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Abstract
In this paper, a new approach for generating test vectors that

detects faults in combinational circuits is introduced. The
approach is based on automatically designing a circuit which
implements the D-algorithm, an Automatic Test Pattern
Generation (ATPG) algorithm, specialized for the combinational
circuit. Our approach exploits fine-grain parallelism by
performing the following in three clock cycles: direct
backward/forward implications, conflict checking, selecting next
gate to propagate fault or to justify a line, decisions on gate
inputs, loading the state of the circuit after backup.  In this paper,
we show the feasibili ty of this approach in terms of speed, and
how it compares with software based techniques.

1. Introduction
ATPG is the process of either finding input vectors that detect

a fault in digital circuits by distinguishing the faulty and fault-
free circuit behavior at Primary Outputs (PO) or flagging a fault
redundant when no such vector exists.  This process requires a
large amount of CPU time and in many cases they abort many of
the hard-to-detect faults.  It is known that the ATPG is NP-
complete even for combinational circuits[13].

Most existing deterministic ATPG techniques employ a
branch-and-bound [1] technique to examine all i nput
combinations.  The D-algorithm, in [12], examines all i nput
combinations by making decisions at internal circuit nodes as
well as primary inputs and alternates between fault propagation
and line justification processes until some faulty values appear at
the primary circuit output (PO) (The fault is detected) or the
search space is exhausted.  In this later case, the fault is flagged
as being redundant. The PODEM, in [7], examines all input
combinations by making decisions only on primary inputs (PI).
This way the number of nodes appearing in the search tree is
reduced. To achieve this, all decisions on internal l ines are traced
back to the Primary Inputs (PI).  The FAN algorithm, in [9],
presents the following improvements to the basic PODEM
algorithm: tracing of objectives stops at some internal li nes
(head-lines) in addition to PIs and multiple objectives are back-
traced instead of a single objective back-tracing as used in
PODEM.  Further improvements are made to FAN to have a
better performance by finding mandatory assignments based on
dominators and by finding nodes where values can be assigned

independent of other nodes [10].  SOCRATES utili zes a unique
sensitization technique based on dominators and implication
learning to speed the justification process [11]. Recursive
learning that avoids the use of decision tree is proposed in [14].
Other improvement to speed the ATPG process is found in [16].

Emulation systems are being used increasingly in the design,
verification, and in rapid prototyping of digital systems [3]. To
increase the use of these emulation systems, several methods are
proposed to emulate Computer-Aided-Design (CAD) algorithms
such as fault simulation [4,5], Automatic Test Pattern Generation
(ATPG) [1], Satisfiabili ty (SAT) [1,6], and Fault diagnosis
[8,15].  In [4], a method is proposed to emulate serial fault
simulation.  In [5], a method is proposed to emulate critical path-
tracing algorithm.  In [1], a method is proposed to emulate
PODEM algorithm with its application to SAT. In all of those
algorithms, a significant speed-up was obtained over software
based implementation.

In this paper, we present a new method to emulate the D-
algorithm on a reconfigurable hardware.  The method achieves
significant speed-up over software-based ATPG techniques with
similar or better results. The quali ty of the results is measured in
terms of fault coverage. This is achieved by utili zing
reconfigurable hardware that provides a way to exploit the fine-
grain parallelism in the D-algorithm.

This paper is organized as follows: In section 2, the
concurrent D-algorithm is presented.  In section 3, the overall
architecture of the implementation is given. In section 4, we
present results. Finally, we present conclusion and future work in
section 5.

2. Concurrent D-Algorithm
The concurrent D-algorithm is shown in Fig.  1. The

algorithm generates a test for a fault F or declares it redundant.
The algorithm associates with each gate G a list of fan-in states
stored in Fanin(G,l) and four signals DF[G], JF[G], DIMP[G],
VAL[G] indicating that a gate is on the D-frontier, J-frontier, has
a direct implication, and the logic value of the direct implication
respectively.  For buffers and inverters, only DIMP[G] and
VAL[G] are generated. In addition, for each line l in the circuit
we associate a state S[l].

The algorithm starts by activating a fault F and initializing
S[l] from the gate fan-in states stored in Fanin(G,l) (Initially, all
fan-in states are set to undefined X and they may be changed
during the execution of the algorithm).  The initialization and
fault activation are performed in three clock cycles.  The
algorithm proceeds to perform forward implications and during
this step sets the indicators DF[G], JF[G], DIMP[G], and
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VAL[G]. The state S[l] of a line l that is connected to the fan-in
of a gate G with DIMP[G] set is updated with a VAL[G].  The
Conflict signal is set if the implied value in VAL[G] is different
from the binary value stored in S[l]. Conflict signal is also set
during the Forward implication where the implied value is
different from the binary value stored in S[l]. The forward
implication and the backward direct implication processes are
repeated until a conflict occurs or no more direct implication
exists. In our implementation, each iteration requires one clock
cycle. In the case of a conflict the program transfers control to a
backtrack procedure which reverses the previous decision.  In the
other case, the procedure tries to justify nodes in the J-frontier
when error is at a PO or propagates an error in the D-frontier
otherwise. If all nodes in the J-frontier are justified then a test is
found. In the case where justification fails, the control is
transferred to backtrack.  During the justification, each gate is
pushed on the stack and the state of its fan-in are either initialized
(InitFaninState(G)) if the G is pushed for the first time (indicated
by the Increment flag) or the next appropriate fan-in state is
computed (NextFaninState(G)).  These steps are also performed
in one clock cycle.  Similar steps are performed during the
propagation process which is activated when no error is at any
POs. Next, the algorithm loads the changes on the fan-in nodes of
gate G, due to a decision, into S[l] (LoadLineStateFromFanin(G))
and resets the Increment and BackUpSet flags.  These steps are
repeated until a test is found or a fault is redundant.

    Concurrent D-Algorithm()
     Fanin(G,l); Holds the state of fan-in l of gate G.
     S[l] : Holds the logic state of circuit node l.
     DF[g]: A signal that is set when G is on the D-frontier
     JF[g]: A signal that is set when G is on the J-frontier
     DIMP[g]: A signal that is set when G has a direct implication
     {
            Activate_Fault();
            Increment 

�
 BackUpSet 

�
 FALSE;

            LastProcessedGate 
�

 ∅;
     Init: for each gate G do LoadLineStateFromFanin(G);
            while(TRUE){
              repeat
                Forward_imply();

BackwardDirectImplication(VAL);
LoadDirectlyImpliedValues();

              until Conflict or all DIMP==0
              if ( Conflict ) goto Backtrack;
              if ( ErrorAtPO ){ /* Process J-frontier */
                 G 

�
 SelectGateFromJF(LastProcessedGate);

                 if(G==∅){ if ( BackUpSet ) goto Backtrack;
                                    TestIsFound; }
                 else if (Increment) { Push(G); NextFaninState(G); }
                           else{ Push(G); InitFaninState(G); }
             }
             else{  /*Process D-frontier */
                    G 

�
 SelectGateFromDF(LastProcessedGate);

                    if (G==∅) goto Backtrack;
                    Push(G); InitFaninState(G);
            }
            LoadLineStateFromFanin(G);
            Increment 

�
 BackUpSet 

�
 FALSE;

       }
     Backtrack: Pop();
          if(StackIsEmpty)   RedundantFault

�
TRUE;

          else{ G
�

TopStack(); Pop();  BackUpSet 
�

 TRUE;

                if (AllFaninState(G) are tried ) SetFaninState(G,X);
                                            else Increment 

�
 TRUE;

                LastProcessedGate = G;
                goto Init;
               }

Fig. 1. Concurrent D-algorithm.

Note that when selecting a gate from the D-frontier/J-frontier
(SelectGateFromDF/JF()) the decision on the fan-in gate which
was last pushed onto the stack is examined and if more decisions
exist, then gate is selected again; Otherwise a new gate is
selected.  It should be mentioned that in the implementation the
same logic is activated depending on ErrorAtPO signal for
selection of a gate from D-frontier or J-frontier sets.

3. Implementation
The overall architecture is shown in Fig. 2.  It consists of a

Fault Activator1, Forward Network, Backward Network, Signal
Computation, Frontier Selection, Stack, and a Decision Block.
The circuit starts by activating a fault that is performed in the
fault activator (FACT).  FACT sets S[i] to 0/1 for a stuck-at-1/0
fault on line i (Fi). FACT is similar to the circuit in [4] and
consists of a shift register where each flip-flop corresponds to a
stuck-at fault on a line i in the circuit.

Fig. 2. The overall high-level block of data-path.

The forward network computes the effect of the changes in
S[I] on the faulty (FFN) and fault-free (GFN) circuit.  The
forward network sets the conflict signal in the case where implied
values conflict with previous decision values.  The Signal block
computes for each gate its DF, JF, DIMP, VAL according to
equations (3-8). These equations are explained later. The
backward network propagates directly implied gate VAL one
level backward in the faulty (FBN) and fault-free (GBN). These
values are stored in corresponding S[I] .  These steps are repeated
until either the FCONFLICT/ BCONFLICT is set or none of
DIMP is set. The Frontier Selector Block consists of a priority
encoder that selects either a DF gate if error is not at the PO or a
JF gate otherwise.  The gate identification that was processed
previously is stored in LastProcessedGate.  This is used to be
passed to the stack if more decision can be made on this gate

                                                          
1 All equations  uses the convention described in Table 1.
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otherwise it is used to exclude gates with lower priorities from
the selection process because the search space associated with
these gates has already been explored.  The selected gate is
pushed onto the STACK and the associated decision on its
Fanin(G,I) are computed in the Decision Maker block, and the
decisions are stored in corresponding G[I] . In the case of either a
conflict, error is not at the output and all DF are not set, all
justification associated with set JF gates failed the gate on the top
of the stack is popped and stored in LastProcessedGate.  All these
steps are repeated until a test is found or no more decision can be
made which signals a redundant fault.

The forward network consists of the circuit under test where
the gates are interconnected with lines.  Each line is modeled as
in Fig. 3(a)-(c).  The forward networks compute the final values
of a line by considering the state value (Si), the implied value
computed by the fan-in gate (I i), and the fault injection signal
(Fi). The final value of line is computed using (Eq. 1.a).   A
conflict signal is also computed for every line using (Eq. 1.b).  In
the case where a fault (Fi) is not injected at the line the expression
in Eq. (1.a) is simpli fied. Fig. 4 shows a 2-input AND gate and its
corresponding model in faulty forward network.

a) Good line in GFN    b) Good line in FFN   c) Faulty line in FFN

Fig.  3. Line models in forward networks.

               Ζ→
if  = (I

→
if  ∨ Si ) ⊕ Fi     (1.a)

                C
→
if  = I

→
if  ≠Si ∧ Si≠x        (1.b)

Fig.  4. A model for 2-inputs AND gate in FFN.
Similarly, backward network (GBN/FBN) propagates the

fault-free/faulty backward implications of the circuit. The
backward networks use the line models in Fig. 5(a)-(c) to
propagate the direct implication values backward. The final
implication value of a line is computed from the signal (VAL i),
final value computed by the forward network and the fault
injection signal (Fi) and given in equation (2.a). The conflict
signal is set according to (Eq. 2.b) in the case of conflicting
implied values on a line.

       a) Good line in GBN  b) Good line in FBN  c) Faulty line in FBN

Fig.  5. Line models in backward networks.

    Ζ←
if  = (Ζ→

if  ∨ VALi ) ⊕ Fi                (2.a)

                         C
←
if  = Ζ→

if  ≠ VAL i ∧ VAL i ≠x              (2.b)

The signal block computes for each gate i the following: JFi,
DFi, DIMPi, and VAL i.  Those are computed for all gates with

more than one fan-in.  DIMP and VAL are computed for all
gates. The equations (3-8) compute JFi, DFi, DIMPi and VAL i

using 5-valued logic (D and ¬D represent 1/0 and 0/1
respectively). The gate type is encoded into these equations by
the inclusion of its controll ing value c.  Fig. 6 shows the other
parameters used in these equations.  The final line values in the
good and faulty forward networks are combined and mapped into
a 5-valued logic represent with L i and Rp in Fig. 6.

         a) A n-input gate                       b) Model for an n-input gate
Fig. 6. The frontier/implication model for n-input gate (n>1).

Table 1. Nomenclatures.
t: t∈{ f = faulty, g=good}
d: d∈{ → = forward, ← = backward }

Ζ
d
lt  : the final value of a line l  in the  td network

I
d
lt : the implied value of a line l in the td network

C
d
lt : the conflict value of a line l in the td network

Ri : the implied value of a line i in the forward network
Li :  the final value of a line i in the forward network
VALl: direct implication value on line l

G
c
i  : the inputs of the gate i from the circuit

 G
g
i  : the inputs of the gate i from its gate fan-in state

     JFp �   Rp= x ∧ Sp ≠ x ∧ (∃i,j L i = x ∧ L j = x)   1≤ i< j ≤ n   (3)
     DFp �  Rp = x ∧ Sp = x ∧(∃i,j Li=D ⊕ ∃j Lj = ¬D)     1≤ i < j ≤ n   (4)

         Rp=x∧Sp=c∧[ (∑i Li=x)=1]∨ Rp=x ∧ Sp=¬c
                         1 ≤ i ≤ n  and p-type∈{ AND, OR}

     DIMPp �      Rp=x ∧Sp=¬c∧[ (∑i Li=x)=1]∨Rp=x∧Sp=c   (5)
                                                     1≤ i ≤ n and p-type∈{ NAND,NOR}

          Rp = x ∧ Sp≠ x                    p-type∈{ INV,BUF}

Sp /¬Sp if DIMPp = 1 and p is BUF/INV
                          x            if DIMPp = 0 and p is INV/BUF  (6)

  
0  Rp=x ∧ Sp=c ∧[(∑i Li=x)=1]

        VALp �        1 Rp = x ∧ Sp = ¬c  p-type∈{ AND,  OR} (7)
                             x  otherwise

              0  Rp = x ∧ Sp = ¬c ∧ [ (∑i Li = x) = 1]
            VALp �     1  Rp = x ∧ Sp = c p-type∈{ NAND, NOR}   (8)

                         x   otherwise

Fig. 7 shows the decision block. The D/J signal indicates the
frontier type and the G-type signal indicates gate type. The G

c
i  / G

g
i

Fig. 7. Computation of decision on a gate identified with ID.
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lines are inputs to gate i.  If  LOAD is set then we are processing
the first decision on the gate.  In this case, the inputs to this gate
are supplied from the forward network. In the case where INC is
set then we will be making the next decision on the gate.  In this
case, the previous decision values are loaded from Fanin(G,l).
Next decision is computed after loading and index is set to the
location where reverse decision may be made.

3. Results
To compute the efficiency of this approach, we compare the

run time of a software based D-Algorithm with that of a hardware
implementation.  For the hardware implementation we include
the following parameters: Preprocessing time (TP),
Reconfiguration time (TC) and test generation time (TG).  The test
generation time (TG) is computed in terms of the number of faults
(F), the number of direct parallel implications (I), the number of
assignments (A) (i.e., the number of frontiers' selections) and the
number of backtracks (B).  The test generation procedure
generates a test for each testable fault and does not fault simulate
these vectors.   For each fault, the test generation circuit requires
3 clock cycles to initialize and inject the fault.  During the
execution of the algorithm, the circuit requires 2 clock cycles to
process direct implications, 2 clock cycles to process an
assignment, and three clock cycles to process a backtrack. Thus,
the total test generation time required by the generated circuit is
given by TG = 3*F + 2*I + 2*A + 3*B.  Therefore, the total time
to finish the test generation for all faults is TP + TC  + TG.

To perform the experiment we use the ISCAS85 benchmark.
Characteristics of these circuits are shown in Table 2. For
example, circuit c432 consists of 160 gates and a total of 524
faults were injected into this circuit.  When all faults are targeted
using the D-Algorithm, the number of assignments, of backtracks
and of implications are 60366, 5980 and 2350 respectively. These
numbers are used to compute the number of clock cycles required
by the circuit.

Table 2. Descriptions of the benchmark circuits.

# Faults #Gates #Assign #Back #Imp
C432 524 160 60366 5980 2350
C880 942 383 55624 4740 1893
C1908 1879 880 252605 13135 10301
C6288 7744 2416 939128 80131 21452
C7552 7550 3513 833121 90235 33452

Table 3 shows for each of the circuits the time required by a
software D-algorithm, the preprocessing time, the time required
by the hardware running at 1 MHz and the speed up.  In speed-up
computation, the configuration time is assumed 10 sec. Also,
although most of the implications are computed in parallel in our
approach, we count them sequential in our approximation. For
these we can see a speed-up over software ranging between 1.3
and 3.2 times for large circuits.

Table 3. The speedups for benchmarks.

Soft CPU
(sec)

Tp (sec) Hardware
(TG) (1 MHz)

Speed-up

c432 2.34 2.3 0.144 0.188

c880 2.8 4.7 0.132 0.188

c1908 27.64 9.2 0.57 1.398

c6288 113.02 37.3 2.184 2.281

c7552 183.02 43.5 2.026 3.296

4. Conclusion
We presented a new approach for generating test vectors that

detects faults in combinational circuits. The approach is based on
automatically designing a circuit which implements the D-
algorithm, an Automatic Test Pattern Generation (ATPG)
algorithm, specialized for the combinational circuit. Our
approach exploits fine-grain parallelism by performing the
following in three clock cycles: direct backward/forward
implications, conflict checking, selecting next gate to propagate
fault or to justify a line, decisions on gate inputs, loading the state
of the circuit after backup. We showed the feasibil ity of this
approach in terms of speed, and how it compares with software
based this approach in terms of speed, and how it compares with
software based techniques.  For large circuits, we achieve high
speed-up.
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