
0-89791-993-9/97 $10.00  1997 IEEE

Partial Scan Delay Fault Testing of Asynchronous Circuits �

Michael Kishinevsky
The University of Aizu

Aizu-Wakamatsu, 965-80 Japan

Alex Kondratyev
The University of Aizu

Aizu-Wakamatsu, 965-80 Japan

Luciano Lavagno
Politecnico di Torino
10129 Torino, Italy

Alexander Saldanha
Cadence Berkeley Laboratories

Berkeley - CA 94704

Alexander Taubin
The University of Aizu

Aizu-Wakamatsu, 965-80 Japan

Abstract
Asynchronous circuits operate correctly only under tim-

ing assumptions. Hence testing those circuits for delay
faults is crucial. This paper describes a three-step method
to detect possible delay faults in a sequential asynchronous
circuit. The delays that are to be tested must be provided
by the synthesis system. By using this information a set of
paths in the circuit that must be tested is identified (step
1). For these paths the circuit is made acyclic by insert-
ing at least one scan latch in every cycle (step 2). Then
test patterns are generated for these paths (step 3). These
test patterns consist of setup and initialization vectors and
the final test vector. We provide effective procedures to
solve both the initialization and the test pattern generation
problem. The latter problem is solved by reduction to a
classical problem of stuck-at test pattern generation for a
related combinational circuit. Finally, a heuristic is pro-
posed to determine which state variables must become part
of a scan chain, or for which input variables the positive
and negative phase must be driven independently in test
mode. Experimental results shows that a high level of path
delay fault testability can be achieved with partial scan.

1 Introduction
Correct operation of asynchronous circuits depends on

timing assumptions that are much more complex than those
in the synchronous case. In particular, an asynchronous
circuit is by construction insensitive to most delay faults,
because they often affect only its performance, not its func-
tionality. Some delay faults, though, may have an effect on
the correctness as well, and hence it is necessary to be able
to test them ([23]). Unfortunately, testing asynchronous
circuits is a difficult problem, due to the following main
reasons:

� All known asynchronous design methodologies en-
sure correct operation (hazard-freedom) by using some
level of redundancy, i.e., by sacrificing testability.

� Asynchronous control circuits tend to have more feed-
back and more registers than their synchronous coun-
terparts. This means that full-scan testing may be
unacceptably expensive.

This paper deals with the problem of generating test
sequences for a given set of paths in an asynchronous cir-
cuit. We assume that the information about which delays

�This work has been partially supported by by the Esprit project 21949 - ACID
WG (M. Kishinevsky, L. Lavagno and A. Taubin) and EPSRC Visiting Fellowship
GR/L24038 (A. Kondratyev and L. Lavagno).

in the manufactured circuit must be tested to ensure cor-
rect operation is available (e.g., from the synthesis tools).
Previous work in the area of asynchronous circuit testing
either used greedy heuristic techniques ([4]) to justify and
propagate stuck-at faults, or used exhaustive synchronous
mode testing for stuck-at faults ([3, 19]) or used manual
transformations to ensure that a simple functional testing
approach could test all stuck-at faults ([20]), or used a full-
scan approach to robustly test all delay faults ([8, 12, 17]).

We consider two versions of the path delay fault test-
ing problem: robust path delay fault testing (RPDFT) and
hazard-free robust path delay fault testing (HFRPDFT).
The former test may allow better coverage and is simpler
to generate. It guarantees that hazards in a circuit under
test cannot produce false positives, but false negatives can
occur. The latter guarantees that during the test, hazards
cannot propagate along the paths under test, and does not
admit false negatives. For sequential circuits it also guar-
antees that meta-stability cannot occur in the latches on the
paths under test. (See [23] for an in-depth discussion of
different versions of the path delay fault testing problems.)

We solve the problem of path delay fault testing for
asynchronous sequential circuits as follows.

Step 1: identification of a set of paths that cover all
potentially dangerous faults1 (Section 2.2). This is ob-
tained by finding a set of linear inequalities that bound
every relevant delay constraint (e.g., determining that the
difference between two delays in a fanout stem is less than
a given amount). All known synthesis procedures for asyn-
chronous circuits provide this information either in the form
of path delay bounds (e.g. [13]) or in the form of con-
straints on the relative delays of the branches of a fanout
stem (e.g. [10]).

Step 2: reduction to asynchronous circuits with acyclic
behavior (Section 2.1). The problem of testing an asyn-
chronous circuit is reduced, by using a partial scan ap-
proach, to that of testing an object called an asynchronous
net, in which feedbacks are allowed only inside asyn-
chronous latches (e.g., Muller C elements, with inputs a
and b and next state equation c0 = ab + ac + bc). An
asynchronous net is still a sequential object with internal
memory, but it can exhibit only acyclic behavior.

Step 3: test sequence generation. For a combina-
tional circuit, a delay fault test consists of pairs of vectors

1A delay fault is “dangerous” if it violates some assumption made during syn-
thesis, e.g. a fundamental mode constraint, an isochronic fork and so on [13].

< v0; v1 > applied to the primary inputs of a circuit. Vector
v0 sets the outputs and the side inputs of the gates along
the path under test to values which allow the propagation
of the desired transition when v1 is applied. For sequen-
tial circuits, testing a delay fault requires in general the
application of a sequence of vectors. The first part of this
sequence performs correct initialization of latches along
the path. The second part of the sequence is a testing pair
< v0; v1 >, where the setup vector, v0, sets the outputs
and the side inputs of the gates along the path under the
condition that all latches are already initialized as required.
The test vector, v1 propagates the transition along the path.

We decompose the problem of testing asynchronous nets
into that of initializing memory elements, followed by path
delay fault testing.

Step 3a: generating testing pairs < v0; v1 > (Sec-
tion 3). This problem is solved by reduction to stuck-at test
pattern generation for a combinational circuit that can be
directly derived from an asynchronous net. This approach
was proposed in [21] for RPDFT of combinational circuits.
Additional conditions on the generated stuck-at test pat-
terns for reduction of HFRPDFT are given. The method is
further generalized for sequential nets, by modeling each
latch with a combinational model (similar to modeling of
latches in time-frame unrolling [1]). We derive conditions
on the value of the state inputs under which the test for
the combinational circuit is valid also for the asynchronous
net, without resorting to time-frame unrolling.

Step 3a: Step 3b: generating initialization sequences
(Section 4). Vector v0 obtained at step 3a is the target of the
initialization procedure. We present a heuristic algorithm
for monotonous initialization that (if successful) generates
initialization sequences bounded by n2=2, where n is the
latch count. Otherwise, we resort to classical time-frame
unrolling [1] (that has an upper bound on the test sequence
length of 4n).
We improve with respect to previous work because our
approach:

� Is complete, because it finds a test sequence for a given
fault if one exists (while [4] heuristically maximized
the number of tested paths, by using a greedy search
algorithm). Note that previous work ([12]) has shown
that asynchronous circuits generated with every known
synthesis technique can be tested for delay faults by
using a full-scan approach, so we can claim that every
delay fault can be tested using the proposed method.

� Is automated (while [20] requires the designer to man-
ually insert special circuitry, acting only in functional
test mode, under guidance from a testability analysis
tool).

� Requires only partial scan (while [8] required full scan
and required additional test inputs and [17] is based on
full scan and uses transformations of combinational
logic increasing the level of testability).

� Requires only the output of a memory element to be
scanned (while [12] required both inputs to each ele-
ment to be independently scanned, that in general can
be quite expensive).

The paper is organized as follows. Section 2 reviews
the basic notions of delay fault testing and adapts them
to asynchronous sequential circuits. Section 3 describes
the reduction of HFRPDFT of sequential nets to that of
combinational nets. Section 4 presents a procedure for
initialization of asynchronous nets. Section 5 provides
experimental results.

2 Preliminaries
2.1 Asynchronous circuits and nets

An asynchronous circuit is an arbitrary interconnection
of logic gates and input nodes, with each gate input con-
nected to strictly one gate output or one input node, and
with no two gate outputs tied together. Feedback can be
either local inside gates (like SR latches or C-elements) or
global outside gates.

Our strategy for testing asynchronous circuits is based on
breaking all global feedback loops, by selecting a Minimum
Feedback Vertex Set of the circuit graph, and converting
all its gates into scan memory elements (like [5, 14] in the
synchronous case). Such transformation is obviously easier
and cheaper if the selected gates are memory elements
(see [12] for a scan SR latch circuit). Outputs of such
gates then become simultaneously new primary inputs and
primary outputs of the circuit.

We call the resulting circuit, in which feedback can only
be local, an asynchronous net. In this paper we will con-
sider a particular class of asynchronous nets, which are
composed from simple gates (AND, OR, NAND, NOR,
and NOT) and C-elements. Using the macro-expansion
operator [16], any complex gate can be converted to an
equivalent connection of simple gates preserving testabil-
ity properties. Handling asynchronous memory elements
other than C-elements is a possible area of future work.

2.2 Identifying the paths to be tested
An asynchronous circuit operates correctly without haz-

ards only if some delay constraints, which differ according
to the design style used, are satisfied. All such constraints
can be formulated in terms of comparisons among event
propagation times along some circuit paths. For example,
speed-independent circuits ([10]) operate correctly if and
only if all the branches of a multiple fanout point have sim-
ilar delays (generally, the maximum admissible spread is
comparable with one gate delay).

Let us model the delay of each wire i in a circuit by using
a variable di. In that case, the set of delay constraints that
ensure the correct operation of the circuit can be modeled
by a set A of linear inequalities over those variables. The
problem, then, is to find a set of paths that allow us to prove
that A is indeed satisfied, by bounding the delay along
them. In other words, we would like to be able to find a set
D of linear inequalities, each involving a measurable delay
along an I/O path of the corresponding asynchronous net,
such that the set of feasible solutions (assignments to the
dis) of A[D is the same as that of D.

The simplest solution to this problem is to greedily add
testable path after testable path, until the inequalities in A
all become redundant (i.e., the assumed delay bounds are
implied by the measured delay bounds). A better solution,
that is left to future work, would require to minimize the
cardinality of the set of tested paths.

Note that in this case the trade-off between test sequence
length and speed at which the circuit can operate ([11]) is
possible only if the objective of the test is the determina-
tion of the actual performance of the circuit, because no
compromise about its correctness is generally possible.

2.3 Path delay faults
In this paper we will use delay fault testing models

originally developed for combinational circuits, and extend
them to asynchronous nets. Testing for delay faults in that
case requires the application of a pair of vectors < v0; v1 >
to the primary inputs to force a signal transition propagation
along the path under test � = fg0; g1; g2; : : : ; gkg. Vector
v0 is called the setup vector, vector v1 is called the test
vector. The testability conditions are based on considering
side-inputs and side-paths.

Definition 2.1 Let � = fg0; g1; : : : ; gkg be a path. The
inputs of gi other than gi�1 are called side-inputs of gi
along � and denoted as S(gi; �).

A path that starts at a primary input and ends at a side-
input of gi 2 � is a side-path of �. If a side-path starts
at the same primary input g0 as path �, then it is called a
reconvergent side-path of �.

Definition 2.2 A controlling value for a gate g (denoted
as C(g)) is a value of one of its inputs that determines
the value at the output independent of the other inputs.
Otherwise a value of the input is called non-controlling
and denoted NC(g).

Note that a C-element has no controlling values, since
the next value at the output always depends either on the
value at both inputs, or on the previous value at the out-
put. We then extend the definition to asynchronous nets as
follows.

Definition 2.3 A controlling set for a gate g (denoted as
CS(g)) is a set of values at some of its inputs that deter-
mines the value at the output independent of the other inputs
or the previous state of the gate. Otherwise a set of val-
ues at some inputs is called non-controlling and denoted
NCS(g).

For example, f1; 1g and f0; 0g are two controlling sets
for a two-input C-element and f1; 0g and f0; 1g are two
non-controlling sets.

x

Ao

Ro

1

0
1

0
x

Ai

Ri 0

0
1 2

3

4

5

6

7

8

Figure 1: Path delay fault testing in asynchronous nets

A setup vector v0 for a combinational path has two func-
tions: (1) it sets the outputs of all the gates along the path,
and (2) it sets the side inputs of the same gates to values
which allow the propagation of the desired transition. The
first function is called initialization, the second is called
setting. This may also work for a sequential path, as shown
in Figure 1. Assume that path �1 = fx; 6; 8g is under test
for the rising input transition. It is easy to see that vector

v0 =< x = 0; Ri = 0; Ai = 1 > will initialize the C-
elements 4 and 8 into state 0 and also will set the side-input
for gate 6 on the path �1 = fx; 6; 8g and the side-input for
gate 7 on the path �2 = fx; 7; 8g at non-controlling values.
Then, by applying vector v1 =< x = 1; Ri = 0; Ai = 1 >
a rising transition will propagate from input x to output Ao
along two paths �1 and �2. If there is a delay fault in at
least one of the paths, it will be observed at the output.

Multiple paths can be tested with the same pair of vectors
(see Figure 1). In that case, more than one constraint is
obviously added to the set D that is used to bound the
timing assumptions.

However, as will be shown in Section 4, testing for delay
fault in a sequential path requires in general the application
of a sequence of vectors. The first part of this sequence
is called an initialization sequence and is concerned only
with correct initialization of C-elements (latches) along the
path. Such initialization sequence (which would not in-
validate the test) may not exist or may require applying
multiple vectors. The second part of the sequence is called
a testing pair since it always consists of a setup and a test
vector. If no such sequence exists for a given fault, we can
always introduce new scan registers. In the limit, when
all sequential elements are scanned, the circuit becomes
testable under very weak assumptions (absence of single-
cube-contained implicants [12]).

2.4 Path Delay Fault Testing
In this paper we consider two possible approaches to

path delay fault testing ([21, 7, 23, 18, 22]):

RPDFT: A path is robust delay fault testable if there is a
test pair for the path delay fault that is valid under arbitrary
delays along other paths. In other words, hazards cannot
invalidate a robust test. However some hazards may prop-
agate to the output node of the path.

HFRPDFT: A path is hazard-free robust delay fault
testable if there is a robust test vector pair for which hazards
may not occur along the path under test.

2

3

4

5

6
b

a

f
1

1

c
0

(b)

0

(a)

2

3

4

5

6
b

a

1 1

1

c
7

0d

e

2

3

4

5

6
b

a

1
f

1

1

c

t3

t2 t4

t1

t1

0/1?

(c)

meta-stability

f

Figure 2: Robust and hazard-free robust delay fault testing
for combinational (a,b) and sequential (c) nets.

The difference between these two models for combi-
national nets is illustrated by checking the testability of
path � = fc; 1; 6g in Figure 2. As shown in Figure 2,a
test pair < v0; v1 >=< 110; 111 > (the variable order
is < a; b; c >) may cause a dynamic 1-to-0 hazard at the
output of gate 6. However, if � has a longer delay than

expected, then a falling transition at the output of gate 6
is delayed. In this case hazards cannot invalidate the test
and < 110; 111 > is a robust test. If the output of gate 6
is observed at t1, when it has value 1, then we correctly
conclude that there is a delay fault along �. If the output is
observed at t2 or t4, when the output is at 0, we correctly
conclude that there is no delay fault along �. However, if
the output is observed at t3, when the output is at 1 due to
hazards at the output of gate 5, then a false negative occurs.
We incorrectly report a delay fault along �. Therefore, the
robust test is conservative and can produce false negatives.
As shown in Figure 2,b test pair< v0; v1 >=< 100; 101 >,
propagating transition along two paths � = fc; 1; 6g and
fc; 4; 5; 6g, is HFRPDFT since no hazards may occur along
�.

One may consider that hazard propagation is particularly
dangerous for asynchronous circuits, because hazards may
lead memory elements into a meta-stable state. Figure 2,c
shows an example of such behavior: a C-element (gate 7)
with output e at 1 and input d at 0 sees a 1-0-1-0 dynamic
hazard on input f . The second vector of a test pair, whose
application may cause internal hazards under the RPDFT
model, always forces a controlling set for all the gates
(including C-elements) on the path under test. This means
that any C-element that may enter a meta-stable state due
to a hazard is also forced to leave the meta-stable state
by the time v1 finishes propagating. Nevertheless, if (due
to a delay fault) the output of the C-element is observed
at t1, when it is in meta-stable state, then it may cause
uncertainty in the test machine. A meta-stable output either
keeps a value between the logical "0" and logical "1" or
oscillates. Hence the effect of meta-stable values on the
primary outputs is similar to that of hazards. Both can
cause false negative results.

We will then discuss both hazard-free and non-hazard-
free testing, because the latter may allow better coverage at
the expense of more false negative results.

Definition 2.4 Let � = fg0; g1; : : : ; gkg be a path in an
asynchronous net. We say that gate gi; 0 � i � k, has an
even input parity if there is an even number of inverters
along the path � from g0 to the output of gi. Otherwise, gi
has an odd input parity. Similarly, we define output par-
ity as the number of inverters on a path from gi to gk. The
input parity is denoted as IP (gi; �) and the output parity
as OP (gi; �). IP (gi; �); OP (gi; �) 2 feven; oddg.

Definition 2.5 (RPDFT [21])
A path � = fg0; g1; : : : ; gkg in an asynchronous net is
said to be robustly path delay fault testable for the rising
input transition by the vector pair < v0; v1 > if for each
gi 2 � and for each side-input fj 2 S(gi; �) the following
conditions hold:
(1) gi(v0) 6= gi(v1); (2) if IP (gi) = even, then gi(v1) = 1
otherwise gi(v1) = 0; (3) fj(v1) 2 NC(gi); (4) if
gi�1(v1) 2 C(gi), then there is no transition on fj .

This definition also applies to C-elements. In partic-
ular, condition 1 requires that the input values of every
C-element on � is a controlling set under the vector v1,
and the C-element output has the opposite value under v0.
Conditions 3 and 4 do not apply to C-elements, since they
refer to controlling and non-controlling values. Note that

there is no constraint on the transitions on side-inputs for
C-elements, other than that specified by condition 1.

Definition 2.5 does not restrict transitions at the side-
inputs if gi�1(v1) has a non-controlling value. Therefore
hazards may occur.

Testability for the falling input or rising and falling out-
put transitions is defined similarly and differs only in con-
dition 2 (e.g., for the falling output transition condition 2 is
as follows: if OP (gi) = even, then gi(v1) = 0 otherwise
gi(v1) = 1).

For the HFRPDFT one more condition must be added
to prevent hazards along the path under test:
(5) if gi�1(v1) 2 NC(gi) or gi is a C-element, then either
there is no transition on fj or there is one monotonous
transition on fj such that fj(v1) = gi�1(v1).

In the next section we develop the theory for HFRPDFT,
since it is the most complex case. A simplified version of
the theory, that applies to RPDFT, can be easily derived as
well.

3 Reduction of HFRPDFT to stuck-at
The problem of HFRPDF test generation for asyn-

chronous nets is solved by reducing it to classical stuck-at
test pattern generation for a combinational circuit which
can be directly derived from the asynchronous net. Since
asynchronous nets contain latches they exhibit sequential
behavior. Hence, in general, a stuck at test for an asyn-
chronous net is not a single vector but may require applying
a sequence of vectors. For this reason the reduction is done
in two steps:

� Relating sequential HFRPDFT to combinational HFR-
PDFT (Section 3.1)

� Relating HFRPDFT for a combinational circuit to
stuck-at test generation for a slightly modified com-
binational circuit. This approach was proposed in [21]
for RPDFT of combinational circuits. Additional con-
ditions on the generated stuck-at test patterns for re-
duction of HFRPDFT can be found in [9].

Note that, in practice, the first step is performed relative to
a particular test vector pair (Section 4 describes one such
approach), so the order in the algorithmic implementation
is reversed. Moreover, potentially there is a need to back-
track and select another test pair if it does not satisfy the
initializability conditions.

3.1 Relating sequential HFRPDFT to combina-
tional HFRPDFT

Given an asynchronous net, C , let us substitute each
C-element cj = ajbj + ajcj + bjcj with its combina-
tional model, that is a majority gate (M-gate) Mj . An
M-gate implements the following boolean function: cj =
ajbj + ajmj + bjmj , where mj is an additional primary
input (called M-input). Since the majority function is unate
and each M-input fans out only to one M-gate Mj , there
is no need to decompose Mj into simple gates. In the
following we will always consider Mj as an atomic gate.
The conversion of C-elements to combinational M-gates is
purely logical and is done for the algorithm of test gener-
ation for the original sequential circuit, no actual physical
transformation of the original sequential circuit is required.

Definition 3.1 The combinational circuit obtained from an
asynchronous net C by replacing each C-element with an
M-gate, is called an M-net and is denoted M(C).

If an asynchronous net has primary inputs I =

fi1; : : : ; ikg and C-elements L = fc1; : : : ; clg, then
the corresponding M-net has k + l primary inputs
fi1; : : : ; ik;m1; : : : ;mlg. The following conditions deter-
mine the value of the M-input that implies a stable behavior
of the M-gate if its output is connected to its input (thus
forming a C-element again). Figure 3 shows an exam-
ple of M-net, corresponding to the asynchronous net from
Figure 1.

x

Ao

Ro

x

Ai

Ri

1 2

3

5

6

7
1

1

1 0
1

0

1
4

8

M

M

m4

m8

Figure 3: M-net

Definition 3.2 A vector v of inputs to the M-net is called
consistent with initialization if for each M-gate, Mj , the
following condition is satisfied: cj(v) = mj(v).

In other words, the final value cj at the output of each M-
gate after applying v is the same as that of the M-input
mj .

Let v =< v0; : : : ; vk > be a binary or ternary vector
(vi 2 f0; 1;�g) for variables from set X and let Z � X.
Then v # Z denotes the sub-vector of v corresponding
only to variables from Z. The following theorem states the
conditions under which a combinational logic test derived
for an M-net is valid also for the corresponding sequential
asynchronous net.

Theorem 3.3 Let C be an asynchronous net with set of
primary inputs I and set of C-elements L. Let � =

fi; g0; : : : ; gkg be a path in C and �0 = fi0; g00; : : : ; g
0

kg
be the path corresponding to � in the M-net M(C). If
< v0; v1 > is a HFRPDFT for �0 in the M-net and v0 is
consistent with initialization, then < v0 # I; v1 # I > is a
HFRPDFT for C under the following initialization condi-
tion: each C-element cj 2 L has the same value cj(v0) as
mj(v0) in the M-net.

The proof of the theorem can be found in [9]. Note that
there is no need to check a similar condition for v1, because
v1 must impose a forcing set on every C-element along the
path, and hence the output of the M-gates is independent of
the M-input values.

If the condition for v0 to be consistent with initialization
is violated, then the behavior of an asynchronous net and
of the corresponding M-net is different and, in general, the
test for the latter is not valid for the former. Assume that
the order of the primary inputs for the M-net in Figure 3
is as follows: < x;Ri;Ai;m4;m8 >. A vector pair <
v0; v1 >=< 00011; 00111 > is a HFRPDFT for the falling
output transition at the path �0 = fAi; 4; 7; 8g in the M-
net. Since v0 is consistent with initialization (m4(v0) =

Ro(v0) = 1 and m8(v0) = Ao(v0) = 1, a vector pair
< v0 # I; v1 # I >=< 000; 001 > is a HFRPDFT for the

falling output transition at the path � = fAi; 4; 7; 8g in the
asynchronous net. The same path can be tested in the M-
net with a vector pair < v10; v11 >=< 01001; 01101 >.
However, v10 is not consistent with initialization because
m4(v10) = 0, while the output of this M-gateRo(v10) = 1.
It is easy to check that < v0 # I; v1 # I >=< 010; 011 >
is not a HFRPDFT for the falling output transition along
the path � = fAi; 4; 7; 8g in the asynchronous net.

4 Initialization conditions
Let < v0; v1 > be a HFRPDFT for the path � in the

M-net and let v0 be consistent with initialization. Vector v0
defines the values of the primary inputs and of the M-inputs.
By Theorem 3.3 < v0 # I; v1 # I > will be a HFRPDFT
for the asynchronous net only if the values on the outputs
of C-elements L = fc1; : : : ; clg coincide with those of the
majority gates. These values are given by a ternary vector
� = v0 # L. The aim of the initialization procedure is to
set all C-elements according to �.

The proposed monotonous initialization procedure be-
gins from those C-elements that are closer to the primary
outputs (in backward topological order). The polynomial
bound on the (possibly non-existing) monotonous initial-
ization sequence length is due to the fact that a C-element
is not disturbed after having been set.

We can associate four Boolean functions (defined over
the space of primary inputs and C-element outputs) with
each element g (gate or C-element) of an asynchronous
net.

� S1(g) and S0(g) – setting g to 1 or 0 respectively and

� H1(g) and H0(g) – holding g to 1 or 0 respectively.

If g is a basic combinational gate with output function f

then S1(g) = H1(g) = f while S0(g) = H0(g) = f .
In case of a C-element, the holding and setting functions
are different. For C-element cj with inputs i1; : : : ; ik they
are: S1(cj) = H1(i1) � ::: � H1(ik) and H1(cj) = cj �
(H1(i1)+ :::+H1(ik)) (similarly for S0(cj) andH0(cj)).

To set a C-element cj we must apply an input vector
under which the corresponding setting function evaluates to
1. However only for C-elements of the first level the value
of a setting function is completely determined by primary
inputs. For cj in level i the setting function depends also on
the outputs of C-elements from the lower levels. Therefore
the process of setting cj may require the recursive setting
of “preceding” C-elements.

Let us consider in more detail the process of setting cj
to 1 by using an input vector v (resetting it to 0 can be
done similarly). Let Cs denote the C-elements from levels
higher than i. If v sets cj then two conditions must be
satisfied:

1. there exists cube � 2 S1(cj) such that � # I covers v.

2. C-elements C� whose outputs have a value of 0 or 1 in
� (these are the C-elements on which cj depends) have
already been set by previous input vectors w1; : : : ; wn.

Application of vector v afterwn can lead to the following
difficulties:

� cm 2 C� can change its value inside the transition
cube between wn and v. In such case the value of � in
v does not evaluate to 1 and cj is not set.

� cm 2 Cs can change its value inside the transition cube
between wn and v. In such case the requirement of
monotonicity of the initialization procedure is violated.

These two conditions restrict the set of valid vectors v
that can be applied after wn, leading towards v0, that is
the objective of initialization. If we denote by Hold the
product of the holding functions of C-elements in Cs[C� ,
then a valid transition path between wn and v must belong
toHold. The task of finding a valid path can be reduced to a
search in a graph with: (1) vertices corresponding to cubes
of Hold and (2) edges between every pair of intersecting
cubes from Hold.

If no valid path exists, then cj cannot be set by the cube
� and another cube from the setting function of cj is tried.
If we fail to find such a path for all cubes cj , then we need
to backtrack. The procedure converges, because full scan
testing is always possible.

x

Ao

Ro

x

Ai

Ri

1 2

3

4

5

6

7

80

00

0

0

0

0

Figure 4: Initialization of asynchronous nets

Return to our example and consider (Figure 4) path
�fAi; 4; 7; 8; Aog under the rising transition on Ai. The
vector pair < v0 = fx = 0; Ri = 0; Ai = 0g; v1 = fx =

0; Ri = 0; Ai = 1g > will be a HFRPDFT for the falling
output transition for � under the condition that Ro and Ao
are initialized to 1. Let us find a corresponding initial-
ization sequence. The holding and setting functions for
C-elements Ro and Ao are:
S1(Ro) = Ai � (xRi+ xRi)

H1(Ro) = Ro � (Ai+ xRi+ xRi)

S0(Ro) = Ai � (xRi+ xRi)

H0(Ro) = Ro � (Ai+ xRi+ xRi)

S1(Ao) = x �H0(Ro) � (x+H1(Ro))

H1(Ao) = Ao � (x �H0(Ro) + x+H1(Ro))2

After substituting ofH1(Ro) andH0(Ro) into the func-
tions for Ao we get: S1(Ao) = xRoAi+ xRoRi and

H1(Ao) = xAo+AoRoAi+AoRoxRi

From S1(Ao) it follows that to set Ao at level 2 we first
need to reset Ro at level 1. The latter can be done by the
vector w1 =< Ai = 1; x = 1; Ri = 1 >. Note that after
Ro is reset, the same vector w1 sets Ao to 1.

The next initialization step is to set Ro. To do this we
can try cube AixRi of function S1(Ro). However, if we
apply vector w2 =< Ai = 0; x = 0; Ri = 1 > after w1
we cannot keep the value 1 on the output of Ao because
H1(Ao) is equal to 0 underw2 (remember that after w1,Ro
is reset to 0). Therefore no valid path from w1 to w2 exists
and we need to try the next cube in S1(Ro), that is AixRi.
This cube defines vector w3 =< Ai = 0; x = 1; Ri = 0 >

2S0(Ao) and H0(Ao) functions are not considered here because in this case
Ao is not set to 0.

and in any minterm of the transient cube between w1 and
w3, Ao keeps the value 1 (due to cube xAo of H1(Ao)).
Therefore, any path inside the transient cube is valid and
w3 can be applied immediately after w1.

The last task is to check that in the transition from w3
to v0 no C-element changes the output. This condition is
satisfied, because w3 and v1 are adjacent and both belong
to H1(Ao) and H1(Ro). Hence, w1; w3; v0 is a valid
initialization sequence.

5 Experimental results
This section presents experimental results which illus-

trate the RPDFT properties of two classes of asynchronous
logic circuits: (1) speed-independent random control logic
synthesized from Signal Transition Graph specifications
using the so-called Monotonous Cover technique [10]; (2)
regular logic from delay-insensitive data-paths [24, 6, 15].
Similar experiments could also be performed with the HFR-
PDFT model, with obviously lower coverage figures.

The experimental procedure has three main steps:

1. Selecting a set of C-elements to scan.

2. Translating the asynchronous net into an M-net by
replacing each C-element with a majority gate. A
robust test for each path in the M-net is obtained by
test generation of a single stuck-fault in a modified net
obtained from the M-net, as described in [9].

3. Generating a sequence of initialization vectors to set
the output value of each C-element along the path
being tested to the desired value.

As already mentioned, if initialization does not succeed for
a chosen test vector pair, additional vector pairs are selected
until initialization succeeds for at least one or fails for all.

Circuits from the first class are characterized by a very
high density of signal interconnections. We checked four
techniques for achieving high-testability: full input scan,
full output scan, partial output scan and partial output scan
with splitting of primary inputs. Splitting of input connec-
tions (that was defined in [12] for true and complemented
phases only) is a powerful technique to increase the testa-
bility of asynchronous circuits, because it reduces the re-
dundancy level.

(a) (b) (c)

Figure 5: Techniques for testability: input scan (a), output
scan (b), fork and phase splitting (c).

As illustrated by Figure 5, input scan requires scan-in
and scan-out operations for both inputs of a latch, output
scan requires scan-in and scan-out only for the output of the
latch. Fork and phase splitting requires scan-in in addition
to scan out. Fork splitting means the possibility to scan
independently the fanout branches of a fork. Phase splitting
means the possibility to drive independently the true and
complemented phase of each primary input and sequential
element.

Circuit paths signals approach of [12] partial scan partial scan with splitting
input output scan % scan split %

converta 30 3 100 80 2 64 2 1 71
chu150 22 3 100 91 1 91 1 1 91
chu172 12 3 100 100 0 100 0 0 100
rpdft.map2 36 6 100 97 0 83 0 1 94
alloc-outbound.map2 34 6 100 86 2 86 2 1 97
c3.map2 42 6 100 93 2 71 2 1 83
rcv-setup.map2 20 5 100 100 1 83 1 1 89
master-read-csc.map2 80 16 100 91 5 62 5 2 84
pe-send-ifc-csc 146 5 100 84 4 54 4 2 72
full 16 2 100 50 1 50 1 1 75
dc 36 4 100 89 3 88 3 1 90
qr42 28 3 100 79 1 38 1 1 51
chu133 24 4 100 96 3 89 3 1 96

Table 1: Experimental results for speed-independent control

Table 1 presents the results for speed-independent con-
trol logic. The first two columns describe circuit com-
plexity: the number of paths and the number of non-input
(i.e., feedback) signals of the circuit. There is no column
on runtime because for our small circuits test generation
always took less then 10 msec. The “approach of [12]”
columns show the percent level of testability for input scan
and for output scan of all non-input signals respectively, us-
ing the technique of [12]. The “partial scan” columns show
the level of testability for a selected number of scanned
signals for the output scan technique. The last group of
columns shows how the level of testability can be increased
if the splitting technique is used in addition to partial scan.
The column labeled “split” gives the number of split sig-
nals. For example, the best level of testability that can be
achieved by partial output scan for circuit “converta” (two
out of three signals are scanned) is 64%. If one additional
signal is split, then testability reaches 71%.

The sets of signals for partial scan and for splitting are
selected to achieve the required testability level. In Table 1
we attempt to reach a testability level of 70%, and limit the
number of signals which are allowed to be scanned and split
as explained in the algorithm Figure 6. For example, we do
not allow more than one signal to split for circuit “converta”
and to scan more than five signals for circuit “master-read-
csc.map2”. The requested level of testability cannot be
achieved by scanning only five signals in “master-read-
csc.map2”, but can be achieved by splitting two additional
signals.

Our algorithm for selecting a set of signals for partial
scan and for signal splitting operates on the directed graph
of signal interconnections. It is sketched in Figure 6.

Circuits from the second class are known to have high
stuck-at testability. We expected that a high level of path
delay fault testability could be achieved with a low scan ra-
tio. Table 2 presents the results for a DIMS-adder [24], for
a delay-insensitive adder with a status detector for dual-rail
input wires [6] and for a reduced direct logic adder [15].
The numbers are obtained for one bit adders. Since the
circuits have no global loops, no scan is required. The
last line of the table shows the result for a bit-slice of a
serial-parallel carry-save multiplier with pipeline latches

begin
Select a Minimum Feedback Vertex Set, Scan,
with a maximal sum of vertex degrees among all MFVSs;
repeat /* Updating scan set */

Add a vertex with a maximal degree to Scan;
If testability is less than requested then

repeat /* Updating split set */
Split a signal g 2 Scan with a max. out-degree;
Choose bi-partition of g’s fan-out set
to minimize the number of reconvergent paths;

until The requested level of testability is achieved
or the splitting limit is exceeded;

until The requested level of testability is achieved or
the scan limit is exceeded;

end Figure 6: Algorithm

for the two operands, the sum-in and the carry-in, and
output latches for the sum-out and the carry-out. To ob-
tain full testability, four feedback wires between the re-
sult latches and the operand latches must be scanned. The
pipelined adder example is a DIMS-adder incorporated into
the pipelined ring.

A few interesting observations can be made:

� Although dependency graphs are very dense for speed-
independent random control logic, partial scan aug-
mented with splitting techniques can provide a high
level of testability.

� Full output scan (which can be achieved by insert-
ing transparent latches after each C-element) provides
a relatively good testability level around 80%-90%.
This gives, to the best of our knowledge, the first ex-
perimental evidence that speed-independent circuits
are easily testable even when more accurate fault mod-
els than pure output stuck-at are used ([2] first proved
their self-checking properties with respect to this kind
of fault).

� Experiments with delay-insensitive adders show that
the optimization technique used for area efficiency re-
duces the level of testability from 100% in the DIMS
adder to 74% in Martin’s adder (which is competitive in

Circuit Paths Signals Testability (%) Scan (latches) Scan (% of latches)
DIMS 96 12 100 0 0
DGY 92 18 79 0 0
Martin 84 24 74 0 0
pipelined adder 420 30 100 1 5%
pipelined multiplier 1062 48 100 4 13%

Table 2: Experimental results for delay-insensitive data path

area and faster than a synchronous ripple-carry adder).
We may conclude that the optimization transforma-
tions which correspond to quasi-delay-insensitive sub-
stitution do not retain testability.

6 Conclusions
In this paper we have described a complete path-delay

fault testing algorithm for asynchronous sequential circuits.
We have shown that it is possible to perform such tests by
partial scan on a sequential object called an asynchronous
net. We defined the set of paths that must be tested to
check all the timing assumptions. We decomposed the
testing problem for sequential circuits into:

1. insertion of enough scan elements to make the asyn-
chronous circuit functionally acyclic,

2. initialization (using a heuristic technique, with a fall-
back strategy for the sake of completeness).

3. test pattern generation, by reduction to combinational
ATPG.

Experimental results show that the technique is effective
in providing a substantial savings in the number of scan
memory elements, versus a small reduction in the testability
figures. This is true of control-dominated dense circuits,
and even more of regular data path objects.

References
[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems

Testing and Testable Design. IEEE Press, 1990. Revised printing.

[2] D. B. Armstrong, A. D. Friedman, and P. R. Menon. Design of asyn-
chronous circuits assuming unbounded gate delays. IEEE Transac-
tions on Computers, C-18(12):1110–1120, December 1969.

[3] S. Banerjee, S.T. Chakradhar, and R.K. Roy. Synchronous test
generation model for asynchronous circuits. In Proceedings of the
Int. Conf. on VLSI Design, pages 178–185, January 1995.

[4] K.-T. Cheng, V. Agrawal, and E. Kuh. A simulation-based method
for generating tests for sequential circuits. IEEE Transactions on
Computers, 39(12):1456–1463, December 1990.

[5] K.-T. Cheng and V. D. Agrawal. A partial scan method for se-
quential circuits with feedback. IEEE Transactions on Computers,
C-39(4):544–548, April 1990.

[6] I. David, R. Ginosar, and M. Yoeli. An efficient implementation
of boolean functions as self-timed circuits. IEEE Transactions on
Computers, 41(1):2–11, January 1992.

[7] S. Devadas and K. Keutzer. Synthesis of robust delay-fault testable
circuits: Theory. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 11(1):87–101, January 1992.

[8] K. Keutzer, L. Lavagno, and A. Sangiovanni-Vincentelli. Synthesis
for testability techniques for asynchronous circuits. IEEE Trans-
actions on Computer-Aided Design, 14(12):1569–1577, December
1995.

[9] M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Saldanha, and
A. Taubin. Hazard free robust path delay fault testing of asyn-
chronous nets. Technical Report TR: 96-2-001, The University of
Aizu, Japan, March 1996.

[10] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev. Basic gate implementation of speed-independent cir-
cuits. In Proceedings of the Design Automation Conference, pages
56–62, June 1994.

[11] W. Lam, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli.
Delay fault coverage and performance tradeoffs. In Proc. ACM/IEEE
Design Automation Conference, pages 446–452, June 1993.

[12] L. Lavagno, M. Kishinevsky, and A. Lioy. Testing redundant asyn-
chronous circuits by variable phase splitting. In Proceedings of
the EURO-DAC’94, pages 328–333, Grenoble, France, September
1994.

[13] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for Syn-
thesis and Testing of Asynchronous Circuits. Kluwer Academic
Publishers, 1993.

[14] D.H. Lee and S.M. Reddy. On determining scan flip-flops in partial-
scan designs. In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 322–325, November 1990.

[15] A.J. Martin. Asynchronous datapaths and the design of an asyn-
chronous adder. Formal Methods in System Design, 1:117–137,
1992.

[16] P. McGeer and R. Brayton. Provably correct critical paths. In The
Proceedings of the Decennial Caltech VLSI Conference, 1989.

[17] S. Nowick, N. Jha, and F-C. Cheng. Synthesis of asynchronous
circuits for stuck-at and robust path delay fault testability. In Pro-
ceedings of the Int. Conf. on VLSI Design, January 1995.

[18] A. Pramanick and S. Reddy. On the design of path delay fault
testable combinational circuits. In Proceedings of the 20th Fault
Tolerant Computing Symposium, pages 374–381, June 1990.

[19] O. Roig, J. Cortadella, M.A. Pe na, and E. Pastor. Automatic gen-
eration of synchronous test patterns for asynchronous circuits. In
Proceedings of the 34th Design Automation Conference, June 1997.

[20] M. Roncken and R. Saeijs. Linear test times for delay-insensitive
circuits: a compilation strategy. In S. Furber and M. Edwards,
editors, Proceedings of IFIP Working Conference on Asynchronous
Design Methodologies, pages 13–27, Manchester, UK, 31 March –
2 April 1993, 1993.

[21] A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli. Equiva-
lence of robust delay-fault and single stuck-fault test generation. In
Proc. ACM/IEEE Design Automation Conference, pages 173–176,
June 1992.

[22] J. Savir and W.H. Anney. Random pattern testability of delay faults.
In Proceedingsof the InternationalTest Conference, pages 263–273,
October 1986.

[23] G. L. Smith. A Model for Delay Faults Based on Paths. In Pro-
ceedings of the Int’l Test Conference, pages 342–349, September
1985.

[24] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring
structures. INTEGRATION, the VLSI Journal, 15(3):313–340,1993.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

