPG-based
algorithms, these sequential implication-based algorithms
do not need to perform exhaustive search; thus, they can
efficiently find a large portion of redundant or untestable
faults.

A new algorithmfor identifyingsequential redundant faults
is proposed here. This algorithm uses a recursive learning-
improved implication. Recursive learning has been shown
to be quite useful for identifying combinationally redun-
dant faults [11]. Similar to FIRES, our algorithm identifies
sequential redundant faults by detecting conflicts in the
necessary state assignments. The proposed algorithm per-
forms sequential implication on every flip-flop, and checks
the conflicting states necessary for the detection of faults.
It can identify the conflict requirement on either a fanout
stem or on multiple lines. In this sense, the proposed al-
gorithm can be thought as a generalization of FIRES. Also
presented is a modification of the proposed algorithm which
can efficiently identify sequential untestable faults. Exper-
imental results depict that for some circuits, the proposed
algorithm outperforms previously reported results.

The paper is organized as follows. Section 2 reviews the
FIRES and FUNI algorithms, and recursive learning tech-
nique. Section 3 describes the proposed algorithm. Section
4 presents experimental results, and conclusions are pre-
sented in Section 5.

2 Preliminaries

This Section introduces the terminology used in the paper,
and provides a brief review of previous work on sequential
untestable and redundancy identification (RID) and recur-
sive learning technique. For RID, only techniques that are
based on uncontrollability and unobservability analysis are
reviewed. A detailed review of other RID techniques can
be found in [14].

0
0
0

1
1

0

*
* *

0(1) 1(0)
0(1)

0(1)

0(1)

Figure 1: Propagation of Uncontrollability and Unobserv-
ability

2.1 Identifying Combinational Redundancy

Let fX = a; Y = b; Z = cg be an illegal combination
of values in a combinational circuit. Faults for which this
combination of values is necessary for detection are redun-
dant. Let Sx, Sy and Sz be the sets of faults that require
X = a; Y = b and Z = c, for detection, respectively.
Because the conditions for Sx, Sy and Sz cannot be sat-
isfied simultaneously, faults in Sxyz = Sx

T
Sy

T
Sz are

redundant.
The faults that belong to Sx can be found by uncontrol-
lability and unobservability analysis [1, 2, 3]. Let 0(1)
denote the status of a line that is uncontrollable to value
0(1). Figure 1 illustrates the uncontrollability propagation
rules. If a gate input cannot be set to the uncontrolling
value of the gate, all the other inputs of the gate become
unobservable (denoted by *). Uncontrollability propa-
gates forward and backward, while unobservability only
propagates backward.
A general procedure to find the redundant faults caused by
an illegal combination fl1 = v1; l2 = v2; :::g is:
1. For every li = vi, imply li = vi to determine all lines
becoming uncontrollable or unobservable. Let Si be the
set of corresponding faults. (Note that the implications are
performed separately for each value.)
2. The redundant faults caused by a given illegal combina-
tion are in the set S =

T
i Si.

In [10], a combinational redundant fault identification al-
gorithm, FIRE, was proposed. FIRE finds combinationally
redundant faults by performing 0 and 1 analysis on every
fanout stem. If a line is set to 0(1) by the propagation of
both 0 and 1 on a stem, then a s-a-1 (s-a-0) fault on this line
is redundant. Both faults on a line marked as unobservable
by propagating both 0 and 1 are redundant.

2.2 Identifying Sequentially Redundant and
Untestable Faults

In sequential circuits, untestability and redundancy are two
different concepts. Several different definitions for sequen-
tial untestability and redundancy can be found in literature;
this paper uses the definitions contained in [5].
Definition 1: A fault f is said to be detectable if there exists
an input sequence I such that for every pair of initial states

S and Sf of the fault-free and faulty circuit, respectively,
the response Z(I; S) of the fault-free circuit to the input
sequence I is different from the response Zf

(I; Sf
) of the

faulty circuit (at some time on some output).
Definition 2: A fault is untestable if it is not detectable.
Definition 3: A fault is partially testable if there exists an
initial state Sf of the faulty circuit and an input sequence
I such that for every fault-free initial state S, the response
of the fault-free circuit to I, starting from S; Z(I; S), is
different from the response of the faulty circuit starting
from Sf ; Zf

(I; Sf
). (This definition differs from that in

[5], in that it includes testable faults. A fault is testable if it
is partially testable for all initial states of the faulty circuit.)
Definition 4: A fault is redundant if it is not partially
testable.
The concept of c-cycle redundancy [14] is a generalization
of the conventional redundancy defined above.
Definition 5: Consider the set of states fScg reachable
after powering up the faulty circuit and applying any se-
quence of c input vectors. (Note that fScg shrinks as c

increases.) Then a fault is c�cycle redundant if it is not
partially testable under the assumption that the initial states
of the faulty circuit are restricted to fScg.
In the following discussion, the iterative array model is
used to represent the sequential circuit. The combina-
tional noncontrolling and unobservability analysis [9, 10]
is extended to sequential circuits by adding the flip-flop
propagation rule. When uncontrollability/unobservability
propagates forward (backward) through a flip-flop, it en-
ters the next (previous) time frame. In sequential circuits,
unobservability propagation is different from that of combi-
national circuits. Before propagating unobservability from
the output of a gate to all its inputs, it must be ensured
that multiple fault-effects from that input, in different time
frames, cannot reach a primary output. Otherwise, faults
that can be detected by (sequential) multiple path sensiti-
zation would be marked as unobservable.
In [14], a sequential redundancy identification procedure,
FIRES, was proposed. FIRES applies sequential uncon-
trollability/unobservability on every fanout stem and finds
c-cycle redundant faults for which a conflicting value as-
signment on the stem is necessary for detection. Since a
fault is present in every time frame, a validation procedure
is used to guarantee that the uncontrollability and unob-
servability propagation is not invalidated by the fault. The
process of propagating uncontrollability and unobservabil-
ity to determine the uncontrollable and unobservable faults
is referred to as sequential implication. In [8], it is proven
that a fault identified by FIRES is c-cycle redundant.
In [3], FUNI, a sequential untestable identification algo-
rithm, was proposed. FUNI is composed of two steps.
First, an implicit state enumeration algorithm, based on the

a=1’

c=1’’

f=1’’
f=1’

 d=1’

 e=1’’

 y=1 !

Figure 2: Recursive Learning Example

Binary Decision Diagram (BDD) [15], is used to identify
illegal states. Then, for every illegal state, the sequential
implication procedure is applied to find an untestable fault,
by showing that its detection requires an illegal state as a
necessary condition. To reduce the complexity of creat-
ing BDD and the implicit state enumeration process, FUNI
adopts a function-partitioning technique to divide the prob-
lem. But for some circuits, because the size of BDD can
be exponentially large, the memory requirement may still
pose a problem.
FUNI only identifies untestable faults; it does not need
the validation procedure in FIRES [14]. FUNI first finds
illegal states, then analyzes every illegal state to determine
the faults whose detection requires the fault-free circuit to
enter that state. This runs the risk of analyzing many illegal
states that are “harmless", that is, they are not necessary
for detecting any faults. In contrast, we first determine
the faults whose detection require a certain state; then we
use recursive learning to attempt to justify that state. If the
justification fails, the state is illegal, and the faults requiring
it are untestable.

2.3 Recursive Learning

ATPG search attempts to justify a given value assignment
by searching for other node value assignments necessary
to maintain the logic consistency of the circuit. These are
known as necessary assignments For example, in order to
justify a 1 at the output of an AND gate,all of its inputs must
be assigned the value 1. In standard ATPG search, these
assignments are discovered by making direct implications.
A direct implication is a logical consequence of the truth
table for the logic function. For example, in the case of
a 1 on an AND gate, the only entry in the truth table for
which it is true for all inputs assigned the value 1. Indirect
implications are logical consequences of that do not directly
follow from the logic function truth table, but are caused
by the circuit structure.
An example is shown in Figure 2. If the assignment y = 1 is
made, it is not possible to make any direct implication about
values a, c, d, e, or f. However, there exists the indirect
implication that y = 1) f = 1. This can be discovered
by using recursive learning [11, 12]. The outline of the
algorithm is shown in Figure 3.

r = 0
make all implications(r,rmax) f

make all direct implications
set up list Ur of all unjustified functions
if r < rmax

for each function fi in Ur

set up list of justifications Cf
r

for each justifications Ji in Cf
r

make assignments in Ji
make all implications(r+1,rmax)

if there is one or several signal f in the circuit, which
assumes same logic value V for all consistent justifications
Jk in Cf

r then learning yi = Vi is uniquely
determined in level r
make direct implications for all yi = Vi in level r

if all justifications are inconsistent
learn given situation of value assignments in level r
is inconsistent

g

Figure 3: Recursive Learning Algorithm

Beginning at the point where direct implication cannot be
made (y, in this case), temporary values are injected into
the circuit for each choice of value assignments that would
justify the current node values. In this case, there are two
choices: setting either d = 1 or e = 1. The temporary assign-
ment is made, and then direct implications are made to set
all necessary assignments; this is repeated for all choices.
In the example, the two choices and their necessary assign-
ments are marked with prime and double prime. If there
is an intersection of the necessary assignments for each
choice, this becomes a necessary assignment for all choices.
In the example, f = 1 for both d = 1 and e = 1. Given the
existence of the indirect implication y = 1) f = 1, the
ATPG search can immediately proceed to set f = 1, which
eliminates half the input search space. If, in turn, f is fed
by an OR gate, then the learning procedure can recurse,
attempting to discover further implications; thus, the name
recursive learning. The number of recursions is referred to
as the learning level or recursion level. Since the number
of temporary value assignments rises exponentially with
the recursion level, recursive learning is operated with a
maximum recursion level, to limit the amount of learning
performed.
The time complexity is determined by the number of levels
of recursions and fan-ins. However the maximum number
of recursion levels is bounded by the levels of logic. While
it is true that time complexity is exponential in terms of
levels of recursion, the memory requirement is linear, in
terms of number of gates, as illustrated below.
For the circuit in Figure 4, consider the primary output,
t = 1. We can invoke recursive learning to determine any
indirect implications of this value assignment. The value
t = 1 makes the gate G7 unjustified. We enter level 1

p

t

s

G

G

G

G

G

G

G

G

4

3

2

1

5

7

6

8

n

m

c

a

b

d

e

f

g

h

l

k

j
i

o

q

Figure 4: Levels of Recursive Learning
recursion with two possible justifications : J1 = fn =

1; o = xg and J2 = fn = x; o = 1g. For n = 1, we obtain
i = j = 1 through direct implication. With i = 1 and
j = 1, we enter the second level of recursion, and obtain
two sets of justification. For gate G1, J3 = fa = 1; b = xg

or J4 = fa = x; b = 1g are the two possible justifications.
Through direct implication, we deduce l = 1. Similarly
with level 2 recursion, we can deduce that G2 = 1 implies
G4 = 1. Thus, by direct implication, we obtain that t = 1
implies q = 1. Similarly, with o = 1, we have p = 1. In
either case, we have s = 1, which is the consequence of the
intersection implications, resulting from the two possible
justifications, J1 and J2, at gate G7. It can be seen that
the intermediate of implications, such as G5 = 1 implying
G6 = 1, are not learned because the only value assignment
at hand is t = 1. The indirect implications learned can
be very useful in ATPG. Given enough recursion level, it
can eliminate all backtracks and can be used to identify
redundant faults [11]. It may also be noted that unlike
other learning methods, such as functional learning [16],
recursive learning is self-guided. The algorithm guides
itself to those parts of circuit where useful learning can
occur.

3 The Proposed Algorithm
This section first introduces a c-cycle redundancy identifi-
cation algorithm. Then it is shown how it can be modified
to efficiently find sequential untestable faults.

3.1 Identifying c-Cycle Redundancy

The proposed redundancy identification algorithm (Proce-
dure 1) is as illustrated in Figure 5. Procedure 1 is com-
posed of two steps. The first step performs sequential 0 and
1 analysis on every flip-flop. For every line, a 0-list and a
1-list is computed. The 0(1) list of line l stores the flip-flop
assignments that are necessary to set line l to 0(1). If the
effect of a flip-flop’s sequential uncontrollability propaga-
tion reaches a line and makes it 0(1), then the flip-flop’s
current value is referred to in the line’s 0(1)-list. If a line
becomes unobservable, then the flip-flop’s current value is
referred to in both its 0- and 1-lists.
For the circuit shown in Figure 6, Table 1 illustrates some

lines’ 0 and 1-lists after performing 0 and 1 implications on
the two flip-flops, f and h. It is assumed that the sequential
uncontrollability analysis process begins at time frame 0.

Identifying Redundancy (Tm)
/* Tm = Maximum # of time frames */
/*li means line l in time frame i */

Step 1:
For every flip-flop Fi f

Sequential Imply Fi = 0 over Tm time frames;
If a line li becomes 0(1)

then keep Fi = 0 in line li’s 0(1)� list;
If a line li becomes unobservable

then keep Fi = 0 in line li’s 0-list and 1 list;
Sequential Imply Fi = 1 over Tm time frames;

If a line li becomes 0/1
then keep Fi = 1 in line li’s 0/1 list;

If a line li becomes unobservable
then keep Fi = 1 in line li’s 0-list and 1 lists;

g
Step 2:
For every line li within Tm time frames f

If line li’s 0-list or 1-list has more than one flip-flops’
value assignments f

Get state Sj (kept in li’s 0-list or 1-list);
Inject Sj values into the circuit;
Inject fault li s-a-1 or s-a-0 into all the time
frames j < i (for validation purpose);
Check current value assignments consistency by
using recursive learning;
g

g

Figure 5: Procedure 1 – Identifying Redundancies

After step one, each line’s 0-list and 1-list stores some flip-
flops’ value assignments or a state. The second step of
this algorithm checks whether such a state is consistent.
This is achieved by injecting the state into the circuit and
performing logic implication. If a conflict occurs, then it is
known that the state is inconsistent. For a line l, if the state
stored in its 0-list (1-list) is inconsistent, then fault l s-a-1
(s-a-0) is untestable [6, 8].
The uncontrollability and unobservability propagations are
valid only for the fault-free circuit. In general, they may
not be valid in a faulty circuit. The validation of the uncon-
trollability analysis is fault dependent. In procedure 1, the
uncontrollability analysis step (Step 1) gives the condition
for detection a fault; and a recursive learning-based impli-
cation is used to check the consistency of the condition (a
state). When a fault is identified, the following validation
check is performed: first, injecting the fault into all the
time frames that are involved in the above analysis steps;
second, performing the analysis again under the presence
of the fault. In [8], it is proven that, with the validation
check, all the faults identified by procedure 1 are c-cycle
redundant.

D Q

D Q

k

d

f

h

g

e
i

j

a1

b1

b2

a2

a

b

c

Figure 6: Find Conflict State by Direct Implication

For the circuit in Figure 6, if state ff = 1; h = 1g is
injected into the circuit and then logic implications are per-
formed, a conflict occurs. Since state ff = 1; h = 1g is
referred to in the 0-lists of lines a2; b2; e; g and in the 1-
lists d; h; i; j; k, it is known that faults a2; b2; e; g s-a-1 are
untestable, and that faults d; h; i; j; k s-a-0 are untestable.
In fact, this example demonstrates the chief difference be-
tween Procedure 1 and FIRES. FIRES performs sequential
implication on one stem at a time. So it will not identify
untestable (c-cycle redundant) faults for which conflicting
value assignments on multiple lines are required. For the
circuit in Figure 6, FIRES can only identify faults a2 and
b2 s-a-1 as untestable (c-cycle redundant).

time
frame 0-list 1-list

c : ff = 0; h = 1g c : ff = 0; h = 1g
a1 : ff = 0; h = 1g d : ff = 1; h = 1g

-1 b1 : ff = 0; h = 1g
b2 : ff = 1; h = 1g
a2 : ff = 1; h = 1g
e : ff = 1; h = 1g e : ff = 1; h = 1g
g : ff = 1; h = 1g g : ff = 1; h = 1g

0 f : ff = 0; h = 1g h : ff = 1; h = 1g
i : fh = 1g i : ff = 1; h = 1g
j : ff = 1g j : ff = 1; h = 1g

h : ff = 1; h = 0g k : ff = 1; h = 1g

Table 1: Example: 0-list, 1-list

D Q

D Q

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

Figure 7: Find Untestable Faults By Recursive Learning

The traditional 3-valued logic implication will not find most
conflicts caused by a set of value assignments. In our algo-
rithm, a recursive learning [11-13] -based logic implication

procedure is used to find more inconsistent states. For the
circuit shown in Figure 7, direct logic implication will
not identify conflict value assignments fl = 1; n = 1g.
Using recursive learning analysis, one can determine that
l = 1 implies n = 0. Therefore, the inconsistent state
fl = 1; n = 1g will be identified.

3.2 Identifying Untestable Faults

The previous Section introduced a c-cycle redundancy
identification procedure. It can find redundant faults for
which conflict value assignments on multiple lines are re-
quired for detection. Removing the validation step from
the procedure, it can also be used to find untestable faults.
This Section introduces an alternative implementation of
the above idea for identifying untestable faults. Figure 8
summarize the procedure (Procedure 2).

Identifying Untestable(Tm)
/* Tm = Maximum # of time frames */
/* li means line l in time frame i */

Step 0:
Recursive learning pre-processing;
Step 1:
For every flip-flop Fi f

RL-based Sequential Imply Fi = 0 over Tm;
If a line li becomes 0(1)

then keep Fi = 0 in line li’s 0(1) -list;
If a line li becomes unobservable

then keep Fi = 0 in line li’s 0-list and 1-list;
RL-based Sequential Imply Fi = 1 over Tm;
If a line li becomes 0(1)

then keep Fi = 1 in line li’s 0(1)-list;
If a line li becomes unobservable

then keep Fi = 1 in line li’s 0-list and 1-list;
g
Step 2:
For every line li within Tm time framesf

If line li’s 0-list or 1-list has more than one
flip-flops’ value assignments f

Inject Sj values into the circuit;
Check current value assignments
consistency by RL-Based implication;
g

g

Figure 8: Procedure 2 – Identifying Untestable Faults

The first step in Procedure 2 is a recursive learning pre-
processing step, as in [13]. Although it is necessary to
“pay" for the cost of this pre-processing, the following two
facts make it worthwhile: first, because the entire analysis
and state verification process in Procedure 2 is performed
on the fault-free version of the circuit (see [6]), the infor-
mation learned in the pre-processing step is effective for
the sequential implication and state verification process.
Second, the iterative array model is used in the procedure.

Since all the time frames have the same structure, the inter-
or intra- time frame learning results can be repeatedly used
over all other time frames.
For the circuit shown in Figure 7, by performing recursive
learning, indirect implication line i = 1) j = 0, i = 0)
j = 1, j = 0) i = 1 and j = 1) i = 0 will be learned.
The pre-processing step stores this information in lines i

and j. Later, when dealing with line i or j, the implication
procedure will check and use this stored implication.
The global implications learned can also be used to improve
the sequential uncontrollability analysis procedure. In [8],
it is pointed out that because of the incompleteness of the
sequential uncontrollability analysis procedure, FUNI may
miss some untestable faults. Our recursive learning-based
uncontrollability analysis procedure has the potential of
identifying untestable faults that will not be identified by a
direct uncontrollability analysis procedure. This function
has not yet been implemented.
The main cost of this procedure is in the initial pre-
processing step. Since the global implications learned are
very helpful or even essential to other steps in an ATPG
tool, the extra time spent by our procedure is just the un-
controllability analysis and logic implications time.

4 Experimental Results

We used a prototype implementation of Procedure 1 and
Procedure 2 to identify c-cycle redundant and untestable
faults in the ISCAS 89 benchmark circuits. Table 2 presents
a comparison with the c-cycle redundant faults identified
by FIRES, and the untestable faults identified by FUNI. In
Table 2, “# Unt" presents the number of untestable faults
found, and “# Red" presents the number of c-cycle re-
dundant faults found. Under “# Unt", “Proc 2" gives the
total number of untestable faults identified by Procedure 2;
“Proc 2�" gives the number of untestable faults identified
by Procedure 2 but not identified by FUNI and FIRES. For
the smaller circuits, since FUNI can find most illegal states,
Procedure 2 can perform no better than FUNI and FIRES.
But for larger circuits, about half of the untestable faults
identified by Procedure 2 are not found by FUNI or FIRES.
For the smaller circuits, the maximum time frames used are
9. For circuits S9234, S13207 and S15850, the maximum
time frames used is 4.
Our results demonstrate that the proposed redundancy iden-
tification algorithm finds a large number of c-cycle redun-
dant faults. Theoretically, our algorithm should be able
to identify all the redundant faults identified by FIRES. In
practice, only a small recursion level can be used in recur-
sive learning; it will not identify some redundant faults that
are identified by FIRES. Procedure 1’s ability depends on
the recursion level of recursive learning and the number of
time frames used in sequential implication. For example,

for circuit s510, with recursion level 2, 4 redundant faults
were identified; when the recursion level was increased to
3, 6 redundant faults were identified. [14] gives the condi-
tions for propagating unobservability through a fanout line.
It has not been implemented in our programs. When imple-
mented, this should result in discovering of more redundant
faults.

Ckts # Red. Flt # Unt. Flt
Name Proc 1 FIRES Proc 2 Proc 2� FUNI
S344 5 0 5 0 5
S349 15 2 17 0 7
S382 2 17 2 0 13
S386 36 27 36 0 36
S444 5 11 5 0 23
S510 4 0 4 0 0
S713 17 32 19 0 76
S953 8 0 9 0 0
S1423 3 5 3 3 0
S1494 0 1 0 0 14
S5378 393 366 406 176 398
S9234 201 270 201 89 93

S13207 644 893 847 225 617
S15850 352 328 369 328 629

Table 2: Experimental Results: Comparison with FIRES
and FUNI

Circuit Direct Imp RL Imp(L=1) RL Imp(L=2)
Name # flt CPU # flt CPU # flt CPU
S344 1 0.35 1 1.12 5 5.67
S349 0 0.76 17 2.24 17 10.99
S382 2 0.73 2 3.03 2 15.05
S386 25 3.98 36 9.58 36 47.26
S444 2 1.01 5 3.91 5 17.08
S510 0 3.08 0 10.15 4 33.67
S713 0 0.70 5 1.65 19 5.35
S953 0 17.26 3 65.31 9 126.75
S1423 0 5.81 0 11.62 3 57.62
S5378 266 114.91 353 274.06 406 974.02
S9234 112 95.56 201 191.31 201 800.07
S13207 726 225.50 847 610.19 * *
S15850 47 474.86 369 1407.09 * *

Table 3: Untestable Faults Identified with Different
Recursion Levels

Table 3 shows the number of untestable faults identified
by Procedure 2 with different recursion levels. The unit
of the CPU times is in seconds. All the experiments are
performed on Ultrasparc workstations. It is clear that the
recursive learning-based implication can find more incon-
sistent states. For circuits S13207 and S15850, only recur-
sive learning level 1 was performed.
It may be seen that some of the limitations of FUNI are al-
leviated. For example, it is difficult for FUNI to determine
when to stop the illegal state identification process. This
problem can be compounded by the fact that not all illegal
states identified by FUNI will lead to finding untestable

faults.

D Q

D Q

a

b

c

d

e

f

g

h

i

j

k

l

n

o

p

q

m

Figure 9: Example: Useless Illegal State

For the circuit shown in Figure 9, FUNI may have to spend
some time to find that the states ff = 0; h = 0g and
ff = 1; h = 1g are illegal states. But since the effect of
the sequential implication of f = 0, h = 0 or f = 1, h =

1 cannot reach any common lines, these states certainly
will not yield untestable faults. On the one hand, to find
additional untestable faults,we need to identify more illegal
states; however, the process of finding additional illegal
states may be costly, as more illegal states may only lead to
illegal states that do not identify any untestable faults. In
extreme cases, even though no additional untestable faults
could be found by new illegal states, FUNI may still try to
find new illegal states.

5 Conclusions
Earlier recursive learning was shown to be useful for com-
binational ATPG in being able discover redundant faults
in an efficient manner [11]. In this paper we show it can
be quite useful in identifying redundant faults in sequen-
tial circuit as well. The proposed algorithm can be easily
integrated into a synthesis system to remove redundancies.
Compared with FIRES, a state-of-the-art redundancy iden-
tification algorithm, the proposed algorithm is more general
and can find redundant faults which require conflict value
assignments on multiple lines for detection. Also presented
was a procedure to identify untestable faults. Since the
main cost of this procedure is in the initial pre-processing
step, and the global implications learned in this step are
very helpful or even essential to other steps in an ATPG
tool, the extra time spent by our procedure is simply the
uncontrollability analysis and logic implications time.
In our current implementations, recursive learning is used
on all the lines of the circuits. Further work in progress
is on using recursive learning at higher level in the local
area of the circuits. This will allow the procedures to work
efficiently on the larger circuits.

6 Acknowledgement
Our special thanks to Dr. Miron Abramovici for many
useful discussions and comments. We thank AT&T Bell

Laboratories for the use of GENTEST, and for providing
the fault lists of FIRES and FUNI. We also thank Dr. Alain
Dargelas of COMPASS for using MOSA [17] to verify the
untestable faults.

References
[1] M. Abramovici, J.J. Kulikowski, and R.K. Roy, “The Best

Flip-Flops to Scan," Proc. Intn’l Test Conf., pp.166-173,
Oct. 1991.

[2] M.A. Iyer and M. Abramovici, “Sequentially Untestable
Faults Identified Without Search," Proc. Intn’l Test Conf.,
pp259-266, Oct. 1994,

[3] D.E. Long, M.A. Iyer and M. Abramovici, “Identifying
Sequentially Untestable Faults Using Illegal States," Proc.
13th. IEEE VLSI Test Symposium,pp.4-11, May 1995.

[4] K.T.Cheng, “On Removing Redundancy in Sequential Cir-
cuits," Proc. 28th. DAC, pp.164-169, June 1991.

[5] I.Pomeranz and S.M.Reddy, “On Identifying Untestable and
RedundantFaults In SynchronousSequentialCircuits," 12th
IEEE VLSI Test Symposium, pp.8-14, April 1994.

[6] V. Agrawal and S. Chakradhar, “Combinational ATPG The-
orems for Identifying Untestable Faults in Sequential Cir-
cuits," Proc. of Euro. Test Conf., Apr. 1993.

[7] H.Cho, G.D.Hachtel and F.Somenzi, “Redundancy Identifi-
cation/Removal and Test Generation for Sequential Circuits
Using Implicit State Enumeration," IEEE Trans. on CAD,
vol.12,no.7, pp.935-945, July 1993.

[8] M.A. Iyer, “On Redundancyand Untestability In Sequential
Circuits," Ph.D. Thesis, Illinois Institute of Technology, July
1995.

[9] M.A. Iyer and M. Abramovici, “One-Pass Redundancy
Identification and Removal," Proc. Intn’l Test Conf., pp807-
815, Sept. 1992.

[10] M. Abramovici and M.A. Iyer, “Low-Cost Redundancy
Identification for Combinational Circuits," 7th. Intn’l. Conf.
on VLSI Design, pp.315-318, Jan. 1994.

[11] W.Kunz and D.K.Pradhan, “Recursive Learning: A New
Implication Technique for Efficient Solution to CAD Prob-
lems - Test, Verification, and Optimization," IEEE Trans.
on CAD, vol.13,no.9, pp.1143-1158, Sept. 1994.

[12] D.K.Pradhan and W.Kunz, “Method For Circuit Verification
and Multi-Level Circuit Optimization Based On Structural
Implications," U.S. Patent, No. 5526514, June 11, 1996.

[13] W.Kunz, “HANNIBAL: An Efficient Tool for Logic Ver-
ification Based on Recursive Learning," Proc. ICCAD,
pp.538-543, Nov. 1993.

[14] M.A. Iyer, D.E. Long and M. Abramovici, “Identifying
Sequential Redundancies Without Search," Proc. DAC 96,
June 1996.

[15] Randal E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation", IEEE Trans. on Computers, vol.
c-35, no.8, August 1986.

[16] R. Mukherjee, J. Jain and D. K. Pradhan “Functional Learn-
ing: A New Approach to Learning in Digital Circuits",Proc.
IEEE VLSI Test Symp., pp 122-127, April 1994.

[17] A. Dargelas, C. Gauthron, Y. Bertrand, “MOSA, A Multi-
ple Strategy Oriented Sequential ATPG", 1st European Test
Workshop, June 1996.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

