HETEROGENEOUS BUILT-IN RESILIENCY OF APPLICATION SPECIFIC
PROGRAMMABLE PROCESSORS *

Kyosun Kim, Ramesh Karri
Department of ECE
University of Massachusetts

Ambherst, MA 01002

{karri,kkim } @ecs.umass.edu

Abstract - Using the flezibility provided by multi-
ple functionalities we have developed a new approach
for permanent fauli-tolerance: Heterogeneous Buili-
In-Resiliency (HBIR). HBIR processor synthesis tm-
poses several unique tasks on the synthesis process: (i)
latency determination targeting k-unit fault-tolerance,
(i) application-to-faulty-unit matching and (iii) HBIR
scheduling and assignment algorithms. We address
each of them and demonstrate the effectiveness of the
overall approach, the synthesis algorithms, and soft-
ware implementations on a number of designs.

1 Introduction

Application Specific Programmable Processors (ASPP
s) provide efficient implementation for any of N spec-
ified functionalities. ASPPs preserve all the advan-
tages of full custom designs, while providing multiple
functionalities and flexibility during the design and
effective usage of the ASPP circuits. For example,
the ASPP in figure 1 implements a seventh order IIR
filter (IIR7) and two versions of the volterra filter
(VOLTERRA).

s '" - | e
subé H addsy I

i T H ‘
H =) \

Figure 1: An example ASPP microarchitecture imple-
menting seventh order IIR and VOLTERRA filters

The flexibility and redundancy inherent in a ASPP
design is an excellent source for providing transient
and/or permanent fault tolerance with no or low over-
head. One can program an ASPP to execute the ap-
plications which do not use the faulty units. For ex-

*This research was partially supported by SAMSUNG Elec-
tronics Co., Ltd.

ICCAD '96
1063-6757/96 $5.00 O 1996 |IEEE

Miodrag Potkonjak
Department of Computer Science
University of California

Los Angeles, CA 90095

miodrag@cs.ucla.edu

ample, as shown in table 1, one of the versions of the
VOLTERRA filter is still operational in the presence
of a single faulty unit. In cases when limited repair
is economically feasible, one can program an ASPP to
implement an application which requires the smallest
number of repair steps.

application add24 sub24 | mult48
sch | O 1 0 1 0 1
ITR7 L VI VvV V|V
VOLTERRA | 1 v v
2 |V v
Table 1: Functional units used by IIR7 and

VOLTERRA applications

In this paper, we present a behavioral synthesis ap-
proach for incorporating such Heterogeneous Built-
In Resiliency (HBIR) into processors and present
algorithms for k-unit fault-tolerant HBIR processor
synthesis and discuss the relationship between ASPPs,
degree of fault-tolerance and area and performance
overheads.

2 HBIR: A Motivating Example

Towards illustrating the key concepts of heteroge-
neous built-in resiliency (HBIR) consider three
example control data flow graphs (CDFGs) shown in
figures 2(a)-(c). Also, assume that (i) all operations
finish in a single cycle, (ii) the applications have iden-
tical word lengths and (iil) each application is imple-
mented in three clock cycles.

If implemented as a dedicated ASIC, the CDFG in
figure 2(a) requires three adders and three multipli-
ers, and the CDFG in figure 2(b) requires one adder
and two multipliers. Similarly, the CDFG in figure
2(c) requires two adders and one multiplier. How-
ever, these dedicated ASICs cannot tolerate any fab-
rication time or in-operation functional unit failures.
Consider an alternate approach wherein these three
applications are implemented as an ASPP that can be
programmed to run any one of these applica-
tions at any given time. This ASPP requires three
adders and three multipliers. What are the potential

090 apap Q8§
%8 % 5 P
566 6 6 5 b

{AL A2, A3,
M1 M2 Mg (ALMILM2{A2 A3 M3} {ALM1)

{A2, M2}
(a) (b) (c) (d) (e

Figure 2: Heterogeneous Built-In Resiliency

benefits of such a multi-functional processor? Consider
a hardware allocation in table 2.

Hardware Tolerate %Util’n
dfg | Allocation Faults in + *
2a | al,a2,a3,ml,m2,m3 - 44 | 44

2b | al,ml,m2
2¢ | a2,a3,m3

a2,a3,m3 30 | 26
al,ml,m2 | 26 | 30

Table 2: Hardware allocation for 1-unit fault tolerance

e If all modules are operational, program the pro-
cessor to implement the CDFG in figure 2(a).

e If adder a2, adder a3, or multiplier m3 is faulty
program the processor to implement the CDFG
in figure 2(b).

e Similarly, in the presence of a faulty al, m1 or m2,
program the processor to implement the CDFG in
figure 2(c).

Note that applications 2(b) and 2(c) tolerate three
single-unit faults each. In addition they can tolerate
a few two-unit and three-unit faults.

The case of 2-unit fault tolerance is more complex.
There are 15 different ways in which two of these
units can fail. The schedule in figure 2(b) can tol-
erate only one of the three possible two-adder-unit
faults. Similarly, the schedule in figure 2(c) can toler-
ate one of the three possible two-multiplier-unit faults.
In order to tolerate all possible two-adder-unit faults,
at least three schedules similar to figure 2(b) with
different operator-to-application assignments are re-
quired. Similarly, three schedules similar to figure 2(c)
but with different operator-to-application assignments
are required to tolerate all possible two-multiplier-unit
faults. The two-unit faults and the schedules that tol-
erate them are summarized in table 3. Notice that
three of the two unit faults ((a2, m3), (al, m2), and
(a3, m1)) are tolerated by more than one schedule.
The interconnection and controller overhead of the
HBIR ASPP increases with an increase in the number
of schedules implemented on it. The number of im-
plemented schedules can be reduced without compro-
mising the k-unit fault-tolerance of the ASPP by re-
ducing the hardware requirements of the implemented
application schedules. This can be accomplished by

Hardware %Util’n

dfg | Allocation | Tolerate Faults in + *

2a | al,a2,a3 - 44 | 44
ml,m2,m3
2b | a3,ml,m2
2b | a2,ml1,m3
2b | al,m2,m3

(al,a2),(al,m3),(a2,m3) 44 | 30
(al,a3),(al,m2),(a3,m2) 44 | 30
(a2,a3),(a2,m1),(a3,m1) 44 | 30

2¢ | a2,a3,m3 (m1,m2),(al,m1),(al,m2) | 30 | 44
2¢ | al,a2,m2 (m1,m3),(a3,m1),(a3,m3) | 30 | 44
2¢ | al,a3,ml (m2,m3),(a2,m2),(a2,m3) | 30 | 44

Table 3: Hardware allocation for 2-unit fault tolerance

increasing the latency of some application. If the la-
tencies of the CDFGs in figures 2(b) and (c) are in-
creased to four as shown in figures 2 (d) and (e), their
hardware requirements decrease by one multipher and
one adder, respectively.

Also, the number of implemented schedules required
for two-unit fault-tolerance is reduced from six to
three. The resulting hardware allocation is summa-
rized in table 4. The number of schedules can be

Hardware %Util’n
dfg | Allocation | Tolerate Faults in + *
2a | al,a2,a3 - 44 | 44
ml,m2,m3
2d | al,ml (a2,a3),(a2,m2),(a2,m3) 28 | 28
(m2,m3),(a3,m2),(a2,m3)
2d | a2,m2 (al,a3),(al,m1),(al,m3) 28 | 28
(m1,m3),(a3,m1),(a3,m3)
2e | a3,m3 (al,a2),(al,m1),(al,m2) 28 | 28
(m1,m2),(a2,m1),(a2,m2)

Table 4: Trade-off between number of schedules and
performance degradation

also reduced by adding more spare hardware units in
addition to those required.

3 Related Research

The most relevant related work can be traced along
the two lines of research and development: behavioral
synthesis and fault tolerance techniques.

Behavioral synthesis has been an active area of re-
search for more than two decades [3, 8], and numerous
outstanding systems have been built targeting both
data path oriented and control oriented applications
[15, 8]. Behavioral synthesis traditionally has been ad-
dressing synthesis and optimization of a single CDFG
for sampling rate, area, and more recently power and
test hardware overhead minimization [8]. Recently,
a few efforts have been reported on behavioral syn-
thesis techniques for fault tolerant designs. Karri
and Orailoglu [9] presented scheduling, assignment

and transformation-based methods for fault-tolerance
against transient faults. Guerra et al. [4] presented
the first work which concentrates on permanent faults.
They showed how fault tolerance achieved using a set
of spare units can be used for yield and productiv-
ity enhancement. Recently Iyer et al [5] introduced
a method which explores trade-offs between perfor-
mance and yield.

Automatic synthesis of self-recovering microarchitec-
tures has been previously addressed. An algorithm
that intertwines checkpoint insertion and schedul-
ing to synthesize self-recovering microarchitectures for
supporting fault-recovery in hardware was first pre-
sented in [10]. Guerra et. ol have developed synthe-
sis for built-in self-repair using redundant modules[4].
More recently, Blough, et. al. [2] presented an algo-
rithm for recovery point insertion in recoverable mi-
croarchitectures. These RT-level techniques for tran-
sient and permanent fault-tolerance have been success-
ful in certain situations. The main target for built-in-
self-repair (BISR) techniques for yield enhancement
are systems that are bit-, byte-, or digit- sliced, and
in particular memories [14] and PLAs [6, 14].

4 Preliminaries
Computational, Timing, & HardwareModels:

Majority of most popular multimedia, DSP, video,
communication, control, and graphics application are
defined as periodic computations on a stream of in-
coming data. Therefore, a natural and proper com-
putational model for those important application do-
mains is synchronous data flow [7]. Each application is
defined by a control data flow graph (CDFG) and the
set of timing constraints, most commonly throughput
requirements. Modern datapath designs, both general
purpose and application specific, invariably group reg-
isters in register files in order to better enable sharing
of control logic and to facilitate area-efficient layouts.
We assume the dedicated register file model [12, 11]
where each register is connected to a single input of
an execution unit, while each unit can send data to
an arbitrary number of registers. This model is also
exceptionally well suited for implementing fault toler-
ance for yield enhancement. The control is synthesized
by combining different controllers into one using logic
synthesis tools resulting in small hardware overhead.

Fault Model and Fault Diagnosis: We assume a

widely used single stuck-at fault model [1]. The pro-
posed HBIR approach requires fault detection and di-
agnosis as a preprocessing step. Any off-line testing
and diagnosis scheme such as full-scan, combinational
ATPG and BIST can be used. We also assume that
the controller is fault free. However, since the area of
the controller is usually only a few percent (1-3) of the
designs, it can be easily duplicated with a very limited
impact on the final area. We also assume that there
is limited bus merging. All data transfers emanating
from a functional unit are merged into buses. Other-
wise, there exists a dedicated bus connecting any two
units between which there are data transfers. Faults
can occur in either an execution unit, a register file,
or an interconnect. A fault in a register file prevents

its corresponding execution unit from receiving data,
and thus has the same effect as a fault in the execu-
tion unit. Also, a faulty interconnect can be treated
as a failure in the execution unit at its data-sending
connection.

5 HBIR Synthesis: Algorithms

The hardware requirements for implementing a col-
lection of applications (the application bundle) as an
ASPP are greater than or equal to those of each ap-
plication in the bundle. k-unit fault tolerance can be
explored by taking advantage of this inherent redun-
dancy of ASPPs together with judicious operator-to-
application assignment and application latency deter-
mination. The HBIR synthesis problem can be defined
as follows:

Given an underlying hardware model and N
applications, synthesize a high-performance
and minimum area design so that any one of
these N applications can be executed at any
given time, and for any k-unit failure the de-
sign can be resilent (at least one of these N
applications is still working).

The design flow is outlined in figure 5. Initially,
the applications are bundled together based on their
hardware and structural similarity. In the process,
the area overhead is minimized. Following applica-
tion bundling, the latency determination phase is en-
tered wherein the latencies of the individual appli-
cations are determined while ensuring the desired k-
unit fault-tolerance. Next, the application schedules

APPLICATION BUNDLING

v
[LATENCY DETERMINATIO}\J

L]

[APPLICATION-TO-FAULTY UNIT MATCHIN@

[ASSIGMENT AND SCHEDULIN(}

HARDWARE MAPPING
LAYOUT GENERATIO

Figure 3: The Design Flow of HBIR Synthesis

are matched to the k-faulty-unit combinations using
a branch and bound technique. This step determines
the hardware not usable by a given schedule of an
application. Based on this information, ASPP assign-
ment and scheduling algorithms are invoked on the
applications in a bundle. The HBIR constraints are in-
corporated during the highlighted phases in the above
design trajectory.

5.1 Latency Determination

The latency of each application in the bundle is deter-
mined so as to ensure that the resulting HBIR proces-
sor can tolerate all k-unit faults. k-unit fault-tolerance
is ensured by tuning the hardware utilization of indi-
vidual applications. Decreasing the system through-
put (by increasing the latency) reduces hardware uti-

lization and increases the fault-tolerance capability of
an application.

As a first step, all possible k-unit faults are collapsed
into smaller sets of faults based on the type of hard-
ware units that fail. For example, in a design that uses
adders and multipliers, the 2-unit faults are collapsed
into the following sets: e 2-multiply faults, e 2-adder
faults, and e 1-adder-1-multiply faults.

Collapsing faults into smaller sets can be represented
by the set of tuples:

n

R={(r1,r2, ., mn)| D _ 1 = k}

=1

where, rq,7s3,...,7, are the number of faulty units of
type 1,2, ..., n respectively. For an application bundle
with n hardware types and k-unit fault tolerance, the
number of tuples in the set R can be computed by the
recursion:

min(H,,k)

|R|:f(n:k): Z f(n—l,k—j)

f(Li)=1L1<j<k
f(3,1) =4, f(:0=1,1<i¢<n

The set R together with the unused hardware distri-
butions of the individual applications (obtained using
a similar recursion) is used to quickly verify if the se-
lected latencies for the applications can ensure k-unit
fault-tolerance. It is checked if for each tuple in the set
R, there is at least one application in the bundle whose
unutilized hardware units for each type of hardware is
larger than number of faulty units of that type in the
tuple. If not, the latency of selected applications are
increased. Although increasing latency succeeds for
low k, additional hardware units are added to guaran-
tee k-unit fault-tolerance.

5.2 Application to Faulty Unit Matching

Towards implementing k-unit fault tolerance, a single
schedule for an application may not be sufficient. This
is because, although this single schedule may cover
a tuple in the set R, it may not tolerate all the k-
unit fault combinations that the tuple represents. If
out of the H; hardware units of type ¢ available for
the bundle, s} are not utilized by the application ¢,
then []}_, H:C_; schedules of the application may be
— t

necessary. The problem is to match the schedules of
the applications with the k-faulty-unit combinations
so that:

e there is atleast one schedule that can oper-
ate in the presence of a k-unit fault,

e atleast one schedule of each application is
implemented and

e the total number of implemented schedules
is minimized.

The problem is illustrated in figure 4. Each column
in the two-dimensional table corresponds to a k-faulty
unit combination (denoted as C1y, Cy,..,Cy) and each
row corresponds to a schedule of an application (de-
noted as 4151, A4152,..., AmSmn). If a schedule of
an application covers a k-faulty-unit combination, the
corresponding cell is marked with an x. The objective
is then to ensure that there is at least one x in each
column while minimizing the number of rows.

Schedules | k-unit fault combinations
in ASPP Cl Cz Cg Cn
Al 51 X X
Al 52 X X
Al‘k‘s’f"ll X X
Az 51 X X
Az Snz X X
.50 X
Am 52 X X
Am',é'nm X

Figure 4: Application-to-faulty-unit matching

This problem can be transformed to the vertex cover-
ing problem by identifying each of the k-faulty-unit
combinations as a vertex and each of the possible
schedules of the constituent applications as an edge.
A branch and bound technique outlined in figure 5 is
used to solve this problem.

The MinSchSet is the current best solution that toler-
ates all the combinations of k faulty units and includes
all the schedules initially. The CurSchSet tolerates
only some of the combinations of k-faulty units and
is initially null and grows when the schedule inclusion
branch in step 8 is taken. The branching step is in-
voked when a candidate sch is either included into or
excluded from the CurSchSet by the recursive calls
in lines 9 and 12. Schedules are selected one after
the other (step 1) from the SchList. Associated with
each schedule is a vector identifying the k-faulty-unit
combinations that are tolerated (covered) by it. The
Cover() returns this vector. Set union of the cover-
age vectors of all schedules in the CurSchSet is the
CurCover.

Upper and lower bounds on the number of schedules
are used to prune the solution branches. For example,
the cardinality of the MinSchSet is an upper bound
on the number of schedules. If the cardinality of the
CurSchSet is greater than that of the MinSchSet, this
schedule inclusion branch and its branches are pruned.
For each tuple in the set R, there are []}_ #:.c,, com-
binations of k faulty units. The sets ofl k-unit com-
binations represented by tuples are disjoint. Based
on this observation, the LowerBounds on the num-
ber of schedules for each application are determined
as follows. Let the faults represented by a tuple

MinMatch(CurSchSet, SchlList, CurCover)

{

1: if ((sch«car(SchlList)) = ¢) return;
2: appl«GetApplication(sch);

/* bound the schedule inclusion branch */

3: if (|CurSchSet| + ?:‘Ziill:_lLowerBound[i] + 1
< |MinSchSet|) {

4: NewCover < CurCover V Cover(sch);

5: if (NewCover covers all k-unit faults) {

6: MinSchSet«CurSchSet U {sch}; return;

7: if |NewCover| > |CurCover| {

8: CurSchSet«CurSchSet U {sch};

9: MinMatch(CurSchSet,cdr (SchlList) ,NewCover);

10: CurSchSet« CurSchSet - {sch};

1

/* bound the schedule exclusion branch */
11: if (|CurSchSet N {schedules of appl-1}|
> LowerBound[appl-1])
12: MinMatch(CurSchSet,cdr(SchlList),CurCover);

}

6 Experimental Results

word | avail utilization area
no | appl’n len’ | time | + | - | * (mmz)
1 ARAI 22 10 32 | 35 | 65 34.77
2 CSCADE 12 10 40 - 65 11.34
3 DIR 22 22 63 - 68 53.05
4 FFT8 16 6 55 | 55 | 33 11.21
5 FIR20 16 12 33 - 41 18.03
6 GM1M 20 14 32 |21 | 25 21.81
7 IIR7 24 10 35 | 35 | 50 32.26
8 IIR8 11 12 66 - 75 9.97
9 LEE 22 12 35 | 33 | 83 31.51
10 | MCM 22 20 38 | 34 | 75 35.26
11 | PR1 22 10 43 | 43 | 55 52.16
12 | PR2 22 15 43 |1 43 | 71 38.50
13 | VOLTRA 24 12 83 - 66 28.47
14 | WANG 22 14 33 | 33 | 78 31.64
15 | WVLET 16 15 42 | 46 | 47 18.68
16 | WDF5 16 12 25 | 41 | 50 9.80
17 | WDF7 22 12 33 |1 29 | 33 28.68

Figure 5: Algorithm to find the minimum set of sched-
ules tolerating all the combinations of &k faulty units

(r1,72, .., 7ty ...,) in the set R be covered by ap-
plication . A lower bound on the required number
of schedules of application % is [[;_,[#*Cy,/ **Ch,]
where H,,s; and r; have been previously defined. If
the tuple is covered by more than one application,
the aggregate number of schedules of the applications
which cover the tuple must be considered. Some of the
schedules in the SchList that have not been visited
are absolutely necessary to satisfy this lower bound re-
quirement. Hence, these schedules must also be added
to the cardinality of the CurSchSet in line 3 when
comparing with the upper bound. In line 11, if the
number of schedules corresponding to an application
is less than the Lowerbound, all successive branches
are pruned. car() and cdr() are two lisp-like func-
tions used to return the first and remaining elements
in a list, respectively.

5.3 Assignment and Scheduling

At the end of the matching phase, for each version of
an application, hardware units that are excluded from
its allocation are finalized. In turn, this determines
the hardware units that are available for use by a given
version of an application. An assignment and schedul-
ing algorithm is invoked on each of the versions of
the applications using its usable hardware allocation.
Applications can be synthesized in any order as the
hardware requirements are determined prior to this
step. The resulting HBIR processor is then mapped
and synthesized using the Hyper back-end system.

Table 5: Example Applications

The HBIR synthesis techniques proposed in this pa-
per were validated on the set of DSP, video, control
and communication applications summarized in table
5. The selected applications span a wide range of com-
plexities in computational structures. For each appli-
cation, columns 3 and 4 show the word length and the
input latency, respectively. The hardware utilization
of each type is shown in the next three columns. The
last column reports the area in mm? when the appli-
cation is implemented as a dedicated ASIC. This is
used to evaluate the area overheads of HBIR proces-
sors. Eight application bundles were synthesized into
k-unit tolerant HBIR processors(k=1,2).

1-unit 2-unit
Appl’n # area over # area over
Bundles sch | mm? | head | sch | mm? | head
{2, 3} 5 58.86 | 10.95 7 61.29 | 13.72
{7, 13} 3 36.01 | 11.62 4 50.59 | 56.82
{14, 16} 4 35.35 | 11.73 4 42.58 | 34.58
{4, 9} 4 36.10 | 14.57 7 45.27 | 43.67
{10, 17} 3 40.26 | 14.18 7 54.01 | 53.01
{1, 5, 6} 4 40.35 | 16.05 6 51.21 | 35.58
{2, 12} 6 45.37 | 17.84 11 64.94 | 68.68
{8, 11, 15} 6 65.42 | 25.16 8 68.45 | 31.23

Table 6: 1- and 2-Unit Fault Tolerant HBIR designs

The results of 1-unit fault tolerant HBIR processor
synthesis for eight application bundles are summa-
rized in table 6. The number of schedules used in

the HBIR processor are shown in column 2. As the
number of schedules increases, so do the number of
registers for constant coefficients and the interconnec-
tion requirement. These are the major causes of the
area overhead. The hardware utilization of each type
of hardware units for a 1-unit tolerant HBIR processor
is shown in the next three columns. The high utiliza-
tion is due to the fact that HBIR does not require the
k spare units of each type for every application. The
area overhead vis-a-vis a dedicated implementation of
the primary application is summarized in the last col-
umn. The areas reported are all in mm?. The area
overhead is 15.3% on average and varies from 11% to
25%. The low overhead is due to udicious application-
to-faulty-unit matching and (ii) substituting explicit
hardware redundancy with increased utilization of the
available computation cycles.

Most fault-tolerance techniques incur significant over-
heads -either area or performance- when support-
ing multiple unit fault-tolerance. In contrast, the
proposed approach can support 2-unit fault-tolerance
with low performance penalty and less than seventy
percent area overhead. This is one of the first synthe-
sis systems that has demonstrated the feasibility of
automatically synthesizing multiple-fault-tolerant de-
signs with modest area overheads.

On an average, the area overhead is 42.2% and var-
ied from a minimum of 14% to a maximum of 69%.
The increase in area overhead is mainly due to (i)
additional units that were added during the latency
determination phase and (ii) the dedicated coefficient
register files used in the current implementation.

6.1 Layout Based Validation

Towards validating the proposed HBIR synthesis ap-
proach, we show the layout of an application bundle
corresponding to row 2 in table 6. The microarchitec-
ture for this HBIR design is shown in figure 1. The
area of the HBIR processor implementation (figure
6(a)) is only 13.6% larger than the dedicated ASIC
implementation of the IIR7 filter (figure 6(b)). To-
wards comparing their relative sizes, the layouts are
shown to scale.

b19_dp11,

ii17_dp9
b19_dp10

(a) (b)
Figure 6: VLSI Layout of an 1-unit fault tolerant
HBIR processor implementing IIR7 and VOLTERRA

7 Concluding Remarks

We have presented a novel behavioral level fault-
tolerance technique called heterogeneous built in re-
siliency that combines the flexibility afforded by
implementing multiple applications with judicious
application-to-faulty-unit matching. The proposed
techniques have been implemented and the resulting
system has been used to synthesize numerous indus-
trial strength HBIR processors that are k-unit toler-
ant. The reported system results in very low area over-
heads for tolerating single functional unit failures and
modest overheads for tolerating multiple functional
unit failures.

References
[1] M. Abramovici, M.A. Breuer, A.D. Friedman, Digi-
tal Systems Testing and Testable designs, Computer

Science Press, New York, NY, 1990.
[2] D. M. Blough, F. J. Kurdahi, and S. Y. Ohm, “Opti-

mal Recovery Point Insertion For High Level Synthe-

sis of Recoverable Microarchitectures,” FTCS, 1995.
[3] D. D. Gajski, N. D. Dutt, A. Wu, and S. Lin. High-

Level Synthesis: Introduction to chip and system de-

sign. Kluwer, 1992.
[4] L.M. Guerra, et al.,” High Level Synthesis Techniques

for Efficient Built-in Self Repair”, IEEE Workshop on

DFT in VLSI systems, pp. 41-48, 1993.
[5] B. Iyer, R. Karri, I. Koren, "Phantom Redundancy:

A High-Level Synthesis Approach for Manufactura-

bility”, ICCAD, pp. 658-661, 1995.
[6] I. Koren, D.K. Pradhan, "Introducing Redundancy

into VLSI Designs for Yield and Performance En-

hancement”, FTCS 15, pp. 330-335, 1985.
[7] E. A. Lee and D. G. Messerschmitt: ”Static Schedul-

ing of Synchronous Data flow Programs for Digital
Signal Processing”, IEEE Trans. on Computers, Vol.

36, No. 1, pp. 24-36, 1987.
[8] M.C. McFarland, A.C. Parker, R. Camposano, ”The

High-Level Synthesis of Digital Systems,” Proc IEEE,

Vol. 78, No. 2, pp. 301-317, 1990.
[9] A. Orailoglu and R. Karri, ”Automatic Synthesis of

Self-Recovering VLSI Systems, IEEE Trans on Com-

puters, Feb 1996.
[10] A. Orailoglu and R. Karri. “Coactive Scheduling

and Checkpoint Determination during the High Level
Synthesis of Self Recovering Microarchitectures,”

IEEE Trans on VLSI Systems, 2(3):304-311, 1994.
[11] D.A. Patterson, J.L. Henessy, Computer Architec-

ture: A Quantitative Approach, Morgan Kaufmann

Publishers, San Mateo, CA, 1992.
[12] J. Rabaey et al., "Fast Prototyping of Data Path In-

tensive Architectures,” IEEE Design & Test, Vol. 8,

No. 1, pp. 40-51, 1991.
[13] J.J. Raffel et. al., ” A wafer-scale digital integrator us-

ing restructurable VLSI”, IEEE Trans. on Electronic

Devices, No. 32, pp. 479-486, 1985.
[14] D.P. Siewiorek, R.S. Swartz, Reliable Computer Sys-

tems: Design and Evaluation, Digital Press, MA.
[15] R. A. Walker and D. E. Thomas. Behavioral transfor-

mation for algorithmic level IC design. IEEE Trans
on CAD, 8(10):1115-1128, 1989.

	CD-ROM Home Page
	ICCAD96
	Front Matter
	Table of Contents
	Session Index
	Author Index

