
A Bipartition-Codec Architecture to Reduce Power in Pipelined Circuits
Shanq-Jang Ruan, Rung-Ji Shang, Feipei Lai, Shyh-Jong Chen and Xian-Jun Huang
Dept. of Electrical Engineering and Dept. of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan

stj6Jorchid.ee.ntu.edu.W shang@bulls.csie.ntu.edu.tw flai6Jcc.ee.ntu.edu.W

Abstract

This paper proposes a new bipatition-codec architecture
that may reduce power consumption of pipelined circuits. We
treat each output value of a pipelined circuit as one state of a
FSM. If the output of a pipelined circuit transit mainly among
few states, we could partition the combinational portion of a
pipelined circuit into two blocks: one that contains the few
states of high activity is small and the other that contains the
remainder of low activity is big. Consequently, the state
transitions will be confined to the small block in most of the
time. Then we replace the small block with a codec circuit,
which consists of an encoder and a decoder, to reduce the
internal switching activity of the block. The encoder
minimizes the number of bit changes during state transitions
thus the switching which propagates into decoder is reduced
considerably. We present experimental results on several
MCNC benchmarks and get up to 63.7% power savings by
using our new architecture.

1. Introduction

Portable devices have made our work more convenient and
efficient in recent years. While they require low power to
prolong the operating time. Thus low power consideration has
been one of the new treads for circuits design.

For low power circuits design, CMOS technology is a
natural choice because of almost zero DC power dissipation.
Unlike bipolar technology, the main component of power
dissipation in CMOS technologies is the dynamic parts. The
power dissipation in digital CMOS circuits can be written as
follows: [I]

The first term in the right hand side represents the power
dissipation in switching components, where CL is the loading
capacitance, f, is the clock frequency, v is the voltage
swing, Vdd .is the supply voltage. The factor I: is the
probability of circuit switching. If no DC-to-DC converter is
used as a power supply within the circuits, v should be
equivalent to v, . The second term ‘ ‘ I ~ ~ . vdd ” is due to the
direct-path short circuit current when both PMOS and NMOS
turn on at the same time. The last term “ I ~ - ~ - . V ~ ” which
arises from substrate injection and subthreshold effect, is
primarily determined by the fabrication technology

0-7803-5832-5/99/ $10.00 @ 1999 IEEE

.-

84

considerations. The dominant term of power dissipation in a
well-designed circuit is the switching component, it almost
accounts for over 90% of the total power dissipation.
Therefore, lots of researches focus on reducing the
e,c,, Vdd,f, term to obtain power reduction.

Many power optimization techniques at various levels
of abstractions are proposed in recent years. On architectural
level and logic level, the probability of switching activity is
directly proportional to the dominant power dissipation term,
thus there have been many researches on reducing switching
activity for saving power. [2][3][4] proposed new sate
encoding algorithms to reduce the Hamming distances
between the binary representations of frequent transition pairs
of states. Thus few switching will propagate into the
combinational logic of FSM such that the switching activity in
the internal nodes of combinational logic can be reduced.
Although the complexity of combinational logic is increased
after state assignment, these algorithms could reduce power
consumption by 20% comparing with the originals that do not
encode states with low power algorithm. Alidina, etc.
proposed two precomputation architectures for low power
sequential logic [5]. They selectively precompute the output
values of the circuit one clock cycle before the values being
required, and use the precomputed logic function to isolate
part of input signals with registers from the combinational
logic. If the output values can be precomputed, the original
logic circuit can be “turned off’ in the next clock cycle and
will not have any switching activity. This approach will have
much power saving effect, if few input pins can determine the
correct output values. However, the precomputation
architecture is not suitable for the circuits which output pins
must be determined by most input pins. Luca and Giovanni
used gated-clock method for low power FSMs [6]. They
exploits the concept of self-loop, an idle condition for a
Moore machine. When the machine is in a self-loop condition,
the next state is the same as the present state, and the output
do not change in the next cycle. Therefore clocking the
machine only wastes power. The technique can obtain power
saving by stopping the clock of the circuit during the self-loop
period. FSMs with a lot of self-loops can perform well using
gated-clock approach, but some FSMs transit mainly among
some states can not benefit from these methods. [7]
decomposed a FSM into a number of coupled submachines so
that there is a high probability and state transitions will be
confined to the smaller submachines most ofthe time.

This paper will proposes a bipartion-codec architecture
(bipartitioned coding-decoding architecture), a novel

architecture for low power pipelined circuits. We treat each
different output as a corresponding state of FSM in our
architecture and a FSM implicitly specifies a state transition
graph (STG). Then the bipartition algorithm is exploited to
measure the probabilistic behavior and partition the STG.
After performing our bipartition algorithm, the original STG
is partitioned into two STGs: one contains fewer states of high
activity and the other contains more states of low activity.
Obviously, the former will be active at most of the time and
dominate the power dissipation. We use codec structure to
implement the high active portion for minimizing the circuit
switching.

The presence of bipartition-codec architecture has two
important cosiderations. First, when we have a FSM with n
different states, it will have 2'-2 different bipartitions. It is
impossible to synthesize and estimate the power of all
bipartitions for choosing the best case. Second, detecting
clustering conditions requires some computation to be
performed by additional circuitry. The additional circuitry
also dissipates power. In this paper, we propose a heuristic
and fast algorithm to partition circuit for our bipartition-codec
architecture, then combine the encoder circuit with the
clustering detecting circuitry for decreasing circuit area.

The remainder of this paper is organized as follows.
Section 2 proposes a biparition-codec arcliitecture and its
working principle. Bipartition algorithm is described in
section 3. In section 4, we discuss the codec structure and
state encoding for low power. In this section we also discuss
our architecture without using codec structure for comparison.
In section 5 , experimental results are presented, that confirm
the effectiveness of our new architecture. Finally we
summarize the conclusion of the paper in section 6.

2. Bipartition-Codec Architecture

A. Preliminary

Before describing the bipartition-codec architecture in detail,
let us consider the relationship between the FSM and
combinational circuit. By paying attention to the output end of
combinational circuit, each output value can be regarded as
one state of a Moore FSM. However, the combinational
circuits do not need information of the past cycles to
determine output value in the present cycle. The transition of
the states only depends on input patterns. From all different
states, they will arrive at the same state if the same input
patterns are used to trigger the machine.

Definition 1. A combinational circuit can be modeled by a
four-tuple (I, 0, S, F) where I is the set of inputs, 0 is the set
of outputs, S is the set of states. Every state S, has a unique
code e , The output function is defined as 0, = F(I)= eb where
i = I, /SI.

Example 1. In Fig. 1 (a), there are three different output
values IO, 00, I1 in the truth table, and the corresponding
states are: SO, SI, S2. Since the output values can change to
any valid output values at the next cycle, certainly including
itselJ; the state transition graph (STG) is a complete

connective graph.

Fig. l.(a) the truth table of a combinational circuit @) the
state transition graph

The state transition probability provides a measure of
the most frequently traversed transitions. Markov chain is
usually used to model the transition behavior of FSM. It is not
necessary for combinational circuit, because the output values
of combinational circuit completely depend on input patterns.
Thus we can only consider the magnitude of state probability
to figure out the probabilistic behavior.

Definition 2. The state probability of combinational circuits is
the number of diferent input patterns of a particular state
divided by the number of total diferent input patterns.

Example 2. In Example I , we assumed the probability
distribution of output patterns is uniform. n e probability of
each state is: Prob(S0) = 2/4, Prob(S1) = 1/4, Prob(S2) = 1/4.

B. Bipartition-Codec Architecture

Consider the circuit of Fig. 2. A pipelined stage is a
combinational logic block separated by distinct registers.

block

I CLK I

Fig. 2. A combinational pipelined circuit

The bipartition architecture without codec structure is
shown in Fig. 3. The combinational logic portion in Fig. 2 is
partitioned into two groups. One that includes some states of
high activity is small called Group, and the other that includes
the remainder of low activity is big called Group,. The two
groups work in tums. The GCB is a precomputation block for
only one block is working at the same time. Then we replace
the Group, and GCB with a codec structure, which consists of
an encoder and a decoder. The encoder not only encodes the

85

output state but also issues a signal SEL to choose which
group to compute. The SEL function also controls the MUX
to select correct outputs. The bipartition-codec architecture is
shown in Fig. 4.

In Fig. 4, the input IN feeds into the Encoder and the
registers of Group,. Encoder issues a SEL function to select
which group to compute. When SEL=l, the gated clock CLKl
will be active, and CLK2 stopped. The output values of
encoder pass through the register word and propagate into the
decoder. Finally the output values of the decoder directly
connect to the output ports by multiplexer. At this moment,
the input register word of Group, is disabled by the
complementary value of SEL, it prevents input signal
switching from entering into the Group,. So there is no power
consumption in the Group,.

Fig 3. A bipartition architecture without code structure

The low enable latch in our architecture is needed for a
correct behavior, because SEL may have glitches that must
not propagate to the AND gate when global clock is high. The
other latch, which behind low-enable one is transparent when
clock is high. These two latches work as a master-slave flip-
flop. They save the SEL function during a period of the global
clock so that the multiplexers can select the correct outputs.

Fig 4. A new bipartition-codec architecture

We can obtain power reduction when most of the input
conditions corresponding to SEL=l. In other words, if the
smaller combinational block Group,, which we replace by an
encoder and a decoder, is active of the most time, the effect of
our architecture on power saving is better. In the following
section, we will describe the detail of our low power
architecture.

Example 3. The given example illustrates the cluster
characteristic for bipartiton architecture. Consider the
benchmark sa02 of MCNC which has 10 input pins and 4
output pins. The state list of sa02 is shown below:

State
statepattan

0010
001 1
0100
lo00
1100
o001
0101
1001
1101

s,
s,
s,
%
s,
s,
s,
% g 1001

1101
%

ccutlt

513
257
219
8
7
6
5
4
3

-

2 -

ccutlt

513
257
219
8
7
6
5
4
3
2

--

--
State pattern is the original output pattern ofthe benchmark
sa02. The column of count stands for the number of dzfferent
input patterns corresponding to a particular state. In this
example, ifwe cluster SI, S2 and S3 into Group,, the probability
of Group, is 989/1024. For our architecture: the meaning is
that most transitions will occur in the small Group,.

3. Bipartition Algorithm

The objective of the bipartition algorithm is to partition a
combinational circuit into Group, and Group,. The Group, is
small but with high active probability and the Group, is big
with low active probability. Unfortunately, we can not
estimate power and area of circuits before synthesis,
proposing an optimal bipartition algorithm for achieving the
maximum power saving in our architecture become very
difficult, so a heuristic algorithm must be used. In this section,
we formulate the bipartition problem and propose a heuristic
algorithm for our low power architecture.

A. Problem Formulation

The problem of bipartition can be regarded as to bipartite the
circuit which implementation dissipates the minimum power.
The Group, dominates the most power consumption of the
circuit since most of the time the Group, is at work in our
architecture. Observe that minimizing the gate count of
Group, for reducing the circuit switching plays a significant
role in lowering the power dissipation. Thus .the problem can
be simplified as follows: First we hope the sum of the state
probabilities in Group, as large as possible; second the gate
counts of Group, after synthesis as small as possible. The
problem of finding a bipartition can be formalized as follows:

prob(Grou&)
G -count(Groun)

Max

In (2), Prob(Group3 is the summary of state probabilities in
Group, and G-count(Group J represents the gate count of
Group,. Since the gate count of Group, is hard to estimate
before synthesis. We pay our attention to the relation between
state number and gate count. The less state number we select,
the more don't care conditions we have. The size of a cover is
the number of its implicants. Don't care conditions can be
effectively used to reduce the size of a cover of an

86

incompletely specified function [9]. Thus we assume the gate
count is proportional to the numbers of states. The
formulation (2) can be rewritten as:

SEL Group, Encoder Decoder -----
sa02 50 12 62 0

misex3 759 97 799 3

prob(Groupl)
State- No(GrouA)

Max (3)

Example 4. From example 1, the truth table can be
determined by a two-input, two-output function, where =
a '+b'; = ab'. We need an OR gate and an AND gate to
implement the two functions. If we partition the STG into {SO}
and {SI, S2), input patterns IO, I1 become don't care
conditions for {SO}. Thefinction of group {SO} will becomef,
= 1; f2 = 0. Obviously, the gate counts will reduce to 0 due to
the reduction of implicants.

B. Heuristic Algorithm

The bipatition algorithm is used to select the states of Group,,
and the remainders are put in Group,. The input of our
algorithm is a set of individual state, S1, S2, .., Sn. In line 1,
MinCount is equal to the half number of input patterns since
Count(S) is a function that calculates the number of input
patterns that generate all output values in S . We determine the
AvgCount by dividing Count(S) by state number n. Clearly,
AvgCount is an average number of the input patterns of one
state and serves as a threshold value while selecting states in
this algorithm. Ceil function is used to exclude the states
which are greater than the average state input count. Then, we
initialize the selected to null and the Count of selected to zero.
From lines 4 to 9, the foreach loop expands the Selected set
by adding the states of which the state count are greater than
AvgCount. From lines 10 to 14, the while loop continues
selecting states until the constraint on MinCount is satisfied.
Otherwise, it could not obtain better power saving effect due
to its small group probability. In most cases, the while loop
will skip since most benchmarks have cluster and selfloop
characteristic.

{

2 AvgCount = rcount(s)/n];

Bipartition (S = {SI, S,, . . .,Sn})
1 MinCount = Count(S)/Z;

3
4
5
6
7

8
9
10
11
12
13
14
15

1

selected = NULL; Count = 0;
foreach (S,ES) {
if (Count(S,) 5 AvgCount) {
s = s-si;
selected = selected U Si;
Count = count(S,);

1
while (Count S MinCount) {
NewState=sel-max-Count(S);
selected=selected V Newstate;
Count=Count+Count(NewState);

1
return selected;

Fig 5. bipatition algorithm for bipartition-
codec architecture

87

4. Codec Structure and State Encoding

A. Codec structure

According to our bipartition algorithm, Group, includes few
highly active states. That means Group, generates fewer
different output patterns than the original circuit.
Consequently, we can decrease the output pins of encoder to
1odNo-of-Sroteq for scaling down the circuit complexity. In
order to select which group is active, SEL function plays a
significantly role in our architecture. The Encoder also
generates the SEL function in our design. Because that the
function shared most of the product terms of the Encoding
portion. Namely, just few additional logic will be added to the
Encoder for performing the SEL computation. Decoder is
used to maintain functional equivalence. We insert registers
between the Encoder and the Decoder for synchronization and
reducing input toggles of the Decoder. If the value of the
output of the encoder is the same as the previous value, there
is no toggle in the Decoder.

Example 5. Consider the sa02 and misex3 in PLA MCNC. We
cluster the top two probabilities of states together by our
bipartition algorithm. In the following table we show the
contrast between the Group1 without codec and with codec
structure in area.

Bipartition-
codec Bipartition

Benchmark

The table shows that ifwe combine the SEL function into the
Encoder, the area will just increase little due to the sharing of
most product terms. Notice that the smaller Decoder,
comparing to Group,, imply less switching activity.

B. State encoding

At the gate level of abstraction, average power dissipation is
proportional to the average switching activity. A good state
assignment algorithm can significantly reduce switching
activity of Group,. Many state assignment algorithms such
like [2], [3] and [4], minimize the Hamming distance between
the codes of the states with high transition probability.

As we discussed in section 2, STG (state transition
graph) for combinational logic circuit is a complete graph.
Thus, transition probability information for each edge in the
STG can then be determined by modeling the STG as a
Markov chain [4]. For a transition from state Si to state 4,
weight piJ on the corresponding probabilities depends on the
probability distribution of the inputs, that is initially known.
Assume for simplicity that all inputs are equiprobable. In
order to find the probability of a transition without any
condition, we need to know the state probability q, that
represents the probability of the machine being in a given
state Si. Namely, the total transistion probabilities we are
looking for are

r . IJ . = p . IJ .-q. I'

Calculating state probability for pipelined circuits is
simple. In a pipelined circuit, pu can be simplified to pi
because no matter which state the edge starts, the input

(4) two states can be allowed to have the same code. We selected
the heuristic algorithm in [4] for encoding the states in
Group,.

5- ExPerimentalResults
conditions are the same. It means if we model the probabilistic
behavior of a combinational logic using a Markov chain, each
row in the state transition matrix will be the same. In fact,
each row stands for the stationary vector of the transition
matrix. We then directly assign conditional probability pi to
state probability qi. The total transition probabilities can be
simplified to

The bipartition and codec algorithm have been implemented
in C++ on a SUN Sparc station. We used SIS [9] to synthesize
our partition results and estimate the powex by PowerMill.
The random logic circuits taken from MCNC PLAs are used
to demonstrate our algorithm. In the experiment, 5v supply
voltage and a clock frequency of 20MHz was assumed. The
rugged script of SIS was used to optimize most of the

rij = pipi (5)

After calculating the transition probabilities of each
pair of states, we transform the STG into a weighted
undirected graph. We sum up the total probabilities between
any two states into an undirected edge w i . j . Note that self-
loops can be eliminated because we only need the information
of each pair of states for state assignment.

Example 6. In Fig. I , the probability of each state is
calculated in example 2. We can calculate the total
probability of each edge by equation (5). The = rl,o =
2/4*1/4 =2/16, then we obtain K,, =4/16 by summing up ro,l
and rl.o The total probabilities and weighted graph of
example I is illustrated in Fig. 6.

2116

Fig 6. (a) total transition probabilities @) weighted graph

The problem of finding a state encoding that results in
minimum switching activity can then be formalized as: Find a
set of Boolean row vectors (e: ,..., e,""), i=I, 2, .., n,, n, is the
number of states and nvor is the number of state variables used
([log, n, 1), that are solutions to the problem:

(7)
I=1

where @I represents the XOR operation, wi,, is the weight on
the edge between states Si and 4 . Because the weighted graph
is a complete graph, there will be C(n,,2) edges. The cost
function evaluates how well to assign adjacent codes to state
of high-probability transitions. Equation (7) expresses that no

benchmarks. Due to the size of the circuits, only few
examples of the simple script were used. These circuits were
marked by *.

Table 1. The probabilities of bipartition
Table 1 presents the performance of our bipartition

algorithm on a subset ofthe MCNC PLAs, it includes the state
numbers in Group, and Group,, and their group probabilities.
In all of the 9 benchmarks in Table 1, the state number of
Group, is less than that of Group,, but probabilities of Group,
are far bigger than Groupis except for the last benchmark
'bw' . Because only a few states exist in Group,, the encoder
uses a small number of output pins to encode those few states.
The output number of the encoder can be determined by the
fimction I O ~ N O - of-stotes], where ' No-of-stares' is the ' State
No.' of Group, in table 1. Obviously, which is much smaller
than the number of the original output. Therefore, the 9
benchmarks are suitable for our architecture because there is a
small group dominating the circuit behavior in most of the
time.

In Table 2, we record the area and power dissipation of
the 9 benchmarks implemented by conventional architecture
and our bipartition-codec architecture. ' Original' column
shows the area and the power dissipation of the conventional
architecture. The ' Bipartition-Codec' consists of the two
subcolumns, ' Area' and ' Power'. There are four columns in
the subcolumn ' Ared. The ' E & IY shows the area of codec
structure. The area Group, is put in the column ' G2'. The total
area of the overhead is in the column '0' which contains
latches, registers, multiplexer and two additional gates shown
in Fig. 4. TA is the total area synthesized in bipartition-codec
architecture. There are 5 subcolumns in column ' Power' . The
' E and ' Iy record the power dissipation in the encoder and
decoder, respectively. The ' G2' is the power dissipation in the

aa

Group,. The ' 0' stands for the power dissipation of the
overhead in bipartition-Codec architecture. ' T{ and ' s%'
represent the total power dissipation and the power saving
percentage. Observing the Bipartition-Codec' part, in most
cases the power consumption in the encoder is bigger than
that of the decoder and the Group,. The reason is that the
additional pin ' SEC in the output of encoder. Whenever the
encoder must be active to ensure whether the small group or
the big one is active. Because of self-loop effect and small
area in the decoder, the decoder hardly dissipates power. The
big group consumes small power dissipation because it is
often at idle. Because the small group ' E & D is active most
of the time and the area is smaller than the original
combinational block, the power dissipation can be
considerably reduced. The highest power-saving percentage is
63.7%, and the average power saving approximates 31.2%
(area is in 128 pn', power is in pW) .

sa02

misex3

6. Conclusion
In this paper, a new bipartition-codec architecture for
pipelined circuits with low power consideration is proposed.
The experimental results show that our architecture can
effectively save the power in a large class of random logic
circuits.
We treat each output value cf a combinational block in a
pipelined circuit as a state in an FSM. When the output values
of some benchmarks cluster around only a few special output
values, our algorithm could effectively extract the small group
that include these few special output values. We apply codec
structure and state encoding techniques to reduce the
switching activity in the high active Group,. Although the
encoder must be active at any time, it dissipates little power.
The Group, is often at idle and dissipates little power in
average. Therefore, large power reduction is obtained for
large pipelined circuits, where the probability of being in
Group, is high. The only disadvantage of this bipartition
method is that the critical path delay is increased by the extra
Encoder block.

571 3361 137 253 335 ?25 342 141 20 845 &
2557 9941 802 IO15 488 2305 2800 4 I144 1527 :?,72,

miseXl

table5'

340 2238 70

3203 7946

72 299 441 193 0 132 1230 /;
1195 2536 581 4312 4117 22 344 1265 :I4,?,

I I 'A,.",,

wnl

Id84

bw

209 1506 88 21 233 342 278 0 16 888

531 3176 273 208 293 n 4 15 w 1437

694 4443 244 249 287 780 238 191 880 2599 ??!?

Table 2. The simulation results

References

[l] Chandrakassan, S . Sheng, and R. W. Brodersen, "Low-
Power CMOS Digital Design," IEEE J. Solid-state

Circuits, vol. 27, No. 4, pp. 473-483, Apr. 1993.
E. Olson and S . M. Kang, "Low-Power State Assignment
for Finite State Machine," I994 International Workshop
on Low Power Design, pp. 63-68.
Hachtel, Mariano Hermida De La Rica, Abelardo Pardo,
Massimo Poncho, and Fabio Somenzi, "Re-encoding
Sequential Circuits to Reduce Power Dissipation," 1994
International Workshop on Low Power Design, pp. 69-74.
Luca Benini and Giovanni De Micheli, "State Assign for
Low Power Dissipation," IEEE J. Solid-state Circuits, vol.
30, pp. 258-266, Mar. 1995.
Alidina, Jose Monteiro, Srinivas Devadas, Abhijit Ghosh
and Marios Papaefthymiou, "Precomputation-Based
Sequential Logic Optimization for Low Power," IEEE
Tran. on VLSI, vol. 2, No. 4, Dec. 1994.
Luca Benini and Giovanni De Micheli, "Automatic
synthesis of Low- Powe Finite-state Machines," IEEE
Tran. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 15, No. 6, Jun. 1996.
Sue-Hong Chow, Yi-Cheng Ho, TingTing Hwang, "Low
Power Realization of Finite State Machines - A
Decomposition Approach" ACM Tran. on Design
Automation & Electronic Systems, vol. I , No .3, pp. 315-
340 July 1996.
G. De Micheli, "Synthesis and Optimization of Digital
Circuits,"McGraw-Hill, Nav York, 1994.
SIS: A System for Sequential Circuit synthesis is
implementd by Electronics Research Laboratory in
Department of EE and CS, University of California,
Berkley, 4 May 1992.

89

