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Abstract 

This paper proposes a new bipatition-codec architecture 
that may reduce power consumption of pipelined circuits. We 
treat each output value of a pipelined circuit as one state of a 
FSM. If the output of a pipelined circuit transit mainly among 
few states, we could partition the combinational portion of a 
pipelined circuit into two blocks: one that contains the few 
states of high activity is small and the other that contains the 
remainder of low activity is big. Consequently, the state 
transitions will be confined to the small block in most of the 
time. Then we replace the small block with a codec circuit, 
which consists of an encoder and a decoder, to reduce the 
internal switching activity of the block. The encoder 
minimizes the number of bit changes during state transitions 
thus the switching which propagates into decoder is reduced 
considerably. We present experimental results on several 
MCNC benchmarks and get up to 63.7% power savings by 
using our new architecture. 

1. Introduction 

Portable devices have made our work more convenient and 
efficient in recent years. While they require low power to 
prolong the operating time. Thus low power consideration has 
been one of the new treads for circuits design. 

For low power circuits design, CMOS technology is a 
natural choice because of almost zero DC power dissipation. 
Unlike bipolar technology, the main component of power 
dissipation in CMOS technologies is the dynamic parts. The 
power dissipation in digital CMOS circuits can be written as 
follows: [I] 

The first term in the right hand side represents the power 
dissipation in switching components, where CL is the loading 
capacitance, f, is the clock frequency, v is the voltage 
swing, Vdd .is the supply voltage. The factor I: is the 
probability of circuit switching. If no DC-to-DC converter is 
used as a power supply within the circuits, v should be 
equivalent to v, . The second term ‘ ‘ I ~ ~  . vdd ” is due to the 
direct-path short circuit current when both PMOS and NMOS 
turn on at the same time. The last term “ I ~ - ~ - . V ~ ”  which 
arises from substrate injection and subthreshold effect, is 
primarily determined by the fabrication technology 
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considerations. The dominant term of power dissipation in a 
well-designed circuit is the switching component, it almost 
accounts for over 90% of the total power dissipation. 
Therefore, lots of researches focus on reducing the 
e,c,, Vdd,f, term to obtain power reduction. 

Many power optimization techniques at various levels 
of abstractions are proposed in recent years. On architectural 
level and logic level, the probability of switching activity is 
directly proportional to the dominant power dissipation term, 
thus there have been many researches on reducing switching 
activity for saving power. [2][3][4] proposed new sate 
encoding algorithms to reduce the Hamming distances 
between the binary representations of frequent transition pairs 
of states. Thus few switching will propagate into the 
combinational logic of FSM such that the switching activity in 
the internal nodes of combinational logic can be reduced. 
Although the complexity of combinational logic is increased 
after state assignment, these algorithms could reduce power 
consumption by 20% comparing with the originals that do not 
encode states with low power algorithm. Alidina, etc. 
proposed two precomputation architectures for low power 
sequential logic [5]. They selectively precompute the output 
values of the circuit one clock cycle before the values being 
required, and use the precomputed logic function to isolate 
part of input signals with registers from the combinational 
logic. If the output values can be precomputed, the original 
logic circuit can be “turned off’ in the next clock cycle and 
will not have any switching activity. This approach will have 
much power saving effect, if few input pins can determine the 
correct output values. However, the precomputation 
architecture is not suitable for the circuits which output pins 
must be determined by most input pins. Luca and Giovanni 
used gated-clock method for low power FSMs [6]. They 
exploits the concept of self-loop, an idle condition for a 
Moore machine. When the machine is in a self-loop condition, 
the next state is the same as the present state, and the output 
do not change in the next cycle. Therefore clocking the 
machine only wastes power. The technique can obtain power 
saving by stopping the clock of the circuit during the self-loop 
period. FSMs with a lot of self-loops can perform well using 
gated-clock approach, but some FSMs transit mainly among 
some states can not benefit from these methods. [7] 
decomposed a FSM into a number of coupled submachines so 
that there is a high probability and state transitions will be 
confined to the smaller submachines most ofthe time. 

This paper will proposes a bipartion-codec architecture 
(bipartitioned coding-decoding architecture), a novel 



architecture for low power pipelined circuits. We treat each 
different output as a corresponding state of FSM in our 
architecture and a FSM implicitly specifies a state transition 
graph (STG). Then the bipartition algorithm is exploited to 
measure the probabilistic behavior and partition the STG. 
After performing our bipartition algorithm, the original STG 
is partitioned into two STGs: one contains fewer states of high 
activity and the other contains more states of low activity. 
Obviously, the former will be active at most of the time and 
dominate the power dissipation. We use codec structure to 
implement the high active portion for minimizing the circuit 
switching. 

The presence of bipartition-codec architecture has two 
important cosiderations. First, when we have a FSM with n 
different states, it will have 2'-2 different bipartitions. It is 
impossible to synthesize and estimate the power of all 
bipartitions for choosing the best case. Second, detecting 
clustering conditions requires some computation to be 
performed by additional circuitry. The additional circuitry 
also dissipates power. In this paper, we propose a heuristic 
and fast algorithm to partition circuit for our bipartition-codec 
architecture, then combine the encoder circuit with the 
clustering detecting circuitry for decreasing circuit area. 

The remainder of this paper is organized as follows. 
Section 2 proposes a biparition-codec arcliitecture and its 
working principle. Bipartition algorithm is described in 
section 3. In section 4, we discuss the codec structure and 
state encoding for low power. In this section we also discuss 
our architecture without using codec structure for comparison. 
In section 5 ,  experimental results are presented, that confirm 
the effectiveness of our new architecture. Finally we 
summarize the conclusion of the paper in section 6.  

2. Bipartition-Codec Architecture 

A. Preliminary 

Before describing the bipartition-codec architecture in detail, 
let us consider the relationship between the FSM and 
combinational circuit. By paying attention to the output end of 
combinational circuit, each output value can be regarded as 
one state of a Moore FSM. However, the combinational 
circuits do not need information of the past cycles to 
determine output value in the present cycle. The transition of 
the states only depends on input patterns. From all different 
states, they will arrive at the same state if the same input 
patterns are used to trigger the machine. 

Definition 1. A combinational circuit can be modeled by a 
four-tuple (I, 0, S, F) where I is the set of inputs, 0 is the set 
of outputs, S is the set of states. Every state S, has a unique 
code e ,  The output function is defined as 0, = F(I)= eb where 
i = I .  ..., /SI. 

Example 1. In Fig. 1 (a), there are three different output 
values IO, 00, I1 in the truth table, and the corresponding 
states are: SO, SI, S2. Since the output values can change to 
any valid output values at the next cycle, certainly including 
itselJ; the state transition graph (STG) is a complete 

connective graph. 

Fig. l.(a) the truth table of a combinational circuit @) the 
state transition graph 

The state transition probability provides a measure of 
the most frequently traversed transitions. Markov chain is 
usually used to model the transition behavior of FSM. It is not 
necessary for combinational circuit, because the output values 
of combinational circuit completely depend on input patterns. 
Thus we can only consider the magnitude of state probability 
to figure out the probabilistic behavior. 

Definition 2. The state probability of combinational circuits is 
the number of diferent input patterns of a particular state 
divided by the number of total diferent input patterns. 

Example 2. In Example I ,  we assumed the probability 
distribution of output patterns is uniform. n e  probability of 
each state is: Prob(S0) = 2/4, Prob(S1) = 1/4, Prob(S2) = 1/4. 

B. Bipartition-Codec Architecture 

Consider the circuit of Fig. 2. A pipelined stage is a 
combinational logic block separated by distinct registers. 

block 

I CLK I 

Fig. 2. A combinational pipelined circuit 

The bipartition architecture without codec structure is 
shown in Fig. 3. The combinational logic portion in Fig. 2 is 
partitioned into two groups. One that includes some states of 
high activity is small called Group, and the other that includes 
the remainder of low activity is big called Group,. The two 
groups work in tums. The GCB is a precomputation block for 
only one block is working at the same time. Then we replace 
the Group, and GCB with a codec structure, which consists of 
an encoder and a decoder. The encoder not only encodes the 
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output state but also issues a signal SEL to choose which 
group to compute. The SEL function also controls the MUX 
to select correct outputs. The bipartition-codec architecture is 
shown in Fig. 4. 

In Fig. 4, the input IN feeds into the Encoder and the 
registers of Group,. Encoder issues a SEL function to select 
which group to compute. When SEL=l, the gated clock CLKl 
will be active, and CLK2 stopped. The output values of 
encoder pass through the register word and propagate into the 
decoder. Finally the output values of the decoder directly 
connect to the output ports by multiplexer. At this moment, 
the input register word of Group, is disabled by the 
complementary value of SEL, it prevents input signal 
switching from entering into the Group,. So there is no power 
consumption in the Group,. 

Fig 3. A bipartition architecture without code structure 

The low enable latch in our architecture is needed for a 
correct behavior, because SEL may have glitches that must 
not propagate to the AND gate when global clock is high. The 
other latch, which behind low-enable one is transparent when 
clock is high. These two latches work as a master-slave flip- 
flop. They save the SEL function during a period of the global 
clock so that the multiplexers can select the correct outputs. 

Fig 4. A new bipartition-codec architecture 

We can obtain power reduction when most of the input 
conditions corresponding to SEL=l. In other words, if the 
smaller combinational block Group,, which we replace by an 
encoder and a decoder, is active of the most time, the effect of 
our architecture on power saving is better. In the following 
section, we will describe the detail of our low power 
architecture. 

Example 3. The given example illustrates the cluster 
characteristic for bipartiton architecture. Consider the 
benchmark sa02 of MCNC which has 10 input pins and 4 
output pins. The state list of sa02 is shown below: 

State 
statepattan 

0010 
001 1 
0100 
lo00 
1100 
o001 
0101 
1001 
1101 

s, 
s, 
s, 
% 
s, 
s, 
s, 
% g 1001 

1101 
% 

ccutlt 

513 
257 
219 
8 
7 
6 
5 
4 
3 

- 

2 -  

ccutlt 

513 
257 
219 
8 
7 
6 
5 
4 
3 
2 

-- 

-- 
State pattern is the original output pattern ofthe benchmark 
sa02. The column of count stands for the number of dzfferent 
input patterns corresponding to a particular state. In this 
example, ifwe cluster SI, S2 and S3 into Group,, the probability 
of Group, is 989/1024. For our architecture: the meaning is 
that most transitions will occur in the small Group,. 

3. Bipartition Algorithm 

The objective of the bipartition algorithm is to partition a 
combinational circuit into Group, and Group,. The Group, is 
small but with high active probability and the Group, is big 
with low active probability. Unfortunately, we can not 
estimate power and area of circuits before synthesis, 
proposing an optimal bipartition algorithm for achieving the 
maximum power saving in our architecture become very 
difficult, so a heuristic algorithm must be used. In this section, 
we formulate the bipartition problem and propose a heuristic 
algorithm for our low power architecture. 

A. Problem Formulation 

The problem of bipartition can be regarded as to bipartite the 
circuit which implementation dissipates the minimum power. 
The Group, dominates the most power consumption of the 
circuit since most of the time the Group, is at work in our 
architecture. Observe that minimizing the gate count of 
Group, for reducing the circuit switching plays a significant 
role in lowering the power dissipation. Thus .the problem can 
be simplified as follows: First we hope the sum of the state 
probabilities in Group, as large as possible; second the gate 
counts of Group, after synthesis as small as possible. The 
problem of finding a bipartition can be formalized as follows: 

prob(Grou&) 
G -count(Groun ) 

Max 

In (2), Prob(Group3 is the summary of state probabilities in 
Group, and G-count(Group J represents the gate count of 
Group,. Since the gate count of Group, is hard to estimate 
before synthesis. We pay our attention to the relation between 
state number and gate count. The less state number we select, 
the more don't care conditions we have. The size of a cover is 
the number of its implicants. Don't care conditions can be 
effectively used to reduce the size of a cover of an 
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incompletely specified function [9]. Thus we assume the gate 
count is proportional to the numbers of states. The 
formulation (2) can be rewritten as: 

SEL Group, Encoder Decoder ----- 
sa02 50 12 62 0 

misex3 759 97 799 3 

prob(Groupl) 
State- No( GrouA) 

Max (3) 

Example 4. From example 1, the truth table can be 
determined by a two-input, two-output function, where = 
a '+b'; = ab'. We need an OR gate and an AND gate to 
implement the two functions. If we partition the STG into {SO} 
and {SI, S2), input patterns IO, I1 become don't care 
conditions for {SO}. Thefinction of group {SO} will becomef, 
= 1; f2 = 0. Obviously, the gate counts will reduce to 0 due to 
the reduction of implicants. 

B. Heuristic Algorithm 

The bipatition algorithm is used to select the states of Group,, 
and the remainders are put in Group,. The input of our 
algorithm is a set of individual state, S1, S2, .., Sn. In line 1, 
MinCount is equal to the half number of input patterns since 
Count(S) is a function that calculates the number of input 
patterns that generate all output values in S .  We determine the 
AvgCount by dividing Count(S) by state number n.  Clearly, 
AvgCount is an average number of the input patterns of one 
state and serves as a threshold value while selecting states in 
this algorithm. Ceil function is used to exclude the states 
which are greater than the average state input count. Then, we 
initialize the selected to null and the Count of selected to zero. 
From lines 4 to 9, the foreach loop expands the Selected set 
by adding the states of which the state count are greater than 
AvgCount. From lines 10 to 14, the while loop continues 
selecting states until the constraint on MinCount is satisfied. 
Otherwise, it could not obtain better power saving effect due 
to its small group probability. In most cases, the while loop 
will skip since most benchmarks have cluster and selfloop 
characteristic. 

{ 

2 AvgCount = rcount(s)/n]; 

Bipartition ( S = {SI, S,, . . .,Sn}) 
1 MinCount = Count(S)/Z; 

3 
4 
5 
6 
7 

8 
9 
10 
11 
12 
13 
14 
15 

1 

selected = NULL; Count = 0; 
foreach ( S,ES ) { 
if (Count(S,) 5 AvgCount) { 
s = s-si; 
selected = selected U Si; 
Count = count(S,); 

1 
while ( Count S MinCount) { 
NewState=sel-max-Count(S); 
selected=selected V Newstate; 
Count=Count+Count(NewState); 

1 
return selected; 

Fig 5. bipatition algorithm for bipartition- 
codec architecture 
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4. Codec Structure and State Encoding 

A. Codec structure 

According to our bipartition algorithm, Group, includes few 
highly active states. That means Group, generates fewer 
different output patterns than the original circuit. 
Consequently, we can decrease the output pins of encoder to 
1odNo-of-Sroteq for scaling down the circuit complexity. In 
order to select which group is active, SEL function plays a 
significantly role in our architecture. The Encoder also 
generates the SEL function in our design. Because that the 
function shared most of the product terms of the Encoding 
portion. Namely, just few additional logic will be added to the 
Encoder for performing the SEL computation. Decoder is 
used to maintain functional equivalence. We insert registers 
between the Encoder and the Decoder for synchronization and 
reducing input toggles of the Decoder. If the value of the 
output of the encoder is the same as the previous value, there 
is no toggle in the Decoder. 

Example 5. Consider the sa02 and misex3 in PLA MCNC. We 
cluster the top two probabilities of states together by our 
bipartition algorithm. In the following table we show the 
contrast between the Group1 without codec and with codec 
structure in area. 

Bipartition- 
codec Bipartition 

Benchmark 

The table shows that ifwe combine the SEL function into the 
Encoder, the area will just increase little due to the sharing of 
most product terms. Notice that the smaller Decoder, 
comparing to Group,, imply less switching activity. 

B. State encoding 

At the gate level of abstraction, average power dissipation is 
proportional to the average switching activity. A good state 
assignment algorithm can significantly reduce switching 
activity of Group,. Many state assignment algorithms such 
like [2], [3] and [4], minimize the Hamming distance between 
the codes of the states with high transition probability. 

As we discussed in section 2, STG (state transition 
graph) for combinational logic circuit is a complete graph. 
Thus, transition probability information for each edge in the 
STG can then be determined by modeling the STG as a 
Markov chain [4]. For a transition from state Si to state 4, 
weight piJ on the corresponding probabilities depends on the 
probability distribution of the inputs, that is initially known. 
Assume for simplicity that all inputs are equiprobable. In 
order to find the probability of a transition without any 
condition, we need to know the state probability q, that 
represents the probability of the machine being in a given 
state Si. Namely, the total transistion probabilities we are 
looking for are 



r .  IJ . = p .  IJ .-q. I' 

Calculating state probability for pipelined circuits is 
simple. In a pipelined circuit, pu can be simplified to pi 
because no matter which state the edge starts, the input 

(4) two states can be allowed to have the same code. We selected 
the heuristic algorithm in [4] for encoding the states in 
Group,. 

5- ExPerimentalResults 
conditions are the same. It means if we model the probabilistic 
behavior of a combinational logic using a Markov chain, each 
row in the state transition matrix will be the same. In fact, 
each row stands for the stationary vector of the transition 
matrix. We then directly assign conditional probability pi to 
state probability qi. The total transition probabilities can be 
simplified to 

The bipartition and codec algorithm have been implemented 
in C++ on a SUN Sparc station. We used SIS [9] to synthesize 
our partition results and estimate the powex by PowerMill. 
The random logic circuits taken from MCNC PLAs are used 
to demonstrate our algorithm. In the experiment, 5v supply 
voltage and a clock frequency of 20MHz was assumed. The 
rugged script of SIS was used to optimize most of the 

rij = pipi (5) 

After calculating the transition probabilities of each 
pair of states, we transform the STG into a weighted 
undirected graph. We sum up the total probabilities between 
any two states into an undirected edge w i . j .  Note that self- 
loops can be eliminated because we only need the information 
of each pair of states for state assignment. 

Example 6. In Fig. I ,  the probability of each state is 
calculated in example 2. We can calculate the total 
probability of each edge by equation (5). The = rl,o = 
2/4*1/4 =2/16, then we obtain K,, =4/16 by summing up ro,l 
and rl.o The total probabilities and weighted graph of 
example I is illustrated in Fig. 6. 

2116 

Fig 6. (a) total transition probabilities @) weighted graph 

The problem of finding a state encoding that results in 
minimum switching activity can then be formalized as: Find a 
set of Boolean row vectors (e: ,..., e,""), i=I, 2, .., n,, n, is the 
number of states and nvor is the number of state variables used 
( [log, n, 1 ), that are solutions to the problem: 

(7) 
I=1 

where @I represents the XOR operation, wi,, is the weight on 
the edge between states Si and 4 . Because the weighted graph 
is a complete graph, there will be C(n,,2) edges. The cost 
function evaluates how well to assign adjacent codes to state 
of high-probability transitions. Equation (7) expresses that no 

benchmarks. Due to the size of the circuits, only few 
examples of the simple script were used. These circuits were 
marked by *. 

Table 1. The probabilities of bipartition 
Table 1 presents the performance of our bipartition 

algorithm on a subset ofthe MCNC PLAs, it includes the state 
numbers in Group, and Group,, and their group probabilities. 
In all of the 9 benchmarks in Table 1, the state number of 
Group, is less than that of Group,, but probabilities of Group, 
are far bigger than Groupis except for the last benchmark 
'bw' . Because only a few states exist in Group,, the encoder 
uses a small number of output pins to encode those few states. 
The output number of the encoder can be determined by the 
fimction I O ~ N O -  of-stotes], where ' No-of-stares' is the ' State 
No.' of Group, in table 1. Obviously, which is much smaller 
than the number of the original output. Therefore, the 9 
benchmarks are suitable for our architecture because there is a 
small group dominating the circuit behavior in most of the 
time. 

In Table 2, we record the area and power dissipation of 
the 9 benchmarks implemented by conventional architecture 
and our bipartition-codec architecture. ' Original' column 
shows the area and the power dissipation of the conventional 
architecture. The ' Bipartition-Codec' consists of the two 
subcolumns, ' Area' and ' Power'. There are four columns in 
the subcolumn ' Ared. The ' E & IY shows the area of codec 
structure. The area Group, is put in the column ' G2'. The total 
area of the overhead is in the column '0' which contains 
latches, registers, multiplexer and two additional gates shown 
in Fig. 4. TA is the total area synthesized in bipartition-codec 
architecture. There are 5 subcolumns in column ' Power' . The 
' E and ' Iy record the power dissipation in the encoder and 
decoder, respectively. The ' G2' is the power dissipation in the 
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Group,. The ' 0' stands for the power dissipation of the 
overhead in bipartition-Codec architecture. ' T{ and ' s%' 
represent the total power dissipation and the power saving 
percentage. Observing the Bipartition-Codec' part, in most 
cases the power consumption in the encoder is bigger than 
that of the decoder and the Group,. The reason is that the 
additional pin ' SEC in the output of encoder. Whenever the 
encoder must be active to ensure whether the small group or 
the big one is active. Because of self-loop effect and small 
area in the decoder, the decoder hardly dissipates power. The 
big group consumes small power dissipation because it is 
often at idle. Because the small group ' E & D is active most 
of the time and the area is smaller than the original 
combinational block, the power dissipation can be 
considerably reduced. The highest power-saving percentage is 
63.7%, and the average power saving approximates 31.2% 
(area is in 128 pn', power is in pW) . 

sa02 

misex3 

6. Conclusion 
In this paper, a new bipartition-codec architecture for 
pipelined circuits with low power consideration is proposed. 
The experimental results show that our architecture can 
effectively save the power in a large class of random logic 
circuits. 
We treat each output value cf a combinational block in a 
pipelined circuit as a state in an FSM. When the output values 
of some benchmarks cluster around only a few special output 
values, our algorithm could effectively extract the small group 
that include these few special output values. We apply codec 
structure and state encoding techniques to reduce the 
switching activity in the high active Group,. Although the 
encoder must be active at any time, it dissipates little power. 
The Group, is often at idle and dissipates little power in 
average. Therefore, large power reduction is obtained for 
large pipelined circuits, where the probability of being in 
Group, is high. The only disadvantage of this bipartition 
method is that the critical path delay is increased by the extra 
Encoder block. 

571 3361 137 253 335 ?25 342 141 20 845 & 
2557 9941 802 IO15 488 2305 2800 4 I144 1527 :?,72, 

miseXl 

table5' 

340 2238 70 

3203 7946 

72 299 441 193 0 132 1230 /; 
1195 2536 581 4312 4117 22 344 1265 :I4,?, 

I I 'A,.",, 

wnl 

Id84 

bw 

209 1506 88 21 233 342 278 0 16 888 

531 3176 273 208 293 n 4  15 w 1437 

694 4443 244 249 287 780 238 191 880 2599 ??!? 

Table 2. The simulation results 
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