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ABSTRACT

Efficient exploration of the system design space necessitates
fast and accurate performance estimation as opposed to the
computationally prohibitive alternative of exhaustive simu-
lation. This paper addresses the issue of worst-case perfor-
mance analysis of a system described as a set of concurrent
communicating processes. We show that the synchronization
overhead associated with inter-process communication can
contribute significantly to the overall system performance.
Application of existing performance analysis techniques,
which target single process descriptions, lead to inaccurate
performance estimates as the synchronization overhead is
not accounted for. We present PERC, a fast and accurate
worst-case performance analysis technique which analyzes
inter-process communication, and accounts for synchroniza-
tion overhead while computing the worst-case performance
estimate of a given system implementation. Application of
PERC to example systems described as multiple communi-
cating processes shows the ability of the proposed method to
accurately estimate the worst-case performance of the system
implementation.

I. INTRODUCTION

Increasing complexity, aggressive design requirements, and
shorter product cycles are necessitating fast and efficient ex-
ploration of the system design space, requiring the capability
of analyzing the system performance, power, and other design
metrics for several system implementations at high levels of
abstraction. This paper introduces a technique to estimate
the worst-case performance of a system described as a set of
concurrent communicating processes. The performance of
a system is determined by both the number of clock cycles
required by the system implementation, as well as the clock
period of the implementation. A possible way of evaluating
the worst case system performance is by exhaustive simula-
tion of the system implementation. However, the approach
can be computationally inhibitive, especially in an iterative
design framework, where at every iteration, multiple imple-
mentation alternatives need to be evaluated. Hence the need
for fast static performance analysis and estimation tools.

Several performance analysis and delay estimation tech-
niques have been developed recently. In [1, 2], analysis
techniques were developed to compute the average number
of clock cycles required by a scheduled implementation of a
behavioral description. Markov chain model based metrics
for evaluating the performance of schedules was suggested
in [3]. Several clock period estimation techniques have also
been developed [4, 5, 6, 7, 8] for ASIC implementations.
Static performance analysis techniques for software imple-
mentation on processors have been proposed in [9, 10].

Many real-life systems, including telecommunication and
networking applications, embedded control applications, and
multimedia applications among others are described as a set
of concurrent communicating processes. The clock period
estimation of an implementation is not affected whether the
system is described and implemented as a single process or as
a set of multiple communicating processes; hence, the clock
period estimation techniques described above [4, 5, 6, 7, 8]
are applicable to such multi-process systems. However, ap-
plying existing performance analysis techniques to estimate
number of clock cycles [1, 2, 9] of systems described as
concurrent communicating processes will lead to inaccurate
results. This is because the above performance analysis tech-
niques target single-process descriptions, and the synchro-
nization overhead associated with inter-process communica-
tion, which can contribute significantly to the overall perfor-
mance, is ignored. Synthesis of a system of communicating
processes has been considered in [11] but performance anal-
ysis has not been addressed. Optimization of a behavioral
description of multiple communicating processes specified
in VHDL is suggested in [12]. In [13] the analysis of multi-
process systems is addressed using a petri-net model, but the
associated data structure could become exponentially large.
Consequently, there is a need for a fast and efficient analysis
technique which estimates the performance (number of clock
cycles) of a system of communicating processes.

This paper introduces PERC, a technique to analyze the
communication structure of a set of concurrent communicat-
ing processes. Given the system implementation, like the
schedule of each process, PERC estimates the worst-case
performance of the system. The performance analysis tech-
nique relies on computing the time taken per iteration of each
loop of the system. Loops which communicate with each
other are clustered into sets called communication layers, so
that the time taken per iteration of each communicating loop
in the layer can be computed including the synchronization
overhead. The proposed technique is hierarchical in nature,
computing the time taken by the loops in the next level of
communication layer using the time taken by loops in the
current layer, along with the information on loop bounds.
The overall system performance is computed when the top
level of communication layer is analyzed. Our analysis ap-
proach is also able to identify the critical paths in the the
system description, which can be used to improve the system
performance by guiding the synthesis tools.

In the next section, we motivate the need for a performance
analysis technique which takes into account the synchroniza-
tion overhead due to the communication of multiple con-
current processes. Section III describes the terminology and
definitions used in the subsequent sections,and introduces the
synchronization graph used to capture the underlying com-



munication structure of a system. Section IV introduces the
concept of communication layers, while Section V discusses
the procedure of identifying the communication layers. Sec-
tion VI gives a method of analyzing all the loops of a single
communication layer and computing the time taken by each
loop in the layer. Section VII describes the technique to
estimate the overall system performance. Results of appli-
cation of the proposed performance analysis tool PERC to
example systems of concurrently communicating processes
are provided in Section VIII.

II. MOTIVATION

In this section, we illustrate an example system of concurrent
communicating processes. Using the example system, we
motivate the need for a global performance analysis technique
which analyzes and includes the synchronization overhead
while computing the system performance.

Figure 1 shows parts of the control-flow graph (CFG) of
an ethernet controller description. The ethernet protocol in-
volves sending data packets over the network. If a particular
transmission of a packet is not successful (a collision de-
tected over the network), the packet has to be re-transmitted
after a specified amount of time. The protocol also ensures
that a minimum amount of time has elapsed between succes-
sive transmissions of the packet. The overall communication
pattern of the ethernet controller is shown in Figure 1.

Communication between processes can be achieved using
various protocols, depending upon the language used to de-
scribe the system. Depending on the semantics allowed by
a particular language the communication between concur-
rently executing entities could be of several types, but the
underlying concept involves one entity sending an event to
another concurrent entity which would be waiting for the
event. The systems considered in this paper are assumed to
be communicating using event and wait statements as shown
in the ethernet controller example in Figure 1. An assign-
ment to a global signal generates an event which is received
by a process waiting on the event. The global signals are
divided into synchronizing signals and data transfer signals.
The synchronizing signals are used to generate events and
synchronize among the processes, while the data transfer
signals are used to exchange information between processes.
In the example, shown in Figure-1, the signal XmitBegin is a
synchronizing signal, whereas the signal NewCollision rep-
resents a data transfer signal as this signal does not play a
role in the synchronization between processes.

To investigate the issue of performance analysis of a system
described as a set of concurrent communicating processes,
we generated a scheduled implementation of the ethernet
controller using a scheduling tool [1]. We then considered
the problem of computing the worst-case number of clock
cycles needed by the scheduled implementation. The result
obtained by simulating the scheduled description using some
test cases is shown in Table 2, which is 767 clock cycles.
Next, we used an existing performance analysis technique [1]
to compute the number of clock cycles taken by each process.
Note that since the existing technique(s) can be applied only
to a single process at a time, the communication between
the processes, and hence the time spent in synchronization
(wait statements), is ignored. The result is shown in Table
2. Processes 1, 2, and 3 are estimated to take 175, 48,
and 291 respectively. Hence, the worst case performance of

the system, which is the maximum of the number of clock
cycles needed to execute each process, is 291 clock cycles.
The large percentage difference with the simulation result,
�62%, represents a significant under-estimate of the worst-
case performance of the system. The large error can be
attributed to ignoring the synchronization overhead among
the processes.

On the other hand, if the performance estimation technique
can perform a global analysis of all the processes and their
communication, and the time taken in process synchroniza-
tion is accounted for while estimating the performance of
each process, the system performance estimate is much more
accurate. The result of applying the performance estimation
technique PERC discussed in this paper is also shown in
Table 2. The performance of processes 1, 2, and 3 is now
estimated to be 902, 334, and 334 clock cycles respectively,
with a total system performance to be 902 clock cycles. The
PERC estimate has a significantly smaller difference (18%)
with the result obtained by simulation. Also, as expected,
the PERC estimate is more conservative than that obtained
by simulation, which is not exhaustive and cannot always
identify the worst-case behavior of a system.

Note the significant difference in clock cycle estimates be-
tween PERC and the technique which analyzes each process
individually. For example, PERC estimates process 1 to take
902 clock cycles, as opposed to the estimate of 175 clock cy-
cles obtained when time spent in wait statements is ignored.
The difference in the estimates is due to the significant time
the processes spend in waiting for synchronizing events, and
demonstrates the critical need for considering synchroniza-
tion overhead during performance analysis.

In the next few sections, we describe the proposed perfor-
mance analysis technique which estimates the worst-case
performance taking into account the synchronization over-
head.

III. CHARACTERISTICS OF SYNCHRONIZING PROCESSES

In this section, we introduce some terminology and defini-
tions used in the paper. We also discuss the assumptions made
regarding the allowed communication between processes.

An event or wait statement is termed as a synchronizing state-
ment. A loop li is said to contain a synchronizing statement
if the statement is present in the loop and is not present in
any loop nested by li. A loop containing a synchronizing
statement will be referred to as a synchronizing loop. Since
individual processes could iterate more than once, each pro-
cess itself is considered to be a loop. Consider the description
of the ethernet controller shown in Figure 1. The loop repre-
senting the process BitTransmitter is a synchronizing loop as
it contains synchronizing statements like XmitEnd 1.

We next introduce the Synchronization Graph which captures
the communication/synchronization among the system pro-
cesses. The synchronization graph is a directed graph with
vertex set V and edge set E. The set of vertices V consists of
the the following types of node: Loop Nodes corresponding
to the beginning and the end of each loop l in the system
description, where loop l is either a synchronizing loop or
nests a synchronizing loop; Event nodes corresponding to
an event statement in the behavioral specification, and Wait
nodes corresponding to a wait statement in the behavioral
specification.
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Figure 2: Synchronization Graph of the Ethernet Controller

There exists a process edge between two nodes if they belong
to the same process and there is a direct path connecting the
corresponding behavioral statements in the system specifica-
tion, not containing any statement that can be represented as
a node in the synchronization graph. The weight of a process
edge represents the worst case time needed by the system
implementation (in this paper, the schedule) to execute the
statements in the corresponding path. There exists a synchro-
nizing edge between an event node (v1) and wait node (v2),
if v1 and v2 do not belong to the same process, and the event
generated by v1 is meant to be received by wait node v2. The
weight associated with a synchronizing edge represents the
communication overhead involved in sending the event, and
depends on the system implementation.

Figure 2 shows the synchronization graph corresponding to
the ethernet controller description partially shown in Fig-
ure 1. For example, in the Deference process of Figure
1, there is a wait node in the synchronization graph corre-
sponding to the statement WAIT: XmitEnd = 1, and an event
node in the synchronization graph corresponding to the state-
ment Event:Deferring 1. A process edge exists between
the above two nodes, representing the block of code Inter-
FrameSpacing shown in Figure 1. The weight of the process
edge is 3, since it takes 3 clock cycles in the worst case to exe-
cute the statements corresponding to the process edge. A syn-
chronizing edge exists between the node representing Event:
Deferring  1 (process Deference) and the wait statement
WAIT: Deferring 1 of process TransmitLinkMgmt. In this
example, communication between the processes is assumed
to go through registers, requiring a single clock cycle; hence,
each synchronizing edge has been assigned a weight of 1. In
general, the weight assigned to each synchronizing edge will
depend upon the mode of communication implemented.

Each synchronizing loop, li, is associated with a quadruple
(N (li);W (li); E(li); P (li)), where N(li) represents the set
of synchronizing loops nested by the synchronizing loops li,
E(li) represents the set of synchronizing loops which wait
on an event generated inside li, W(li) represents the set of
synchronizing loops which generate an event that li could be
waiting on, and P(li) represents the process containing the
loop li.

We shall now discuss some of the assumptions made re-
garding the communication between concurrent processes.

As mentioned before, the system communicates using event
and wait statments. An event is generated by setting a syn-
chronizing variable to one, and the synchronizing variable is
reset by the receiving process immediately after receiving the
event and coming out of the wait statement. The following
assumptions are made regarding the generation/consumption
of events: (1) The rate of generation of an event is less than or
equal to the rate of consumption of the corresponding event.
Relaxing this assumption would mean that buffers will be
needed to store the outstanding events. In this paper we will
not consider system implementations which use buffers to
store the events which have not yet been consumed, and (2)
A synchronizing signal cannot be assigned to or waited on
more than once in a loop. This assumption can be enforced as
a semantic restriction; while not being too restrictive on the
designer, this constraint facilitates the analysis of the system.

In the next section, we propose a method to analyze and take
into account the effect of synchronization overhead in system
performance.

IV. CONSIDERING SYNCHRONIZATION OVERHEAD IN
PERFORMANCE ANALYSIS

To compute the performance of a system, the time taken by
the loops of the system description have to be computed. In
a system of communicating processes, the time taken by a
synchronizing loop containing a wait statement depends not
only on the time to execute the statements in the loop, but also
on the synchronization overhead, which is the time taken by
the wait statements in waiting for events generated by other
communicating loops. To enable our performance analysis
to include the synchronization overhead, we introduce the
concept of a communication layer, which is a set of synchro-
nizing loops communicating with each other simultaneously.
Considering all the loops in a communication layer together
during performance analysis is sufficient to account for the
synchronization overhead. Next, we describe the notion of
communication layers.

A loop li is said to communicate with another loop lj if either
li has a wait node waiting for an event generated in lj , or
vice versa. That is, li � (E(lj) [W (lj)). A loop is said
to be alive in a given clock cycle, if any node (statement) in
the loop is executed in that cycle. If two loops are simul-
taneously alive in a given clock cycle, they are said to be
executing concurrently. A communication layer is defined
as a maximal set of synchronizing loops such that

C1 each loop of the set communicates with at least one other
loop of the set, and

C2 all the loops of the set should execute concurrently.

Consider the synchronization graph shown in Figure 3, which
corresponds to the description of a blackjack game controller,
containing three communicating processes. Consider the set
of loops L = fl1; l2; l3; l6; l7g in Figure 3. Each loop of
the set communicates with at least one other loop of the
set. For instance, l7 communicates with l6, and each of
l1, l2, l3 communicates with l6. Consequently, the set L
satisfies condition C1 of the definition of a communication
layer. Loops l1; l2; l3 do not execute concurrently (violates
condition C2), and hence do not belong to the same layer.
The set of loops which are concurrent are L1 = fl1; l6; l7g,
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Figure 3: Synchronization Graph of Blackjack Game Con-
troller
L2 = fl2; l6; l7g and L3 = fl3; l6; l7g. Since the loops in
the above sets also satisfy condition C1, they form three
communication layers. The set L4 = fl8; l5g forms a fourth
communication layer.

A layer L1 is said to nest a layer L2 if a loop in L1 nests
a loop belonging to L2. That is, 9 a loop l 2 L1 such that
N (l)\L2 6= nil. Let N (L) be the set of layers nested by L.
The nesting level of a layer L, Level(L), is defined as:

Level(L) =

�
1 if N (L) = nil
maxLi2N(L) Level(Li) + 1 otherwise

Consider the layers formed above for the synchronization
graph of Figure 3. None of the loops in L1, l2 and L3 nest
other loops and hence the nesting level of L1, L2 and L3 is 1.
In the layer L4 = fl8; l5g, loop l5 nests the loops l1, l2, and
l3. Since l1 2 L1; l2 2 L2, and l3 2 L3, we have the nesting
level of L4 = 1 + Max(nesting levels(L1; L2; L3)) = 2.

Our performance analysis method analyzes each communi-
cation layer in an increasing order of their nesting level. For
each layer, the time taken by each loop belonging to the layer
is computed as explained in Section VI. After a communi-
cation layer L is analyzed, the loops in L are collapsed, and
the layer nesting L is analyzed using the time taken by the
collapsed loops. This process is continued till all the layers
have been analyzed; the analysis of the final layer gives the
system performance. The overall system analysis method is
explained in Section VII. In the next section, the procedure
for identifyingcommunication layers along with their nesting
levels is presented.

V. IDENTIFYING COMMUNICATION LAYERS

The formation of communication layers needs information
about the concurrent execution of two synchronizing loops,
which depends on the pattern of communication and the char-
acteristics of the implementation of the system. In the syn-
chronization graph shown in Figure 3, loops l6 and l7 execute
concurrently, but loops l1; l2; l3 do not. In the subsequent
discussions, the concurrency information for communicating
loops is assumed to be available.

A. Creating Layers

In this section we shall describe a procedure for identifying
the layers from a set of loops S. First, the set of loops
s is partitioned into classes. A class is a maximal subset
of communicating loops, A, of S satisfying the following
conditions: (1) all the loops of subset A should communicate
with at least one other loop of A, and (2) the loops of A do
not communicate with any loops outside A.

The members of a class, clearly, satisfy condition C1 of a
communication layer. In Figure 3, the set fl1; l2; l3; l6; l7g
forms a class. The concurrency information between syn-
chronizing loops is then used to further divide each class into
layers. The algorithm given below partitions a class into
communication layers and returns a list of communication
layers formed.

Algorithm 1 ClassToLayers(Class C)
/* C represents set of loops belonging to the same class */
/* If class is already a layer return*/

1: if(8li ; lj 2 C; li and lj are concurrent)
2: return C;

/* If class is not a layer do the following */
3: if(9li ; lj 2 Cjli lj are not concurrent)f
4: Co = C � fli; ljg;
5: C1 = Co

[ flig;C2 = Co
[ fljg;

6: return ClassToLayers(C1)
[ ClassToLayers(C2);

g

The above recursive algorithm returns a list of layers formed
from the class C, given as input to the algorithm. We shall
illustrate the execution of Algorithm 1 using the set C =
fl1; l2; l3; l6; l7g of the synchronization graph in Figure 3.
In the first iteration of Algorithm 1, the set C is divided
into the sets C1 = fl6; l7; l2; l3g and C2 = fl6; l7; l1; l3g,
since l1 and l2 do not execute concurrently. A recursive
call is made on each of the sets C1 and C2. The loops
l2; l3 of C1 and l1; l3 of C2 do not execute concurrently,
hence the classes C1 and C2 are further divided into the
following: C11 = C21 = fl6; l7; l3g, C12 = fl6; l7; l1g and
C22 = fl6; l7; l2g; each of the above classes are layers since
all the loops in the class run concurrently. Hence the layers
formed are: L1 = C12 = fl1; l6; l7g, L2 = C22 = fl2; l6; l7g
and L3 = C11 = C22 = fl3; l6; l7g.

B. Identifying Layers and their nesting levels

In this section, the overall procedure used to identify all
the communication layers is given, first the pseudo-code,
followed by a brief description.



Algorithm 2 Identify Layers(U )
level = 1;
While(U 6= nil)f

S = fljl does not nest any loop in Ug;
Layer[level] = Create Layers(S);
/*Each element of the array Layer represents */
/*all the layers of the same level */
U = U � fljl 2 Layer[level]g;
level ++;

g

The input to the above algorithm is the set of all synchronizing
loops of the system. The function Create Layers identifies
layers from a set of loops S by first dividing S into classes,
and then using the function ClasstoLayers (section IV) to
compute the layers of each class. At each iteration i of the
while loop, layers of level i are formed. All the loops which
are partitioned into layers are removed from consideration
for partitioning in the remaining iterations; the procedure
is continued till all the loops are partitioned. Consider the
blackjack example shown in Figure 3. The setU is initialized
to all the loops of the system. In the first iteration the set
S contains f l1; l2; l3; l6; l7g, and the corresponding layers
formed are given by the setsL1; L2; L3 as described in section
A. Hence the nesting level of layers L1; L2; L3 is 1. In the
second and final iteration, set S = fl8; l9g, yielding the fourth
layer L4 = fl8; l9g, with a nesting level of 2.

VI. ANALYZING A SINGLE LAYER OF COMMUNICATION

In this section, we discuss a technique to analyze a given
communication layer. We first show that the time taken
per iteration of all the loops in a layer will be the same.
Subsequently, we describe a technique to analyze the layer,
and compute the time taken by the loops in the layer.

Lemma 1: The time taken per iteration of all loops in a
communication layer are equal.
Proof: Consider loop li communicating with another loop lj .
Say lj � E(li), that is, li generates an event to be received
by a wait node in lj . Also, say the time taken per iteration
of loop li is Tli , and that of loop lj is Tlj . Since lj has
to wait on every iteration for the generation of the event by
li, we have: (1) Tlj � Tli : Since the rate of generation of
events is assumed to be less than their consumption, and with
the restriction that each event is generated or received only
once in every iteration of a loop (this is one of the constraints
enforced on the communication pattern of the system, as
described in Section III), we have: (2) 1

Tli

�
1
Tlj

. From

equation (2), we have: (3) Tli � Tlj .

From equations (1) and (3), we get Tli = Tlj . By definition,
all the loops in a layer communicate with each other, hence
the time taken per iteration for all the loops in a layer is the
same. 2

Next, we describe a method to compute the time taken by
each loop in a layer. Associated with each layer is a layer
graph, which is a cyclic subgraph of the synchronization
graph consisting of the nodes and edges of the loops belong-
ing to the layer. There is a start node and end node for each
loop in the layer graph. For example, in the synchronization
graph of Figure 3, n1, n2 and n3 represent the start nodes of
loops l6; l7 and l2 respectively of the layer graph of layer L2.

Our method involves computing the arrival times of the nodes
in the layer graph. The arrival time of a node v, a(v), is
computed in terms of the arrival times of its fanin nodes as:
a(v) = max

vi2Fanin(v)
a(vi) +Edge Weight(v1 ! v): (1)

Clearly, the arrival times of fanin nodes need to be known
before the arrival time of a node can be determined, which is
a problem in a cyclic graph like the layer graph. We account
for the cyclic nature of the layer graph as follows. Initially,
the arrival times of the start nodes are set to 0. Also, the
synchronizing variables corresponding to some event nodes
may be initialized in the behavioral description. The arrival
times of such event nodes will be set to 0 in the layer graph.

Beginning with the loop start nodes, a breadth first traversal
of the layer graph produces the arrival times of all the loop
end nodes. The time taken by a loop is given by the difference
between the arrival times of the end and start nodes of the
loop. At the end of the first iteration, the time taken by
the various loops in the layer may be different. Hence, the
timing analysis procedure is iterated, recomputing the arrival
times of the nodes from the start nodes to the end nodes, till
the time taken by all the loops are equal. Note that from
the second iteration, the arrival times of each start node is
computed using the arrival times of the end nodes in the
previous iteration, and the weight of the back edges.

VII. ANALYSIS OF MULTI-LAYER COMMUNICATION
SYSTEMS

In this section, we shall discuss the overall strategy for
the worst case performance analysis of a system of concur-
rent communicating processes. At first, the synchronization
graph is partitioned into communication layers, and their
nesting levels identified. The time taken per iteration of
loops in a layer Lj depends on the time taken by the loops
in layers nested by Lj . Hence, the layers are analyzed in an
increasing order of their nesting levels, so that all the layers
nested by layer Lj are analyzed before layer Lj is analyzed.
Consider the layers of the synchronization graph of Figure 3
which are derived in section V. The layers L1; L2; L3 are of
level 1, and hence analyzed first. Subsequently, the layer L4,
of level 2, is analyzed.

Before analyzing a communication layer of level i, i > 1, all
the layers of level i� 1 are analyzed and collapsed. Collaps-
ing a layer effectively removes the corresponding loops from
the synchronization graph, updating the graph accordingly
to reflect the time taken by the collapsed layer. The time
taken by a layer is the time taken by the loops in the layer,
plus the time taken to execute other statements in the layer
not included in the loops. The time taken by each loop in a
layer is the product of the time taken per iteration of the loop
and the corresponding loop bound. As discussed in Section
VI, the time taken per iteration of all the loops in a layer are
identical, and are simultaneously computed. We next briefly
discuss the issue of loop bounds. Since all the synchronizing
loops of a layer run concurrently and communicate with each
other, the loop bounds for each of the loops in the layer are
assumed to be equal. The loops which belong to more than
one layer can have more than one loop bound, depending on
the particular layer under consideration. The loop bounds of
each layer is extracted from the behavioral description with
some feedback from the user.

Collapsing a layer removes all the nodes and edges of the
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loops of the layer being collapsed, replacing each loop with an
edge representing the time taken by the loop. If a loop belongs
to more than one layer, it is removed from the synchronization
graph only after all the corresponding layers are collapsed and
the edge weight of the added edge is equal to: (1) The sum
of the delays associated with each of the layers, if the loop
is not a process loop. This is to reflect the fact that the time
taken per iteration of a process depends on the overall time
taken by each of the loops nested by the process loop. (2)
The maximum of the delays, if the loop corresponds to a
process loop. This is because we just need in the worst case
the time taken per iteration of each process to determine the
system performance. Consider the blackjack example shown
in Figure 3. Loop l7 is present in three layers, L1; L2, L3
(section V), and it does not correspond to a process loop.
Hence, l7 is replaced by an edge of weight equal to the
sum of the delays of layers L1; L2, and L3. On the other
hand, loop l6 belongs to more than one layer (L1; L2, L3) but
represents a process loop; hence, l6 is replaced by an edge
with weight equal to the maximum among the layers L1; L2,
L3. The synchronization graph for the blackjack example
after collapsing layers L1, L2 and L3 is given in Figure 4(a),
with the new edge weights shown.

Since the collapsing of a layer involves the removal of the
associated synchronizing edges, after all the layers of com-
munication are analyzed and collapsed, the synchronization
graph will not contain any synchronizing edges. The fi-
nal graph would be a collection of independent components,
each component being an edge representing a process of the
system. Figure 4(b) shows the final synchronization graph
after layer L4 is analyzed and collapsed. The component
with maximum edge weight represents the process which re-
quires the maximum number of clock cycles to complete, and
hence is the system performance. In the blackjack example,

the worst case system performance is 240 clock cycles.

The overall performance analysis procedure can be summa-
rized as follows: (1) Create synchronization graph. (2) Iden-
tify communication layers and their nesting levels. (3) For
each layer in increasing nesting level: (a) Compute time
taken by the layer, (b) Collapse layer and update synchro-
nization graph. (4) System performance = weight of maxi-
mum weighted edge/component of the final synchronization
graph.

VIII. EXPERIMENTAL RESULTS

A prototype of the proposed performance analysis technique,
PERC, has been developed. In this section, we shall present
the results of applying PERC to three systems, an ethernet
controller, a blackjack game controller, and a DMA con-
troller, the first two examples having been discussed in this
paper. Each system has been described as a set of concurrent
communicating processes. Table 1 reports some character-
istics of the behavioral description and the corresponding
synchronization graph of the three systems. The number of
processes and the lines of behavioral code of the systems are
given under the system description column. The number of
synchronizing nodes, synchronizing edges, and communica-
tion layers of the corresponding synchronization graph are
given in the next few columns. For example, the descrip-
tion of the ethernet controller consists of 3 processes and 323
lines of code, while the corresponding synchronization graph
contains 9 synchronizing nodes, 5 synchronizing edges, and
one communication layer.

Table 1: Characteristics of the systems
System Description Synch. Graph
Process Lines Synch. Synch. Comm.

of code nodes edges Layers
Ethernet 3 323 9 5 1

Blackjack 3 399 18 12 4
DMA 3 241 20 10 2

For each system description, we generated a scheduled im-
plementation using a scheduling tool [1]. Next, we ob-
tained the worst-case performance (number of clock cy-
cles) taken by the scheduled implementation using (1) sim-
ulation with functional test cases, (2) static performance
analysis without considering the inter-process communica-
tion (considering each process separately), and (3) static
performance analysis using PERC, which includes syn-
chronization overhead. For the analysis part, the edge
weights of the synchronization graph are computed us-
ing the scheduled implementations of the individual pro-
cesses. Table 2 reports the worst-case system performance
as computed by the three above mentioned approaches, in
columns Simulation (S), Performance Estimate
without synchronization overhead (E1), and
Performance Estimate using
PERC (E2), respectively. While the performance of the
complete system is reported in the column System, the per-
formance estimates of individual processes are reported in
the columns P1, P2, and P3 respectively. Finally, for the
results obtained using the analysis methods, the percentage
difference between the performance numbers obtained by
the analysis method and simulation, (E1 � S)=S � 100, and
(E2 � S)=S � 100, are shown in the two columns ∆1 and ∆2



Table 2: Performance analysis results
Simulation Performance Estimate Performance Estimate

(S) without synch overhead (E1) by PERC (E2)
P1 P2 P3 System ∆1% P1 P2 P3 System ∆2%

Ethernet 767 175 48 291 291 -62 902 334 334 902 +18
Blackjack 205 121 7 41 121 -40 240 16 240 240 +17

DMA 67 29 42 13 42 -37 74 50 23 74 +10
∆1 = (E1 � S)=S � 100; ∆2 = (E2 � S)=S � 100

respectively. Note that the performance estimates obtained
by the analysis method which does not consider inter-process
communication grossly under-estimates the worst-case per-
formance, as is reflected by the percentage difference with
simulation ∆1. Such under-estimation of performance may
not be acceptable for certain systems, like real-time systems.
On the other hand, the performance estimates obtained by
PERC have significantly smaller percentage difference with
the simulation results, as shown by the column ∆2. Also, the
estimates obtained by PERC are always more conservative
than the simulation results; this is expected since simulation,
unless exhaustive, can only produce a lower bound of the
worst case performance.

For example, for the ethernet controller, simulation produced
a worst-case performance of 767 clock cycles. Using exist-
ing performance analysis techniques without considering the
synchronization overhead, the performance estimates of the
individual processes P1, P2, and P3 are 175, 48, and 291
clock cycles respectively, giving a total system performance
of 291 clock cycles. The large percentage difference with
the simulation result, �62%, represents a significant under-
estimate of the worst-case performance of the system. The
large error can be attributed to ignoring the synchronization
overhead of inter-process communication. Using PERC, the
performance estimates obtained for processes P1, P2, and P3
are 902, 334, and 334 clock cycles respectively, with a total
system performance of 902 clock cycles. The PERC esti-
mate has a significantly smaller difference (18%) with the
result obtained by simulation. Also, as expected, the PERC
estimate is more conservative than that obtained by simula-
tion, which is not exhaustive and cannot always identify the
worst-case behavior of a system.

The difference in the estimates is due to the significant time
the processes spend in waiting for synchronizing events, and
demonstrate the critical need for considering synchronization
overhead during performance analysis. The results show
that the proposed technique, by considering synchronizing
overhead, can obtain fairly accurate performance estimates,
unlike existing performance analysis techniques, which do
not consider inter-process communication.

IX. CONCLUSION

This paper introduced a static performance analysis technique
for estimating the worst-case performance of a system of con-
currently communicating processes. The need for analyzing
and estimating the synchronization overhead incurred by the
communicating processes, to obtain accurate estimate of the
system performance, has been demonstrated. The proposed
technique has been applied to analyze systems implemented
in hardware. However, as long as the worst case time taken
between any two synchronization points of a system can be
computed, the analysis technique can be used independent of
the actual implementation of individual processes. We are

currently studying the possibility of extending PERC to ana-
lyze systems implemented as mixed software and hardware.
Also, we are exploring ways of using the information regard-
ing the critical parts of the system in a synthesis framework
to improve the system performance.
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