
Timing-driven Partitioning for Two-Phase Domino and Mixed Static/Domino Implementations

Min Zhao and Sachin S. Sapatnekar
ECE Department, University of Minnesota, Minneapolis MN 55455, USA.

Abstract
Domino logic is a high-performance circuit configuration that

is usually embedded in static logic environment and tightly cou-
pled with the clocking scheme. In this paper, the timing-driven
partitioning algorithms that partition a logic network between (1)
static and domino implementations, and (2) the phases of a two-
phase clock, are provided. In addition, an efficient static mapping
algorithm is described.

1 Introduction
Domino logic is an effective circuit configuration for imple-

menting high-speed logic designs [1, 2]. Domino synthesis has
been an active area of recent research. In [3], a domino logic
synthesis flow including logic optimization and technology map-
ping is described, and in [4, 5], domino gate synthesis methods
are described. The work in [6] addresses the problem of output
phase assignment to minimize the duplication overhead required
to make a network unate so that it may be implemented in domino
logic. Other work presents novel domino clock schemes, such
as methods for overcoming the noninverting property of domino
logic [7], and making the design more skew tolerant [2].

Both static and domino implementations offer various advan-
tages. For example, domino circuits typically provide higher speeds
than static logic, but have a higher clock routing overhead and are
less noise-tolerant. Depending on the amount of logic duplication
required to make the network unate, domino circuits may need a
larger or smaller number of transistors than static circuits. There-
fore, for optimality, a determination must be made as to which
parts of the circuit should be implemented in static logic, and
which parts using domino logic. On the other hand, since syn-
chronous domino logic is conventionally divided into two phases,
the partitioning of domino gates between clock phases is essential
for correct and efficient performance of domino gates.

In this paper, we describe an automated design strategy to
solve problems related to static-domino partitioning and two-phase
domino partitioning, with the goal of minimizing an objective
(area or power) under a set of timing constraints. Due to space
limitations, we will only discuss using area as a cost function.
Our partitioning procedures are tightly knit with an efficient tech-
nology mapping algorithm, so that the results provide optimality
in the cost function after technology mapping.

A related paper [8] presents theory on a partitioning frame-
work without any experimental results. Our procedure is based
on the following observations that differentiate it from [8]:
(a) Logic duplication can cause a large area penalty for large com-
binational circuits [3]. As described in Section 2, a proper choice

This work was supported in part by the Semiconductor Research Corporation
under grant 99-TJ-692 and by a grant from Intel Corporation.

of the partitioning cut can reduce the duplication cost. Our parti-
tioning procedure automatically creates the largest possible unate
region within the domino partition.
(b) The critical path and its fanin transition cone may form a large
part of the input, or possibly even the entire network (for a cir-
cuit with one primary output). As long as the timing constraints
are satisfied, greedily maximizing the use of domino gates in this
cone as in [8] may be unnecessary, especially if it has a high cost.

As a part of this work, we report an extension to a published
domino technology mapper [5] to perform static mapping, and
find that this performs average 3.8% better than SIS, while being
over two orders of magnitude faster.

2 Partitioning considerations
We define the above two problems concisely as follows:

(1) Static-domino partitioning: Given a combinational circuit
and delay specifications on the outputs of the network, imple-
ment the nodes in the network using either domino logic gates
or static gates such that the cost is minimized, assuming them
all to be within the same clock phase. For correct circuit oper-
ation, this should satisfy a precedence constraint that states that
no static logic gate is permitted to fan out to a domino gate. The
timing constraint for this situation is that the partitioned circuit
must have its outputs ready at the end of the clock phase.
(2) Two-way domino partitioning: Given a combinational cir-
cuit to be implemented entirely in domino and a two-phase nonover-
lapping clock scheme, partition the boolean network into two
clock phases such that the cost of the implementation is mini-
mized. Here, the latch between the two phases of domino forms a
hard edge that prevents cycle borrowing [2, 9], implying a timing
constraint that the delay is less than a half-cycle.

The timing driven partitioning method must consider two fac-
tors: the timing constraints and the area of the implementation. In
our description, we will primarily refer to the area as the cost, but
the power may be considered equivalently. An important con-
sideration in the cost relates to the requirement that only unate
functions can be implemented in domino logic, due to the nonin-
verting nature of the domino logic family [6]. However, we ob-
serve that the duplication cost required to maintain this property
can be reduced by partitioning, and our formulation directly in-
corporates the cost of duplicating nonunate logic within a domino
region in the cost function.

+

*

*

* *

*

+

* *

+

* * * *

+ +

CUT B

CUT A

*a *

Region Y

Region X

Figure 1: An example for static-domino partitioning
To see this, consider the example shown in Figure 1. Let Re-

gion X correspond to a domino implementation and Region Y

0-7803-5832-X /99/$10.00 ©1999 IEEE.

represent a static CMOS implementation. If cut A is used, then
both a and a must be implemented as unate functions, resulting in
a duplication of the fanin cone of a, doubling the cost of imple-
menting this cone. However, if cut B is used instead, then there
is no need to duplicate the fanin cone of a as the inverter may be
implemented in static logic. A similar statement can also be made
for the two-way domino partitioning problem.

3 Timing driven static-domino partitioning
The two subproblems listed in the previous section can be

solved using similar algorithms, using different cost formulations.
The partitioner applies technology mappers, a PERT based tim-
ing analysis technique and a maximum flow algorithm to realize
a timing-driven two-way partitioning. The input to the algorithm
is an arbitrary two-input AND-OR DAG network. The outline of
the algorithm is as follows:
(1) Perform static technology mapping and domino technology
mapping separately on the entire logic network to determine a
cost estimate for every vertex.
(2) Find the candidate cut nodes in the network. A candidate cut
node is defined as a node that satisfies the criterion that a cut pass-
ing through it will not violate the timing specification.
(3) Build the flow network from the candidate cut nodes. The
edge capacities are determined from the cost difference between
static and domino implementations from Step 1. A maximum
flow algorithm is applied to the network to obtain a mincut [10].

An incremental transistor level Elmore delay model is devel-
oped to fit the cost function calculation of technology mapping
algorithms. Details are omitted due to space limitations.

3.1 Cost estimation
The first step of partitioning is to perform static and domino

mapping on the logic network to obtain the cost estimation. A
cost comparison is then carried out for each vertex under a domino
and a static circuit implementation. Any static and domino map-
pers may be used; the ones used here are described in Section 6.

The task of domino mapping is complicated by the fact that
technology mapping of domino logic requires the input network
to be unated first. To address the issue, we introduce a twin net-
work, Ntwin,to represent the original network, on which domino
mapping for unated network can be performed while no explicit
duplication is required. Each vertex in Ntwin corresponds to a
node in the original network, and stores information on the imple-
mentation of the true and complemented forms of the logic func-
tion realized at that node; these will be referred to as the positive
and negative polarities, respectively. An edge between two nodes
can have two polarities: if an inverter exists between these nodes
in the original network, then the edge polarity in Ntwin is negative;
otherwise, it is positive. Inverters in the original network may be
merged into the edge polarities. The lists of positive and negative
polarity fanouts of each vertex in Ntwin are maintained, and for
domino mapping any fanout duplication is flagged.

Static mapping can also be performed on Ntwin. The cost esti-
mation at each vertex from technology mapping includes both de-
lay and area information, and the quantities delayd , aread , delays
and areas are calculated at each node under both positive and neg-
ative polarities, corresponding to the delay and fanin cone area
estimate under domino and static mappings, respectively.

3.2 Determining the candidate cut nodes
We introduce the idea of a candidate cut node using a method

that eliminates vertices that would violate timing constraints af-
ter a cut. Given a vertex v in Ntwin, if the cutset passes through
v, its input transition cone will be implemented by domino gates

and the output transition cone of v will be implemented by static
gates. Let Dd i v be the largest delay from the inputs to node v
using a domino implementation, and Ds v o be the largest delay
from the node v to outputs through paths using static logic. Then
the maximal delay from the input to output that passes through the
cut at node v will be Dd i v Ds v o . If this value is smaller
than the specified delay, Tspec, then the cut through node v is el-
igible; if not, it is certain to violate the timing constraint. The
value of Ds v o for all the nodes is obtained from one PERT-like
traversal of the network from the outputs towards its inputs after
technology mapping, and Dd i v is obtained directly as a result
of technology mapping.

3.3 Finding the minimum cut
For domino partition problems, in addition to the partition-

ing cost, implementation cost itself varies (due to the duplica-
tion penalty) with partitions. To solve the problem, a maximum
flow network is built using these nodes using an identical DAG
structure as in the original circuit, with capacities assigned to the
edges. The maxflow mincut algorithm is then applied to this net-
work to find the minimum cut.
Maximal flow capacity assignment
During technology mapping (performed using DAG mapping rather
than tree mapping), the area contribution of any multifanout node
is divided by the fanout count of the node as in [11], so that its
area value, area N , estimates the area contribution of its fanin
transition cone. Therefore, for any cut on the graph, the area
cost in the region from the primary inputs to the cutset can be
estimated as i CutSet aread Ni , the minimum area over either
polarity in domino.

Consider a cut that divides the network into two parts, referred
to as Region X (closer to the inputs) and Region Y (closer to the
outputs) as in Figure 1. Assume the area cost of the entire network
implemented in static logic is As sum , and the costs for Region
X to be implemented in static and domino logic are, respectively,
As X and Ad X . Then the total cost after partitioning, with Re-
gion X implemented in domino logic and Region Y implemented
with static gates, is As sum As X Ad X . Removing the
constant, As sum , the objective of minimizing cost is equivalent
to minimizing As X Ad X i cutset aread i areas i .

Based on this, we reduce the problem to one of finding a
minimum cost vertex cut on the network. The capacity associ-
ated with each node i is set to aread i areas i . The vertex
cut must maintain the predecessor constraints that dictate that no
static node can feed a domino node.
Building the maximum flow graph
The procedure of building the maximum flow network can be il-
lustrated on the example circuit of Figure 1. The circuit is trans-
lated into a topology of the type shown in Figure 2(a). The shaded
part of the network shows the region containing the candidate
cut nodes. The two weights on each node represent aread i and
areas i , the result of domino and static mapping, respectively.

Finding the minimum cost cut of the above network is equiva-
lent to finding the minimum cost cut on the maximum flow graph
shown in Figure 2(b). The nodes in the shaded region that are
closest to the primary inputs are connected to the source, and the
nodes of the region that are closest to the primary outputs are
connected to the sink. Each vertex in Figure 2 is split into two
vertices connected by an edge of capacity aread i areas i .

However, before the standard maxflow mincut algorithm can
be applied on the network, two conditions in the network must
be considered: (1) The vertex cut must maintain the predeces-
sor constraints that dictate that no static node can feed a domino

T

h’b’

c

f

f’

S

0 -8

8

8

88

0

88 8

8

88
8

-2

a

a’

e’ c’

g’

8

b hd

e

g

8

0-8

1

8

2

d’

*

*

*

+

* *

+

**

+

* *

+

*

*

[domino cost - static cost]

*

*

[30-34] PI+

[8-8][8-8] [8-8] [8-8]

[12-20] [12-20]

[21-21]

[0-0]

[0-0]

PId

e

f [34-33]

c[18-14]

b

h

g

a

(a) (b)

Figure 2: (a) Ntwin to be partitioned (b) Its vertex cut network

node. The solution to this problem is provided in the work in
[12, 13] if all edge capacities are positive. (2) Our network can
have negative edge capacities, which complicates the previous is-
sue. Moreover, standard maximum flow algorithms cannot handle
edges with negative capacities, and the network must be modified
suitably. To overcome these problems, we heuristically transform
the vertex-cut maxflow network into an edge-cut maxflow net-
work, and then and translate it into a standard maxflow network
with nonnegative edge capacities. The procedure is as follows:
(1) The edge cut maximum flow network is built. If u v is an
edge originating at the candidate cut node u in Ntwin, the capac-
ity of the edge is heuristically assigned to Cinit aread u
areas u fanout u , where fanout u is number of fanouts of u.
(2) A positive initial flow is injected into the source node, and
the initial flow is distributed into the whole network. The flow
at each node is calculated by a PERT-like traversal on the DAG,
with the flow from node u to a fanout node v being calculated
as Flow u v i input u Flow i fanout u . Since this is a
feasible flow, updating the capacity C of each edge as Cnew uv
Cinit uv Flow u v leaves the identity of the minimum cost cut
unchanged. This procedure is repeated by increasing the value of
the initial flow at the source node until the value of Cnew for each
edge is nonnegative.
(3) For each edge u v in the graph, a new edge v u with a ca-
pacity of is introduced into the graph to force the predecessor
constraint. The maxflow mincut algorithm is then applied to the
network to obtain the minimum cost cut.

T

S

8

88

8
8

88

8

8 8

8

5 5

d h

e c

f g

8
8

8 8

a b

0
08

18

8

15

8

8 14

8 0

T

8

S

8

(b) STEP 2

b h

e

8

0

-4

88

ad

8

c

h

gf

T

(a) STEP 1

8 8

gf

ce

b

S

0 -4 -8

0 1

2 -1 -1

d a

0+8

-1+6

-8+8
-4+4

0+18

2+12

-4+4 0+8

initial flow=32

-1+6

1+14

(c) STEP 3

Figure 3: Constructing the edge-cut maximum flow network
4 Two-way domino partitioning

The problem of two-way domino partitioning of a circuit un-
der a two-phase clock is to determine which gates in the circuit
should be clocked by the first clock phase, and which by the sec-
ond clock phase. The algorithms are largely similar, and the dif-
ferences between them are summarized as follows:
(1) Determining the candidate cut nodes: For any vertex N of
the input network, let Dd i N be the largest delay from the inputs
to node N and let Dd N o be the largest delay from node N to the
outputs, calculated using a reverse PERT traversal as before. The
physical meaning of the cut in this situation is that if the cutset
passes through some node N, then all gates in the fanin transition

cone of N will be clocked by clock phase 1, and all gates in the
fanout transition cone of N will be clocked by 2. Therefore, a
vertex is a candidate cut node if both Dd i N and Dd N o are
smaller than the clock pulse width.
(2) Maximal flow capacity: If the two clock phase regions are
separated by a latch that can internally invert a signal, then the
cost function is the sum of the latch costs and the reduction in
the cost of logic duplication. Assume that N is a node at which
both the true and complemented form of the logic function are
required. If N does not belong to the cutset, the logic must be
duplicated, and the area cost at this node is the sum of aread N
for both polarities. If the node lies on the cut, only one polarity of
the logic needs to be generated and the other is generated within
the latch. Therefore, the area contribution as the smaller of aread
over the two polarities, and the area cost difference between pass-
ing a cut through N or not is the aread of the other polarity, plus
the latch area. If only one polarity is needed for a node N, the
area cost difference for N is merely the area of the latch.

5 General static-domino partitioning
Using the solutions developed in previous sections, we solve the
problem under a general two-phase nonoverlappingscheme [8, 9].
We present two design flows, the first of which is Flow 1 below:
(1) We first perform static-domino partitioning on the entire net-
work to divide as Region 1 (domino) and Region 2 (static). The
timing constraint here is a full clock cycle.
(2) We now specify the required time at the output of Region 1.
Next, we perform two-way domino partitioning to obtain the re-
gion to be (tentatively) clocked by phase 1 (Region 3) and the
region to be clocked by phase 2 (Region 4).
(3) Region 3 is now assigned to Phase 1, but we may now choose
to implement a part of it in static logic. Therefore, we perform
static-domino partitioning on this region to obtain a phase 1
domino region (Region 5) and a phase 1 static region (Region 6).
The result of this procedure is that Region 2 and Region 6 are im-
plemented in static CMOS, Region 5 is implemented as phase 1
domino, and Region 4 as phase 2 domino.

Another possible partitioning design flow (Flow2) first per-
forms two-way domino partitioning on the input circuit, followed
by static-domino partitioning on the two partitions.

Table 1: Comparison of the library mapping vs. SIS results
Circuits lib-free CPU SIS CPU lib-free SIS

4-4 (s) 44-6 (s) 4-4 44-6

C1355 1352/17 0.27 1378/20 108 962 978
dalu 2106/22 0.67 2284/24 278 1330 1497
C880 1024/19 0.21 1046/33 114 688 711
count 352/31 0.06 324/17 36 240 212
C1908 1324/30 0.27 1344/33 112.7 941 960
C2670 1770/20 0.56 1936/17 202.1 1188 1356
C3540 2820/34 0.94 3112/35 368 1864 2076
C6288 8388/107 3.24 8728/104 662 6016 6400
k2 2852/19 0.69 2910/23 254.4 2024 2101
des 8226/18 3.16 8628/19 1030 5337 5728
C7552 5546/25 2.14 5744/26 537 3768 3942
rot 1668/15 0.45 1714/20 167.2 1162 1214

6 Static technology mapping
The procedure in Section 3 requires technology mapping to

fully static and fully domino circuits. For domino circuits, we
use the algorithm in [5], and for static circuits, we describe an ex-
tension of the same algorithm here. We will see that this mapper
can be orders of magnitude faster than the SIS mapper and gives
a quality improvement of 0 to 12.3% over SIS.

The basis for this work lies in [5], where a modified dynamic
programming algorithm using parameterized library mapping was

Table 2: Static-domino and two-way domino partitioning

Circuits Domino Static Static-domino partitioning Two-way domino partitioning
4/4 Ntran/delay Ntran(no spec) Gd Gs Ntran(1 25) Gd Gs Ntran(1 05) Gd Gs CPU(s) Ntran(no spec) Ntran(1 05) CPU(s)

c1355 1824 1302/ 2 25 1302 0/260 1800 170/104 1800 170/104 1.4 1656 1600 1.8
dalu 2360 2192/ 2 16 2098 97/198 2096 147/132 2096 189/75 7.9 1971 2080 10.0
c880 1163 982/ 2 08 958 21/124 1015 56/88 1027 62/85 1.4 933 1037 4.6
count 357 336/ 2 77 344 5/54 350 23/30 353 32/18 0.3 267 347 0.4
c1908 1978 1308/ 1 78 1306 5/263 1723 174/86 1928 238/34 1.4 1867 1838 2.7
c2670 1992 1754/ 1 75 1775 79/173 1775 79/173 1774 81/170 3.5 1703 1705 6.0
c3540 4527 2850/ 1 43 2748 88/349 3312 260/218 3987 461/26 10.9 3499 3499 11.7
c6288 13702 8350/ 1 78 8340 16/1771 12079 1301/493 13456 1733/73 33.5 13173 13170 96.4
k2 2884 2896/ 1 54 2884 368/68 2884 368/68 2884 368/68 8.6 2856 2920 9.6
des 9945 8134/ 4 25 7527 160/915 7536 165/911 7536 165/911 60.2 8265 10835 111.5
c7552 7919 5464/ 2 35 5370 78/296 5987 375/578 6198 456/504 30.9 6434 6607 44.6
rot 1777 1536/ 1 99 1462 55/171 1514 87/137 1611 126/103 3.0 1422 1638 4.9

proposed for domino logic. The parameterized library considers
all possible cells that have at most W transistors in parallel and H
transistors in series. The differences between this method and the
domino mapping method are as follows. Firstly, for each vertex
of Ntwin, subsolutions corresponding to both positive and nega-
tive logic polarities are maintained. This permits the free (vir-
tual) movement of inverters throughout the network to allow a
better exploration of the design space. We map the largest possi-
ble logic cone in the network at a time. Next, we find its optimal
implementation and assign a polarity to each node; this polarity
for multifanout nodes is then fixed and used to map the remain-
ing logic cones. Secondly, the cost function can either be taken
to be the number of transistors or more general mapping func-
tions specified by a lookup table characterized by the subsolution
parameters of its child nodes. A comparison between this algo-
rithm with results of SIS is shown in Table 1 using H W 4.
The complete library under H W 4, 44-6.genlib,is used for
SIS technology mapping, with the objectives of both algorithms
being area minimization. Two sets of comparison between our
mapper and SIS are shown. The first set uses the number of tran-
sistors as the area cost model, with the library 44-6.genlib being
altered so that the cell area equals the transistor count. The area
cost and CPU time for both our parameterized library mapper,
and the SIS technology mapper are shown in columns 2 to 5. The
second set uses the cost model of library 44-6.genlib, and the cell
area assignment of 44-6.genlib is fitted into the parameterized li-
brary cost model. Columns 6 and 7 show the results of our library
mapper and SIS, respectively, using this cost model.

7 Experimental results
The partitioning and technology mapping flow has been im-

plemented in C++. The maximum number of series/parallel tran-
sistors in any gate for the parameterized library is set to be 4/4
and 3/3 for domino and static gates, respectively, and the objec-
tive is set to area minimization. script.rugged in SIS is used for
initial logic minimization on all circuits.

The results of static-domino partitioning are shown in Table 2.
The second and third columns show the results of pure one-phase
domino mapping and pure static mapping, respectively. The de-
lay of the static implementation is also shown. All delays here in
this table are normalized; “ 1 0” corresponds to the delay of a
purely domino implementation. Next, for various delay specifi-
cations, we list the number of transistors, Ntran, and the number
of domino/static gates (Gd Gs) using our method. From the ta-
ble, we can see that when the timing constraints are larger, the
cost is smaller than the minimum of columns 2 and 3, as ex-
pected. We observe that domino implementations of the bench-
marks usually have a speed advantage over static circuits, but tend
to have larger areas. Therefore, the tighter the timing constraints,
the more domino gates are required, and the larger the area cost.

The last three columns show the results of two way domino
partitioning under two specifications. In most cases the resulting
area is about the same or larger for the tighter specification, as
expected. In a few cases, a slightly smaller area is obtained (but
within a reasonable margin of error); this is due to approximations
in the cost estimation in DAG mapping, which is the main factor
that prevents the partition algorithm from attaining optimality.

The differential between Ntran(no spec) here and column 2
shows the reduction in logic duplication obtained by exploiting
the inverters at the partition boundary. Table 3 shows the results
of Flow 1 and Flow 2 from Section 5 for a general clock scheme.
We observe that Flow 2 introduces more latches than Flow 1.

Table 3: Results of partitioning for a general clock scheme
Circuits Flow 1 Flow 1 Flow 2 Flow 2

1 25 1 05 1 25 1 05

c1355 1408/8 1456/8 1452/48 1486/48
dalu 1998/56 2050/78 1923/63 2049/117
c880 944/13 953/14 926/43 943/43
count 346/9 345/14 337/23 338/23
c1908 1449/46 1560/46 1519/40 1590/60
c2670 1540/60 1538/52 1548/95 1548/95
c3540 3063/60 3235/68 2943/53 3277/53
c6288 11604/104 12511/115 12105/110 12410/111
k2 2691/157 2795/152 2862/147 2889/156
des 7510/118 7513/119 8452/437 8766/437
c7552 5754/164 5772/164 5701/192 5892/194
rot 1463/36 1515/51 1485/118 1538/119

References
[1] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L. All-

mon, “High-performance microprocessor design,” IEEE Journal of Solid-State
Circuits, vol. 33, pp. 676–686, May 1998.

[2] D. Harris and M. A. Horowitz, “Skew-tolerant domino circuits,” IEEE Journal
of Solid-State Circuits, vol. 32, pp. 1702–1711, Nov. 1997.

[3] M. R. Prasad, D. Kirkpatrick, and R. K. Brayton, “Domino logic synthesis and
technology mapping,” Proc. IWLS, 1997.

[4] G. Y. T. Thorp and C. Sechen, “Domino logic synthesis using complex static
gates,” Proc. ICCAD, pp. 242–247, 1998.

[5] M. Zhao and S. Sapatnekar, “Technology mapping for domino logic,” Proc.
ICCAD, pp. 248–251, 1998.

[6] R. Puri, A. Bjorksten, and T. E. Rosser, “Logic optimization by output phase
assignment in dynamic logic synthesis,” Proc. ICCAD, pp. 2–8, 1996.

[7] G. Yee and C. Sechen, “Dynamic logic synthesis,” Proc. CICC, pp. 345–348,
1997.

[8] R. Puri, “Design issues in mixed static-domino circuit implementations,” Proc.
ICCAD, pp. 270–275, 1998.

[9] T. Williams, “Dynamic logic: Clocked and asynchronous.” Tutorial notes at
ISSCC, 1996.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.
New York, New York: McGraw-Hill, 1990.

[11] K. Chaudhary and M. Pedram, “Computing the area versus delay trade-off
curves in technology mapping,” IEEE Trans. on CAD, vol. 14, pp. 1480–1489,
Dec. 1995.

[12] H. Liu and D. F. Wong, “Network flow based circuit partitioning for time-
multiplexed fpga’s,” in Proc. ICCAD, pp. 497–504, 1998.

[13] C. F. S. Iman, M. Pedram and J. Cong, “Finding uni-directional cuts based
on physical partitioning and logic restructing,” Proc. 4th Int. Workshop on
Physical Design, 1993.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

