
An Exact Solution to Simultaneous Technology Mapping and
Linear Placement Problem*

Jinan Lou, Amir H. Salek, Massoud Pedram
Department of Electrical Engineering – Systems

University of Southern California, Los Angeles, CA 90089

* This work was supported in part by NFS under contract No. MIP-94/57392,
and by grants from IBM Corp. and ViewLogic Inc.

Abstract

In this paper, we present an optimal algorithm for
solving the simultaneous technology mapping and linear
placement problem for tree-structured circuits with the
objective of minimizing the post-layout area. The proposed
algorithm relies on generation of gate-area versus cut-width
curves using a dynamic programming approach. A novel
design flow, which extends this algorithm to minimize the
circuit delay and handle general DAG structures, is also
presented. Experimental results on MCNC benchmarks are
reported.

I. Introduction
In a top-down design flow, optimizations at each step are

made without considering their impacts on the subsequent
design steps. For example, technology mapping algorithms
minimize gate area or delay without considering the
interconnect structure and routing overhead of the resulting
circuit. This lack of information reduces the effectiveness of
the optimization techniques. Existing enhancements to
synthesis and physical design tools, such as better delay and
wire load models, post-layout re-mapping, and gate resizing
have not been able to solve this problem. This means that
designers have to resort to costly design iterations. This
problem is compounded as feature sizes shrink to quarter
micron and below because interconnect delay and area
become even more dominant, the number of gates in the
circuit increases, and the number of nets that are at a
performance risk rises rapidly. It is therefore necessary to
develop new design methodologies and tools to cope with the
problem.

This paper proposes a solution by introducing a new
algorithm for simultaneous technology mapping and linear
placement of tree-structured circuits. This algorithm
combined with a novel floorplan-driven design flow leads to
a highly effective approach for performing technology
mapping and cell placement for general circuits, hence
combing the two design steps.

This paper is organized as follows: In Section II, we give
the background knowledge for technology mapping and
linear placement algorithms. Section III presents details of
our algorithm for combining technology mapping and linear
placement for trees. We introduce a design flow which uses

this algorithm to simultaneously map and place general
circuits and minimize circuit delay in section IV.
Experimental results and concluding remarks are given in
Sections V and VI, respectively.

II. Background

The problem of technology mapping for general circuit
structures is NP-hard [5]. In 1987 Keutzer [7] pointed out the
similarity between the library binding problem and the
optimal code generation in a compiler. In his algorithm the
circuit is partitioned into tree sub-graphs and each tree sub-
graph is mapped using a dynamic programming algorithm
which finds the minimum gate area mapping of the tree in
polynomial time. This work was later extended by Rudell
[14] to minimum delay technology mapping and by Touati et
al. [19] to minimize area mapping under delay constraints. In
[1], Chaudhary and Pedram presented a dynamic
programming algorithm to construct the set of all possible
mappings of a tree with different area-delay trade-off.

Neither of the above-mentioned works considers wiring
area or delay during technology mapping. This was the
motivation for Pedram and Bhat’s work in [11] to couple
technology mapping and placement in order to consider the
effect of wires during mapping. Their proposed algorithm
assumes that the dynamic programming principle holds
during the bottom-up process of concurrent mapping and
placement. This is however only an approximation.

For the sake of completeness, we give the following
(well-known) result:

Lemma 1: Keutzer’s algorithm produces the best gate area
mapping of a tree [7].

The linear placement problem of a graph has been
extensively studied. The MINSUM problem is to find a linear
placement that minimizes the total length of connecting wire
segments. On the other hand, the MINCUT problem is to find
a linear placement that minimizes the maximum cut-width.
Both problems are NP-hard for the general graphs [21]. In
1979, Shiloach [18] gave an O(n2.2) algorithm to solve the
MINSUM problem for trees, and in 1984 Chung [2]
improved it to O(n1.58). For MINCUT problems, Lengauer [9]
introduced a polynomial time algorithm for trees whose cost
is within a factor of two of the optimal in 1982, and

)(ca
h

aA ⋅⋅+= β

Yannakakis [23] gave an O(nlogn) dynamic programming
algorithm to find the optimal solution for trees in 1985. In
this paper, we exploit Yannakakis’ algorithm for the
MINCUT problem.

Lemma 2: Yannakakis’ algorithm produces the minimum cut
width linear placement of a tree [21].

III. SiMPA

In this section, we introduce our Simultaneous
Technology Mapping and Linear Placement Algorithm
(SiMPA) which finds the minimum total area (gate plus
routing) implementation of a tree.

III.1. Problem Formulation

PROBLEM: Given a library L and a tree T, find a
simultaneous technology mapping and linear placement
solution for T which has the smallest total area (gate plus
routing area).

Keutzer’s algorithm (KA) finds the minimum gate area
technology mapping for a tree. KA cannot account for the
wiring area since it has no knowledge about the gate
positions. Yannakakis’ algorithm (YA) finds the minimum
cut-width linear placement of a tree. What remains for us to
do is to combine the two algorithms.

Lemma 3: The following equation gives the exact total area
for a one-dimensional standard-cell layout (cf. Figure 1):

where a=W.h is the total gate area, W
is sum of the cell widths, h is the
cell height (assumed to be a
constant), β is the minimum distance
between the centers of two adjacent
wires, and c is the maximum cut
width (also referred to as the cut-
density) †.

The above equation is exact since in one-dimensional
routing, there are no vertical constraints and the channel
height is set by the maximum clique size in the horizontal
constraint graph [17]. Clearly, a is determined from the
technology mapping whereas c is determined from the
placement. To find the minimum total area A, technology
mapping and placement must be done simultaneously.

III.2. Gate-area versus cut-width curve

 During KA, mapping solutions which have larger area
than the best solution (found up to that point) are dropped.
However, this notation of inferiority does not hold for
simultaneous technology mapping and linear placement. The
following counter example shows how this can happen.
Example: Assume at one step of dynamic programming,
when solving the problem of minimizing the total area of a

† Proofs can be found in [10].

tree, there are two sub-problems, T1 and T2. For T1 one
design S1, and for T2 two designs S2,1 and S2,2, have been
found (Figure 2), and totalArea(S2,1) < totalArea(S2,2), that is,
S2,2 appears to be inferior to S2,1. However, figure 3 shows
that the combination of S1 and S2,1 is inferior to the
combination of S1 and S2,2. Therefore, we cannot simply
throw away S2.2. That is, we cannot drop a solution simply
because it has a larger total area than that of the best solution
found so far.

Definition: S1 is inferior to S2 if and only if the following
conditions hold:

gateArea(S1) >= gateArea(S2) and
cutWidth(S1) >= cutWidth(S2)

Our algorithm is to maintain all non-inferior <gateArea,
cutWidth> points for each node in the tree. SiMPA thus
combines KA and YA; its pseudo code is given next:

1. Technology decompose circuit N
2. Perform a Depth-First-Search (DFS) on N
3. For each node n in the reverse-DFS order do
4. For every match m of n do
5. gateArea = sum of gateAreas of all inputs of this

match + gate area of this match
6. cutWidth = the cut width from linear placement of

the mapped tree rooted at m
7. Store the solution <gateArea, cutWidth> in n
8. Prune inferior solutions from the curve of n
9. Select the best solution by starting from the primary

output, and recursively finding the solutions for all
inputs of this best solution

Figure 1. Total
area calculation

.. } c

W

β

h

S1 and S2.1
totalArea=

7x(2+8)=70

S 1 and S2.2
totalArea=

9x(5+2)=63

8

7 9

2

5

2

Figure 3. Example after combining sub-solutions

S1
totalArea=

4x(4+2)=24

S 2.1
totalArea=

3x(8+2)=30

S 2.2
totalArea=

5x(2+5)=35

4

4

8

3

2 2

5

5

2

Figure 2. Example before combining sub-solutions

For each gate from the library that matches a set of
nodes rooted at n, we calculate the gate area and the cut
width of this match. The current match and the inputs to this
match are stored with the gate area and cut width, so that
later (i.e. during step 9) we can construct the best solutions
for the inputs. Note that step 6 is performed using YA which
itself uses dynamic programming. That is, we build the
optimal linear placement of the problem at hand from optimal
placement of its constituent sub-problems. After all matches
are enumerated and all solutions are generated, we prune out
the inferior solutions and only keep the non-inferior solutions
in node n. After reaching the tree root, the best solution is
selected from the curve of the root. Since we stored the
match and inputs of n, we can then construct the best
solutions for all of its inputs recursively.

In the example discussed in section III.1, since
gateArea(S2,1) < gateArea(S2,2) but
cutWidth(S2,1) > cutWidth(S2,2), we
must keep both solutions as non-
inferior solutions. In effect, we are
generating a gate-area versus cut-
width curve (Figure 4) at every node.
The lower left corner points on the
curve are non-inferior points with
respect to each other. We will then
generate the curve on the next higher
level of the tree by combining the
curves from the lower level curves and by pruning the
inferior points.

Consider tree T with root n. Let S represent the mapping
solution for T with match m at the root. Let ai denote the gate
area of the mapping solution Si of child i of m. Let c denote
the cut-width of the S obtained by YA.

Lemma 4:

Consider two solutions S1 and S2. For tree T, these
solutions are the same except that S1 contains sub-solution Si,1

and S2 contains sub-solution Si,2.

Lemma 5: If Si,1 is inferior to Si,2 , then S1 is inferior to S2.

Theorem 1: The final curve generated by SiMPA at the root
of tree T includes all non-inferior gate area versus cut width
solutions for the simultaneous technology mapping and linear
placement problem of T.

Corollary 1: Given an upper bound on the number of tracks,
maxCut, the points in the gate-area versus cut-width curve
with the cut width less than maxCut constitute all the non-
inferior implementations of the circuit satisfying that
constraint.

Corollary 2: Given an upper bound on the area, maxArea,
the points in the gate-area versus cut-width curve with the
gate area less than maxArea constitute all the non-inferior
implementations of the circuit satisfying that constraint.

Corollaries 1 and 2 show how SiMPA can be used in
applications such as layout-driven logic synthesis and post-
layout re-synthesis. Given a cut width constraint, we can find

the best gate area implementation which satisfies this
constraint. Similarly, given a gate area constraint, we can
find the best cut width implementation which meets this
constraint.

Theorem 2: The solution SiMPA chooses in the last step
(step 9), is the solution with the minimum total area.

IV. FPD-SiMPA

In this section, we present our floorplan driven design
flow (FPD-SiMPA) which extends SiMPA to minimize
the circuit delay and to handle general DAG structures.
This new flow partitions the DAG into a set of trees,
floorplans them, uses the floorplanning and global routing
results to generate delay budgets for trees, and finally uses
a timing-driven version of SiMPA to pick a timing correct
solution for each tree.

IV.1 Extension to Delay Minimization

There are many different models for the gate delay
calculation. In SIS [16], the gate delay is calculated using this
equation for both rise and fall delays:

where K1 and K2 are the intrinsic gate delay and the fanout-
dependent load delay, respectively. This delay equation is
pin-dependent, uses a linear model, and assumes step input
signals. It is simple but rather inaccurate (especially in 0.5μ
design and below).

We extend the SIS delay model to a four-parameter
delay model where we add the effect of the input slew rate:

where K1 to K4 are constants. We use the same equation form
but obviously with different coefficients to calculate the rise
and fall delays, as well as the rise and fall slew rates for gate
outputs. Our delay equation is also pin-dependent. We get
these constants by doing curve fittings for every library cell
based on the results from extensive circuit-level simulation
using HSpice.

For wire delay calculation, the lumped RC model is
widely used, but the Elmore delay model gives higher
accuracy [4]. The latter model calculates the delay of each
wire segment using the equation shown in Figure 5:

loadKKGateDelay ⋅+= 21

⎟
⎠
⎞⎜

⎝
⎛ ⋅+= ∑∑

i

i

i

i ac
h

aStotalArea
β

)(
()loadKKslewloadKKGateDelay ⋅+⋅+⋅+= 4321)(

)
2

()(E

E

E C
c

rEDelay +×=

Figure 5. Elmore delay model

rE: wire resistance of E
cE: wire capacitance of E
CE: total capacitance rooted at E

E

E

Figure 4. A
gateArea versus
cutWidth curve

gateArea

cutWidth

The delay minimization cannot be done exactly due to
the following problems. During each step of dynamic
programming, the mapping and placement information for
the fanouts of the current node are not known. Therefore, the
load of the current node cannot be accurately determined.
Moreover, the delay of the wire cannot be calculated exactly
since the sub-trees may be broken up and separated during
placement of an ancestor node in the tree by YA. To solve
the first problem, we use a heuristic similar to that in [14,19]
to do delay calculation. During each step of the dynamic
programming procedure, we assume a constant load ahead
(that, is the input capacitance of a 2-input NAND gate and
the capacitance of a wire segment whose length is
statistically estimated based on the fanout count of the node
[20]). After a match is found, we update the delay of all
fanins of this match to use the correct load information since
the match is henceforth known and the fanins are already
placed and mapped. This is similar to the timing recalculation
step of [19]. The second problem mentioned above
introduces some errors in the delay calculation which cannot
be helped.

As pointed out in section III.2, we maintain a gate area
versus cut-width curve at each node. Adding delay to SiMPA
means we must generate and store a three-dimensional curve
(Figure 6) in each node during dynamic programming. The
three dimensions are gate area, cut width and delay. Pruning
is again performed to ensure the polynomial running time of
the algorithm. However, note that the delay values in this
curve are not exact as explained before.

IV.2 Extension to DAGs

Similar to KA, SiMPA can be used as a basic routine for
mapping and placement of general DAG-structured circuits
as follows.

As a first step, we partition the original circuit into a set
of trees. Restriction to tree partitioning may sacrifice the
overall quality of the technology mapping, but we benefit
from the exactness of SiMPA. Therefore, the overall chip
area/delay can still be improved (see Section V). We treat
each tree as a block (macro-cell). Because we target standard
cell layout, the height of each block is the same as the height
of the cells in the standard cell library. Next, a minimum
gate-area mapping of each tree is performed to get an
estimation of the width of the block. With the dimensions of
the blocks known, we floorplan these blocks and route the
global wires that are connecting them. The delay of each
block is estimated from the number of logic levels in each
block (which is obtained from the initial mapping solution),

and the load of the block. We calculate the global wire delays
using the Elmore delay model. Since the physical location of
each block is known, the global wire delays are fairly
accurate. Next, the delay budget for each block (tree) is
obtained using a technique similar to that of [6]. We use the
budget as the constraint to pick up a timing feasible solution
from the set of non-inferior solutions generated by SiMPA
for each tree. Finally, we refine the floorplan solution to
eliminate overlaps, and generate the final chip layout. The
pseudo code is given blow.

1. Cluster the original circuit into a set of trees
2. Estimate the area of each tree
3. Treat each tree as a macro-cell and do floorplanning
4. Perform global routing on wires that connect trees
5. Do delay calculation and budgeting for each tree
6. Call SiMPA on each tree
7. Use the delay budget generated in step 5 to pick the

feasible solution from the set of all non-inferior
solutions generated by SiMPA

8. Eliminate block overlaps and complete detailed routing

V. Experimental Results

We present our experimental results in two tables. The
area and delay in both tables refer to the total chip area and
the total chip delay after detailed routing. In all cases, we use
the four-parameter delay equation (see Section IV.1) to
calculate the gate delays and the Elmore delay model to
calculate the wire delays. We use a CASCADE generated
standard cell library (0.5μ HP 14B CMOS process) to
produce these results.

In Table I we present the results of SiMPA on trees and
compare them with the results obtained by the conventional
flow of performing technology mapping and linear placement
separately. It is important to mention here that in order to
keep the comparison fair, we also use Yannakakis’ MINCUT
placement algorithm to do the linear placement in the
conventional flow. Otherwise, we would have obtained larger
improvements because other placement tools, such as
Gordian [8] or TimberWolf [15] do not generate the
minimum cut width placement. The suffix of the tree name
represents the number of inputs. Our results show an average
improvement of 20% in the total post-layout area.

In Table II we present the results using a conventional
flow and FPD-SiMPA. In the conventional flow, we use SIS
to do a minimum delay technology mapping, followed by
Gordian and Domino [3] for placement, TimberWolf for
global routing and YACR [13] for detailed routing. In FPD-
SiMPA, we use tree clustering and initial mapping of each
tree for block width estimation, followed by Bear-FP [12]
which does floorplanning and global routing. Then we call
SiMPA for each tree subject to the delay budgets generated
in the floorplanning stage. Domino is used to eliminate
overlaps while TimberWolf is used to improve the global
routing solution. Finally YACR is called to do the detailed
routing. Our results show an average 21% improvement of
the delay without any area penalty.

cutWidth

gateArea

delay

Figure 6 A three-dimensional curve

VI. Conclusion

In this paper we proposed an algorithm for performing
technology mapping and linear placement simultaneously in
order to capture the information related to the wiring area
during the mapping. This technique uses dynamic
programming and has polynomial time complexity. We also
presented a new design flow which uses SiMPA and a
partitioning / floorplanning step to handle general circuit
structures. Furthermore, we extended SiMPA to generate
three-dimensional trade-off curves for minimum delay
mapping, although delay calculation is not exact. Our future
work will focus on developing an improved timing driven
SiMPA.

VII. Reference
[1] K. Chaudhary, and M. Pedram, “A near-optimal algorithm for

technology mapping minimizing area under delay constraints,”
in Proceeding 29th Design Automation Conference, June 1992.

[2] F. R. K. Chung, “On optimal linear arrangements of trees,” in
Comput. Math. Applic. 10, pages 43-60, 1984.

[3] K. Doll, F. M. Johannes, and G. Sigl, “DOMINO:
Deterministic placement improvement with hill-climbing
capabilities,” in IFIP International Conference VLSI, 1991.

[4] R. Gupta, B. Krauter, B. Tutuianu, and T. Pileggi, “The Elmore
Delay as a Bound for RC Trees with Generalized Input
Signals,” in Proceedings of 32nd Design Automation
Conference, pages 364-369, 1995.

[5] G. D. Hachtel, and F. Somenzi, “Logic synthesis and
verification algorithm,” Kluwer Academic Publishers, Norwell,
MA, 1996.

[6] P.S. Hauge, R. Nair, and E. J. Yoffa, “Circuit placement for
predictable performance,” in Proceedings of IEEE Inter.
Conference of Computer-Aided Design, Nov. 1987, pp.88-91.

[7] K. Keutzer, “DAGON: Technology mapping and local
optimization,” In Proceedings of Design Automation
Conference, pages 341-347, June 1987.

[8] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich,
“GRODIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization,” in IEEE Transactions on Computer-
Aided Design, Vol. 10, No. 3, March, 1991.

[9] T. Lengauer, “Upper and lower bounds on the complexity of
the min-cut linear arrangement problem on trees,” in SIAM J.
Alg. Disc. Meth., vol. 3, no. 1, pages 99-113, March 1982.

[10] J. Lou and A. H. Salek, “Optimal Algorithm for Simultaneous
Technology Mapping and Linear Placement,” CENG Technical
Report, Electrical Engineering-Systems, University of
Southern California, July 1997.

[11] M. Pedram, and N. Bhat, “Layout driven technology mapping,”
In Proceedings of the 28th Design Automation Conference,
pages 99-105, June 1991.

[12] M. Pedram, and E. Kuh, “BEAR-FP: A Robust Framework for
Floorplanning,” in International Journal of High Speed
Electronics, Vol. 3, No.1, pages 137-170, 1992.

[13] J. Reed, A. Sangiovanni-Vincentelli, and M. Santamauro, “A
new symbolic channel router: YACR2,” in IEEE Trans. on
CAD, Vol. CAD-4, pages 208-219, March 1985.

[14] R. Rudell, “Logic synthesis for VLSI design,” Memorandum
UCB/ERL M89/49, Ph.D. Dissertation, University of California
at Berkeley, April 1989.

[15] C. Sechen, and A. Sangiovanni-Vincentelli, “TimberWolf3.2:
A new standard cell placement and global routing package,” in
Proc. of 23rd Design Automation Conf., pages 432-439, 1986.

[16] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and A.
Sangiovanni-Vincentelli, “SIS: A System for Sequential
Circuit Synthesis”, Memorandum No. UCB/ERL M92/41,
Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, CA 94720, May 1992.

[17] N. Sherwani, “Algorithms for VLSI Physical Design
Automation,” Kluwer Academic Publishers, 1993.

[18] Y. Shiloach, “A minimum linear arrangement algorithm for
undirected trees,” in SIAM J. Comput. 8, pages 15-32, 1979.

[19] H. J. Touati, C. W. Moon, R. K. Brayton, and A. Wang,
“Performance oriented technology mapping,” in Proc. of Sixth
MIT Conference Advanced Res. VLSI, pages 79-97, April 1990.

[20] H. Vaishnav, and M. Pedram, “Logic extraction based on
normalized netlengths,” in Proceedings of the International
Conference on Computer Design, October 1995.

[21] M. Yannakakis, “A polynomial algorithm for the min-cut linear
arrangement of trees,” in Journal of the Association for
Computing Machinery, vol. 32, no. 4, pages 950-988, October
1985.

 Conventional FPD-SiMPA

Area Delay Area Delay
Area
Ratio

Delay
Ratio

apex6 4212505 12.94 3753360 9.40 0.89 0.73
b12 422831 4.34 412191 3.40 0.97 0.78
b9 563030 4.00 667318 3.18 1.19 0.80
C17 40050 0.74 40762 0.38 1.02 0.51
C1908 4031118 16.99 3487815 12.86 0.87 0.76
C3540 9803363 28.86 7897600 22.49 0.81 0.78
C432 1747635 12.80 1362132 15.25 0.78 1.19
C7552 12631941 24.53 15747725 22.67 1.25 0.92
C880 2352900 10.00 2378453 9.46 1.01 0.95
cm150a 216952 4.10 207928 1.65 0.96 0.40
cm151a 117725 2.28 116477 1.44 0.99 0.63
cm162a 246800 2.13 201912 2.03 0.82 0.95
con1 74690 1.58 100441 0.88 1.34 0.56
cordic 398763 2.42 311535 2.04 0.78 0.84
dalu 9818750 25.90 8593920 25.30 0.88 0.98
frg1 689931 3.71 689142 3.18 1.00 0.86
lal 553268 4.79 613118 4.50 1.11 0.94
med 166453 3.48 142105 2.72 0.85 0.78
misex3c 2670030 20.67 2747928 19.07 1.03 0.92
pcle 365859 3.87 391327 3.92 1.07 1.01
pcler8 536095 5.43 518830 4.25 0.97 0.78
rd53 224296 3.90 222800 2.20 0.99 0.56
rd73 387907 5.59 348119 5.21 0.90 0.93
rd84 888122 8.75 771825 6.92 0.87 0.79
ritex1 91133 1.16 90025 0.84 0.99 0.72
squar5 327627 6.84 278800 5.40 0.85 0.79
vg2 546742 3.90 501599 3.35 0.92 0.86
xor5 121009 2.64 106945 1.37 0.88 0.52
z4ml 203600 3.97 202032 2.89 0.99 0.73

0.96 0.79

Table II Benchmark results

Table I Tree results (* column is the number of tracks)

Conventional SiMPA

Gate Area * Total Area Gate Area * Total Area Ratio
tree8 64438 5 369054 62986 4 288590 0.78
tree10 94604 5 541823 94916 4 434888 0.80
tree20 30536 4 139910 30536 3 104933 0.75
tree24 97468 5 558226 100437 4 460184 0.82
tree64 74701 6 513400 77616 5 444528 0.87

0.80

