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Abstract

In this paper, a new approach for generating test vedors that
deteds faults in combinational circuits is introduced. The
approach is based on automaticdly designing a drcuit which
implements the D-algorithm, an Automatic Test Pattern
Generation (ATPG) algorithm, spedalized for the combinational
circuit. Our approach exploits fine-grain paraléelism by
performing the following in three dock cycles. dired
badkward/forward implications, conflict checking, seleding next
gate to propagate fault or to justify a line, dedsions on gate
inputs, loading the state of the drcuit after badkup. In this paper,
we show the feasibility of this approacd in terms of speed, and
how it compares with software based tedhniques.

1. Introduction

ATPG isthe processof either finding input vedors that deted
a fault in digital circuits by distinguishing the faulty and fault-
free dreuit behavior at Primary Outputs (PO) or flagging a fault
redundant when no such vedor exists. This process requires a
large amount of CPU time and in many cases they abort many of
the hard-to-deted faults. It is known that the ATPG is NP-
complete even for combinational circuitg13].

Most existing deterministic ATPG techniques employ a
branch-and-bound [1] technique to examine dl input
combinations. The D-agorithm, in [12], examines al input
combinations by making dedsions at internal circuit nodes as
well as primary inputs and alternates between fault propagation
and line justification processs until some faulty values appea at
the primary circuit output (PO) (The fault is detected) or the
seach spaceis exhausted. In this later case, the fault is flagged
as being redundant. The PODEM, in [7], examines al input
combinations by making dedsions only on primary inputs (PI).
This way the number of nodes appeaing in the seach treeis
reduced. To achieve this, al dedsions on interna lines are traced
bad to the Primary Inputs (Pl). The FAN algorithm, in [9],
presents the following improvements to the basic PODEM
algorithm: tradng of objedives fops at some internal lines
(head-lines) in addition to Pls and multiple objedives are back-
tracal instead of a singe objedive badk-tradng as used in
PODEM. Further improvements are made to FAN to have a
better performance by finding mandatory assgnments based on
dominators and by finding nodes where values can be a&ssgned
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independent of other nodes [10]. SOCRATES utili zes a unique
sengitizaion technique based on dominators and implication
leaning to speed the justificaion process [11]. Reaursive
leaning that avoids the use of dedsion treeis proposed in [14].
Other improvement to speed the ATPG processisfound in [16].

Emulation systems are being used increasingly in the design,
verification, and in rapid prototyping of digital systems [3]. To
increase the use of these emulation systems, several methods are
proposed to emulate Computer-Aided-Design (CAD) algorithms
such as fault simulation [4,5], Automatic Test Pattern Generation
(ATPG) [1], Satisfiability (SAT) [1,6], and Fault diagnosis
[8,15]. In [4], a method is proposed to emulate serial fault
simulation. In [5], amethod is proposed to emulate aitical path-
tradng agorithm. In [1], a method is proposed to emulate
PODEM algorithm with its applicaion to SAT. In all of those
algorithms, a significant speed-up was obtained over software
based implementation.

In this paper, we present a new method to emulate the D-
algorithm on a reconfigurable hardware. The method achieves
significant speed-up over software-based ATPG tedhniques with
similar or better results. The quality of the results is measured in
terems of fault coverage. This is adiieved by utilizing
reconfigurable hardware that provides a way to exploit the fine-
grain parallelism in the D-algorithm.

This paper is organized as follows. In sedion 2, the
concurrent D-algorithm is presented. In sedion 3, the overall
architedure of the implementation is given. In sedion 4, we
present results. Finally, we present conclusion and future work in
sedion 5.

2. Concurrent D-Algorithm

The ncurrent D-algorithm is shown in Fig. 1. The
algorithm generates a test for a fault F or dedares it redundant.
The dgorithm asociates with eatd gate G a list of fan-in states
stored in Fanin(G,l) and four signals DFG], JF[G], DIMP[C],
VALJ[G] indicaing that a gate is on the D-frontier, J-frontier, has
adirea implication, and the logic value of the dired implicaion
respedively. For buffers and inverters, only DIMP[G] and
VAL[G] are generated. In addition, for ead line | in the drcuit
we associate astate §[1].

The dgorithm starts by adivating a fault F and initializing
1] from the gate fan-in states dored in Fanin(G,l) (Initialy, all
fan-in states are set to undefined X and they may be changed
during the exeaution of the dgorithm). The initiaizaion and
fault adivation are performed in three dock cycles. The
algorithm proceals to perform forward implicaions and during
this gep sets the indicaors DF[G], JF[G], DIMP[G], and



VALI[G]. The state g[I] of aline | that is conneded to the fan-in
of a gate G with DIMP[G] set is updated with a VAL[G]. The
Corflict signal is <t if the implied value in VAL[G] is different
from the binary value stored in S[I]. Corflict signal is also set
during the Forward implicaion where the implied value is
different from the binary value stored in S[I]. The forward
implicdion and the backward dired implicaion proceses are
repeaed until a onflict occurs or no more dired implication
exists. In our implementation, ead iteration requires one dock
cycle. In the cae of a @nflict the program transfers control to a
badktradk procedure which reverses the previous dedsion. Inthe
other case, the procedure tries to justify nodes in the J-frontier
when error is at a PO or propagates an error in the D-frontier
otherwise. If all nodes in the Jfrontier are justified then a test is
found. In the cee where judtificaion fails, the ontrol is
transferred to badktradk. During the justificaion, each gate is
pushed on the stack and the state of its fan-in are ather initialized
(InitFaninState(G)) if the G is pushed for the first time (indicated
by the Increment flag) or the next appropriate fan-in state is
computed (NextFaninState(G)). These steps are dso performed
in one dock cycle. Similar steps are performed during the
propagation process which is adivated when ro error is at any
POs. Next, the dgorithm loads the changes on the fan-in nodes of
gate G, dueto adedsion, into S[I] (LoadLineStateFromFanin(G))
and resets the Increment and BadkUpSet flags. These steps are
repeaed until atest isfound or afault is redundant.

Concurrent D-Algorithm()
Fanin(G,); Holds the state of fan-in | of gate G.
S[1] : Holdsthe logic state of circuit nodel.
DF[g]: A signal that is <t when G is on the D-frontier
JF[g]: A signal that is st when G is on the JHrortier
DIMP[g]: A signal that is %t when G hasadired implicaion
{
Activate Fault();
Increment € BadkUpSet € FALSE;
LastProcessedGate € [I;
Init: for eath gate G do LoadLineStateFromFanin(G);
while(TRUE){
repeat
Forward_imply();
BadckwardDiredlmplicaion(VAL);
LoadDiredlyl mpliedVaues();
until Conflict or all DIMP==0
if (Conflict) goto Badktrad;
if (ErrorAtPO ){ /* Process Jfrontier */
G € SdedGateFromJF(L astProcessedGate);
if(G==0){ if (BakUpSet ) goto Badktrad;
TestlsFound; }
elseif (Increment) { Push(G); NextFaninState(G); }
else{ Push(G); InitFaninState(G); }

}

else{ /*ProcessD-frontier */
G €& SdedGateFromDF(L astProcessedGate);
if (G==0) goto Badtra;
Push(G); InitFaninState(G);

}
LoadLineStateFromFanin(G);
Increment € BadkUpSet € FALSE;

}
Backtrack: Pop();
if(StadklsEmpty) RedundntFault €<TRUE;
else{ G¢TopStad(); Pop(); BackUpSet ¢ TRUE;

if (AllFaninState(G) aretried ) SetFaninState(G,X);
else Increment ¢ TRUE;

LastProcesedGate =G;

goto Init;

}
Fig. 1. Concurrent D-algorithm.

Note that when seleding a gate from the D-frontier/J-frontier
(SeleaGateFromDF/JF()) the dedsion on the fan-in gate which
was last pushed onto the stack is examined and if more dedsions
exist, then gate is Eleded again; Otherwise a new gate is
seleded. It should be mentioned that in the implementation the
same logic is adivated depending on ErrorAtPO signal for
seledion of a gate from D-frontier or J-frontier sets.

3. Implementation

The overall architedure is own in Fig. 2. It consists of a
Fault Activator’, Forward Network, Badward Network, Signal
Computation, Frontier Seledion, Stadk, and a Dedsion Block.
The drcuit starts by adivating a fault that is performed in the
fault adivator (FACT). FACT sets §[i] to 01 for a stuck-at-1/0
fault on line i (F). FACT is smilar to the drcuit in [4] and
consists of a shift register where eah flip-flop corresponds to a
stuck-at fault on alinei inthe drcuit.
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Fig. 2. The overall high-level block of data-path.

The forward network computes the effed of the changes in
S[1] on the faulty (FFN) and fault-free (GFN) circuit. The
forward network sets the @nflict signal in the cae where implied
values conflict with previous dedsion values. The Signal block
computes for ead gate its DF, JF, DIMP, VAL ac®rding to
equations (3-8). These euations are explained later. The
badkward network propagates diredly implied gate VAL one
level badkward in the faulty (FBN) and fault-free (GBN). These
values are stored in corresponding S[I]. These steps are repeaed
urtil either the FCONFLICT/ BCONFLICT is st or none of
DIMP is st. The Frontier Seledor Block consists of a priority
encoder that seleds either a DF gate if error is not at the PO or a
JF gate otherwise. The gate identificaion that was processed
previously is gored in LastProcessedGate. This is used to be
passd to the stack if more dedsion can be made on this gate

L All equations uses the convention described in Table 1.



otherwise it is used to exclude gates with lower priorities from
the seledion process becaise the seach space aciated with
these gates has already been explored. The seleded gate is
pushed onto the STACK and the assciated dedsion on its
Fanin(G,I) are computed in the Decision Maker block, and the
dedsions are stored in corresponding G[I] . In the cae of either a
conflict, error is not at the output and all DF are not set, al
justification associated with set JF gates fail ed the gate on the top
of the stack is popped and stored in LastProcessedGate. All these
steps are repeaed urtil atest is found or no more dedsion can be
made which signals aredundant fault.

The forward network consists of the drcuit under test where
the gates are interconneded with lines. Ead line is modeled as
in Fig. 3(a)-(c). The forward networks compute the final values
of a line by considering the state value (S), the implied value
computed by the fan-in gate (I;), and the fault injedion signal
(F). The final value of line is computed using (Eq. 1.8). A
conflict signal is aso computed for every line using (Eq. 1.b). In
the cae where afault (F) isnot injeded at the line the expresson
in Eq. (1.a) is smplified. Fig. 4 shows a 2-input AND gate and its
corresponding model in faulty forward network.

Cig Cif
a) Good linein GFN  b) Good linein FRN  ¢) Faulty linein FFN
Fig. 3. Linemodelsin forward networks.
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Fig. 4. A model for 2-inputs AND gatein FFN.

Similarly, backward network (GBN/FBN) propagates the
fault-fredfaulty backward implicaions of the drcuit. The
badkward networks use the line models in Fig. 5(a)-(c) to
propagate the dired implicaion values badkward. The final
implication value of aline is computed from the signal (VAL;),
final value cmputed by the forward network and the fault
injedion signal (F) and given in equation (2.a). The cnflict
signa is st acording to (Eq. 2.b) in the cae of conflicting
implied valueson aline.
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a) Good linein GBN b) Goaod linein FBN c) Faulty linein FBN
Fig. 5. Line modelsin backward networks.
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The signal block computes for eat gate i the following: JF;,
DF;,, DIMP, and VAL;. Those ae cmmputed for all gates with

more than one fan-in. DIMP and VAL are computed for all
gates. The euations (3-8) compute J~, DF,, DIMP, and VAL,
using 5-valued logic (D and -D represent 1/0 and 01
respedively). The gate type is encoded into these equations by
the inclusion of its controlling value ¢ Fig. 6 shows the other
parameters used in these equations. The final line values in the
good and faulty forward networks are combined and mapped into
a5-valued logic represent with Ljand R, in Fig. 6.
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a) A n-input gate b) Model for an n-input gate
Fig. 6. Thefrontier/implication model for n-input gate (n>1).

Table 1. Nomenclatures.

t: tO{ f = faulty, g=good}
d: di{ - =forward, — = badkward }

d ) . .
Z :thefinal value of alinel inthe td network

d —_— Lo
I\t - theimplied value of aline |l in the td network

d . i .
CIt : the oonflict value of alinel in the td network

R : theimplied value of alinei in the forward network
L; : thefinal value of alinei in the forward network
VAL;: dired implicaion valueonlinel

GiC : the inputs of the gate i from the drcuit

Gig : the inputs of the gate i from its gate fan-in state

JF, < R=x0S#x0(0;Li=x0L=x) 1<i<jsn (3)
D¢ R,=x0S=x00,;L=DO00Lj=-D) 1<i<jsn (4
Ry=x0S,=c (3 Li=x)=1]0R=x 0 S,;=-c

1<i<n andp-typell{ AND, OR}
DIMP,&Y Ry=x 0S;=~c (3; Li=x)=1]OR,=x0S,=c (5)

1<i < nand p-typelJ{ NAND,NOR}
p-typeJ{INV,BUF}

VALpé{sp/ﬂsp f DIMP, = L and pis BUF/INV
x  if DIMP,=0andpisINV/BUF

R,=x0S# X

(6)

0 R=x O0S;=c (3, Li=x)=1]
1R, =x0S,=-c p-typed{AND, OR}
X otherwise

VAL, € )

0 Ry=x0S,=-cO[(XiLi=x)=1]
1 R,=x 08§, = cp-typell{ NAND, NOR}
X otherwise

VAL, ®

Fig. 7 shows the dedsion block. The D/J signal indicates the
frontier type and the G-type signal indicates gate type. The «/
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lines are inputsto gatei. If LOAD is st then we ae processng
the first dedsion on the gate. In this case, the inputs to this gate
are supplied from the forward network. In the cae where INC is
set then we will be making the next dedsion on the gate. In this
case, the previous dedsion values are loaded from Fanin(G,l).
Next dedsion is computed after loading and index is st to the
locdion where reverse dedsion may be made.

3. Results

To compute the efficiency of this approach, we compare the
runtime of a software based D-Algorithm with that of a hardware
implementation. For the hardware implementation we include
the following parameters. Preprocessng time (Tp),
Recoonfiguration time (T¢) and test generation time (Tg). The test
generation time (Tg) is computed in terms of the number of faults
(F), the number of direa parallel implicaions (1), the number of
asdgnments (A) (i.e., the number of frontiers' seledions) and the
number of badtracks (B). The test generation procedure
generates a test for eadh testable fault and deces not fault simulate
these vedors. For ead fault, the test generation circuit requires
3 clock cycles to initidlize and injea the fault. During the
exeadtion of the dgorithm, the drcuit requires 2 clock cycles to
process dired implicaions, 2 clock cycles to process an
assgnment, and three d¢ock cycles to processa badtradk. Thus,
the total test generation time required by the generated circuit is
given by Tg = 3*F + 2*| + 2*A + 3*B. Therefore, the total time
to finish the test generation for all faultsisTp + T¢ + Tg.

To perform the experiment we use the ISCAS85 benchmark.
Charaderistics of these drcuits are shown in Table 2. For
example, circuit ¢432 consists of 160 gates and a total of 524
faults were injeded into this circuit. When all faults are targeted
using the D-Algorithm, the number of assgnments, of backtradks
and of implications are 60366 5980 and 230 respedively. These
numbers are used to compute the number of clock cycles required
by the drcuit.

Table 2. Descriptions of the benchmark cir cuits.

# Faults #Gates | #Asdgn | #Back | #Imp
Ca2 524 160 60366 | 5980 | 2350
C880 942 383 55624 | 4740 | 1893
C1908 1879 880 252605 | 13135 | 10301
C6288 7744 2416 939128 | 80131 | 21452
C7552 7550 3513 833121 | 90235 | 33452

Table 3 shows for ead of the drcuits the time required by a
software D-algorithm, the preprocessng time, the time required
by the hardware running at 1 MHz and the speed up. In speed-up
computation, the configuration time is assumed 10 sec Also,
although most of the implicaions are computed in parallel in our
approach, we munt them sequential in our approximation. For
these we @an see aspeed-up over software ranging between 1.3
and 3.2 timesfor large drcuits.

Table 3. The speedups for benchmarks.

Soft CPU|T,(sec) | Hardware | Speead-up
(sex) (Te) A MHz)
c432 234 23 0.144 0.188
€880 2.8 47 0.132 0.188
c1908 | 27.64 9.2 057 1.398
c6288 | 113.02 | 37.3 2.184 2.281
c7552 | 183.02 | 435 2.026 3.296

4. Conclusion

We presented a new approach for generating test vedors that
deteds faults in combinational circuits. The gproac is based on
automaticdly designing a drcuit which implements the D-
algorithm, an Automatic Test Pattern Generation (ATPG)
algorithm, spedalized for the mbinational circuit. Our
approach exploits fine-grain paralelism by performing the
following in three dock cycles. dired badkward/forward
implicaions, conflict cheding, seleding next gate to propagate
fault or to justify aline, dedsions on gate inputs, loading the state
of the drcuit after badkup. We showed the feasibility of this
approach in terms of speed, and how it compares with software
based this approad in terms of speead, and how it compares with
software based techniques. For large drcuits, we ahieve high
speal-up.
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