
Performance Optimization Using Separator Sets

Yutaka Tamiya
FUJITSU LABORATORIES LTD.

4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, JAPAN 211-8588
tamy@flab.fujitsu.co.jp

Abstract

In this paper, we propose a new method to optimize a performance
of a very large circuit. We find the best set of local transformations
to be applied to the circuit, by inserting “padding nodes” on non-
critical edges of the circuit, and calculating separator sets of the
circuit using separator sets. Our method is robust for very large
circuits, because its memory usage and calculation time are linear
and polynomial order with the size of the circuit.

According to our experimental results, our method has accom-
plished all circuits, while K. J. Singh’s selection function method
has aborted with three large circuits because of memory overflow.
The results also shows our method has a comparable capability in
delay optimization to Singh’s method.

1 Introduction

In order to optimize a performance of a very large circuit, it is
impossible to re-synthesize whole the circuit at a time. The best
known strategy to date is repetition of local transformations: ex-
tracting a portion of a large circuit as a sub-circuit, which is criti-
cal in delay, re-synthesizing the sub-circuit, and restoring the sub-
circuit to its original portion (Fig. 1). In order to achieve maxi-

&

&

+ x
a
b
c

4

4

5

6

6

7
&

+
x

a
b
c

4
4

5

5
6Delay Opt.

Extract
a Sub-circuit

Restore
the Sub-circuit

ArrivalTime(x)=7 ArrivalTime(x)=6

Large Combinational Circuit

PI1

PI2

PI3

PO2

PO1

PO3

Original Sub-circuit Re-synthesized Sub-circuit

Figure 1: Local Transformation for Performance Optimization

mum improvement of a circuit performance, it is important to find
a “good”set of local transformations. We call a set of local trans-
formations for re-synthesis a “selection set”. However, it is con-
jectured an NP hard problem to find the optimum selection set
with the minimum area and/or power with satisfying all timing
constraints[1].

Singh et al. have proposed a very efficient framework for perfor-
mance optimization using iterative local transformations[1]. They

use a selection function to represent a set of selection sets. A se-
lection function is a characteristic function with a set of variables
fxig, each corresponding to a local transformationi. The selec-
tion function holds true for a sub-set offxig, whose corresponding
local transformations improve all outputs of the circuit in delay.

They implement a selection function with a BDD[2]. One se-
lection set corresponds to a one-path of the BDD (a path from the
root node to the constant “one” node). The optimum selection set
corresponds to the minimum weighted path among all one-paths,
and can be calculated in linear time with the size of the BDD. How-
ever, BDD has a problem of memory explosion. In the worst case,
both memory usage and calculation time grow exponentially with
the size of a circuit. Thus the selection function is not robust for
very large circuits.

Another method of finding a selection set uses separator
set[3][4]. A separator set is a node set, which cuts all paths from
inputs to outputs. Using a network flow algorithm the separator set
with the minimum cost is calculated with time of polynomial order,
and memory of linear order to the size of a circuit.

A separator set, however, does not always imply the optimum
selection set. Only single-output tree-structured circuits hold it, but
multi-output DAG circuits does not[1].

We show an example of delay optimization in Fig. 2(a). We want
to find the optimum selection set, which reduces the slack at the
outputO1 by 3. We first calculate three variables for each nodei:
s(i) (slack ati), D(i) (amount of node delay reduction by the local
transformation ati), andA(i) (cost of the local transformation ati.
e.g.: increase of area and/or power).

In this example, only three nodes,T , W , and X, are re-
synthesizable. The optimum selection set isfT;Xg with cost of
9. The separator set, however, isfW;Xg with cost of 11. Thus the
separator set is not the optimum selection set.

The selection function atO1 is F(O1) = X � (W + T). Ac-
cording to the on-set of the function, selection sets arefW;Xg and
fT;Xg. The latter has less cost and is chosen as the optimum se-
lection set.

We propose a new method to find the optimum selection set us-
ing separator sets. By inserting “padding nodes” on non-critical
edges of the circuit, the optimum selection set can be derived from
separator sets even for multi-output DAG circuits. Our method is
robust for very large circuits, because its memory usage and cal-
culation time are linear and polynomial order with the size of the
circuit.

2 Algorithm

We assume that a circuit is a combinational Boolean network, and
s(i)’s, D(i)’s, andA(i)’s at all nodei are calculated. IfD(i) is
equal to or less than 0,A(i) should be set to+1.

First, we transform a multi-output circuit to a single-output one,
by adding a “virtual output”. We replace all output nodes with
buffers with a node delay of 0, and connect those buffers’ outputs
to inputs of the virtual output. As a result, the slack at the virtual

0-7803-5832-X /99/$10.00 ©1999 IEEE.

name(i)
s(i) D(i)

A(i)
S

-1 0

T
-3 2

3

U
-3 0

V
-3 0

X
-3 3

6

W
-2 2

5

Y
-3 0

separator set = {W, X}
selection function = X (W+T)
optimal selection set = {T, X}

separator set

s(i): slack at i
D(i): delay reduction of
 local transformation at i
A(i): cost of local
 transformation at i

S
-3 0

T
-3 2

3

U
-3 0

V
-3 0

X
-3 3

6

W
-3 2

5

Y
-3 0

multi-separator-set

(a) Original Circuit and Separator Set

(b) Circuit with Padding Nodes and Multi-Separator-Set

padding node

O1

O1

-3
p2

1
0

-3
p1

2
0

Figure 2: Finding a Selection Set

output is equal to the minimum slack of all original outputs.
For all edgee, we calculateds(e), a difference of node slacks at

e’s both ends:

ds(e) = s(tail node(e))� s(head node(e)) (1)

And if ds(e) > 0, we insert a “padding node” ate whose node
delay isds(e). And delay reduction and cost of its local transfor-
mation are setds(e) and 0, respectively (i.e.:D(e) = ds(e) and
A(e) = 0). Note that padding nodes are inserted at all non-critical
fanin edges of all nodes (including the virtual output).

From the viewpoint of delay analysis, slacks of all nodes become
equal. Padding nodes eliminate all differences in arrival times at all
inputs, required times at all outputs, and path delays among all re-
convergent paths.

From the viewpoint of delay optimization, we treat padding
nodes re-synthesizable, such that their node delays can be reduced
to 0 with no cost. Thus, padding nodes are more likely chosen in a
selection set than any ordinary node with positive cost. Note that if
a padding node is chosen in a selection set, we do not need to apply
any local transformations to the padding node.

A separator set of a circuit with padding nodes has a very impor-
tant property as follows:

Lemma 1 (Delay Reduction by A Separator Set)
If s is any separator set of a circuit with padding nodes, and s has
�nite cost, then s has at least one ordinary node (i.e.: non-padding
node), and it reduces the delay of the circuit by:

D(s) = min
i2s

D(i) (2)

2

The first half of the lemma is proven by the facts that a separator
set must include at least one node on the most critical path, and
padding nodes are not inserted on critical paths. The latter half of
the lemma is trivial.

An example of padding nodes is shown in Fig. 2(b). There are
two padding nodesp1 and p2, with delay reduction of 2 and 1,
respectively. First, we find the separator set with the minimum cost:
fT; p1g. But delay reduction of this separator set is 2, and it is less
than the objective delay reduction (3). Then we find the separator
set with the second minimum cost:fX; p2g. Combination of those
separator sets results in delay reduction of 3 and cost of 9, which is
the same result of the selection function.

As seen in this example, combination of more than one separator
sets is efficient. In this situation, it is important how to select a set
of separator sets at a time with the minimum total cost achieving
the objective delay reduction. We call such a set of separator sets a
“multi-separator-set”.

Definition 1 (Multi-Separator-Set)
A �multi-separator-set� is a set of one or more than one separator
sets of the same circuit. Those separator sets can share the same
node in the circuit, if a sum of delay reduction of separator sets
sharing the node is equal to or less than the delay reduction of the
node.

We call a multi-separator-set �optimum�, if total cost of nodes
belonging to it is the minimum.
2

According to the following theorem, multi-separator-set and se-
lection set are equivalent in terms of delay reduction and cost. Thus
if we find the optimum multi-separator-set, we can get the optimum
selection set by removing padding nodes from the multi-separator-
set.

Theorem 2 (Selection Set and Multi-Separator Set)
Let � be a circuit, and �0 be the circuit of � with padding nodes
inserted. Any selection set t in �, which reduces the circuit delay
by D(t) > 0, has its corresponding multi-separator-set m in �0,
such that:

� m consists of nodes in t and padding nodes.

� Delay reductions of t andm are the same: D(t) = D(m).

2

Proof
At �rst, we prove t and padding nodes contain at least one separator

set in �0.
Suppose that t and padding nodes do not contain any separator

sets in �0. Then there exists a path p from one input to one output in
�0, all whose nodes are not padding nodes and included in t. This
means p is the most critical path in �, and its path delay cannot be
reduced by t. This is contradict toD(t) > 0.

Therefore, if D(t) > 0, we can �nd a separator set s, which
consists of nodes in t and padding nodes. When D(t) > D(s),
we update the delay reduction D(i) for each node i in s: D(i) (
D(i) � D(s). Note that this process also updates D(t): D(t) (
D(t)�D(s).

Until D(t) = 0, we can iterate �nding a separator set in �0

and updating node delay reductions. This iteration should termi-
nate since each iteration �nds a different separator set and �0 has
�nite separator sets.

It is trivial that all found separator sets contain only nodes in t
and padding nodes, and their total circuit delay reduction is equal
to the original D(t).
2

According to Theorem 2, finding the optimum multi-separator-
set has the same time complexity as finding the optimum selection
set: i.e., NP hard. Thus, we approximate it by finding separator sets
one by one like the proof of Theorem 2 (Fig. 3).

Step 1: Set a variablem separator set empty, which rep-
resents a multi-separator-set.

Step 2: Make a flow network from the circuit with padding
nodes. Note that each noden in the circuit has its
corresponding edge in the flow network, whose flow
capacitance is equal to the node cost (A(n)). We give
each node (including a padding node) a variable of
“rest of delay reduction”. Its value is initially set to
the delay reduction of the node, and decreases each
time the node is chosen as a member of a separator
set.

Step 3: Calculate the maximum flow on the flow net-
work by a flow algorithm. If there exist no flows
with finite cost, the procedure ends and returns
m separator set.

Step 4: Find a separator set, which corresponds to the cut-
set (set of edges) of the maximum flow, and merge the
separator set tom separator set.

Step 5: For each node in the separator set obtained at Step
4, reduce its rest of delay reduction by the delay re-
duction of the separator set. If the rest of delay re-
duction becomes 0, we set the flow capacitance of the
corresponding edge+1, so that we cannot any more
choose the node as a member of a separator set.

Step 6: Return to Step 3.

Figure 3: Approximation of Multi-Separator-Set

Let us consider the time complexity of the multi-separator-set
approximation. Finding the maximum flow takesO(n2m) time

by Dinic’s algorithm1, where the flow network hasn nodes andm
edges. If a multi-separator-set containsc separator sets, finding the
multi-separator-set takesO(c � n2m) time.

But this is overestimate in practice, because Dinic’s algorithm
is iteration of finding an argumenting path on a flow network. In
Fig. 3 we raise or keep flow capacitance for all edges at Step 5.
Then, returning back to Step 3, we do not need to cancel the pre-
viously calculated maximum flow, but, get the new maximum flow
by finding argumenting paths along the edges, whose capacitance
we have raised. Thus, we conclude there is no big difference among
times for calculating a single separator set and a multi-separator-set.

3 Experimental Results

We have compared delay optimizing capabilities of our method
with Singh’s separator set[3] and selection function[1] methods.
Singh’s methods are implemented as “speedup -f ” and “speedup”
commands of SIS-1.2, respectively. We have implemented our
method on our logic synthesis platform “Magus”, which is written
in C++ and Tcl/Tk.

We have generated initial circuits, by area optimization and
timing-driven 2-input gate decomposition on SIS (script.rugged and
“speedup -i” command).

For all three methods, we have used a unit-gate-delay model for
delay estimation, a sum of literals for the optimization cost. A local
transformation has been a collapse-and-decomposition: collapsing
nodes in three levels and decomposing with two-cube-kernels in
timing-driven mode[6][3].

Our experimental results are shown in Table 1. The platform is
a Linux PC with Pentium II 400MHz, and 1GB memory. In the
table, “��Delay” and “�Lit” mean decrease in the circuit delay
reduction and increase in the number of literals, respectively.

For all circuits, our method has successfully terminated with rea-
sonable CPU time and delay reduction. But Singh’s separator set
method (speedup -f) has resulted in zero or too small delay re-
ductions, and the selection function method (speedup) has aborted
with three large circuits: s13207, s38417, and s38584. BDD’s for
the selection functions cannot be constructed even with 1GB mem-
ory. We have found speedup (SIS-1.2) does not use a good BDD
variable ordering for the selection function. Thus we have modified
speedup to use a depth first BDD variable ordering[7], and ob-
tained new results of Table 2. However, speedup still aborts with
s13207. A dynamic variable ordering might accomplish the circuit,
but it would take much more CPU time.

The maximum memory usage of our method has been 85MB
for s38417. Since memory usage of our method grows linearly, our
method can handle more than ten times larger circuits than speedup
with the same memory. This shows robustness of our method for
finding a selection set.

For almost all circuits, our delay reduction is the same or a little
bit better than speedup. We conclude capability of delay reduction
of our method is comparable to speedup.

But ours tends to take more CPU time than speedup. We think
two reasons. One reason concerns with an implement issue: our
method takes many iteration loops, so that it can obtain maximal
delay reduction. Another reason is our poor resolution procedure
for a conflicting selection set. The local transformation “collapse-
and-decomposition” may cause a conflicting selection set: i.e, two
or more than two local transformations in the same selection set can
not be applied simultaneously because their collapsed node sets are
overlapped to each other.

Algorithm finding a selection set (both of ours and speedup) as-
sumes all local transformations can be independently applied. Thus

1
n = 2�N+2,m = E+N , if the circuit hasN nodes andE pin-to-pin

nets

Initial Ours (Magus) Separator Set (speedup -f [3]) Selection Function (speedup[1])
Circuit Delay Lit ��Delay �Lit CPUy ��Delay �Lit CPUy ��Delay �Lit CPUy
C432 27 339 6 87 25 0 0 0.1 5 107 6251
C499 19 820 4 192 58 4 352 1.6 4 144 23
C880 35 684 17 317 138 6 64 0.6 15 219 133
C1355 19 820 4 192 58 4 352 1.6 4 144 23
C1908 30 812 8 234 156 3 168 0.7 7 143 26
C2670 20 1379 5 66 60 2 30 0.9 4 24 63
C3540 40 2222 9 68 200 3 68 1.4 9 53 434
C5315 32 2911 11 337 321 5 80 3.0 9 148 55
C6288 92 4962 30 1064 1075 0 0 1.7 21 169 364
C7552 35 3976 16 999 953 0 0 1.2 13 427 129
s13207� 31 5045 7 -75 228 3 42 4.8 Memory Overflow >1812
s15850� 38 6648 13 -188 390 3 95 6.5 13 126 8367
s35932� 11 16302 3 2460 776 0 0 24.7 2 2848 409
s38417� 26 23828 6 -2067 1306 0 0 10.9 Memory Overflow >858
s38584� 29 23178 7 -1348 1984 2 52 49.5 Memory Overflow >15937
� : Combinational logic extracted from a sequential circuit.
y : CPU time in seconds on Pentium-II 400MHz with 1GB memory.

Table 1: Results of Delay Optimization

a resolution procedure are needed for a conflicting selection set.
Our method employs a greedy heuristic: choosing the first local
transformation and canceling all the latter conflicting local trans-
formations.

On the other hand, speedup has a smarter resolution procedure:
when it finds a conflicting selection set, it makes a new selection
function by AND-ing the original selection function and negation
of the conflicting selection set (a function of a selection set is an
AND of all positive literals each corresponding to a local trans-
formation in the selection set). At next time to find a selection set,
optimum non-conflicting selection set should be obtained since pre-
viously found conflicting selection sets are disabled in the selection
function. But, this resolution procedure makes the BDD size of the
selection function much larger, and more likely results in memory
overflow.

speedup with BDD Var. Ordering
Circuit ��Delay �Lit CPU
s13207� Memory Overflow 1684
s38417� 4 -2081 495
s38584� 8 292 29740

Table 2: Results of Selection Function Method with Depth First
BDD Variable Ordering

4 Conclusions

In this paper we propose a new method of finding the optimum se-
lection set for re-synthesizing a large circuit. Our idea of a “padding
node” is simple, but a combination with a network flow algorithm
is very effective and robust. Comparing with Singh’s methods, our
method has reasonable capability in delay optimizing, and is much
more robust.

In our future work, we will investigate a smarter resolution pro-
cedure for conflicting selection sets. We also will evaluate our
method with technology dependent circuits.

References

[1] K. J. Singh, “Performance Optimization of Digital Circuits”,
PhD thesis, Univ. of California, Berkeley, 1992.

[2] R. E. Bryant, “Graph-based Algorithms for Boolean Func-
tion Manipulation”, IEEE Trans. on Computers, C-35, August
1986.

[3] K. J. Singh, R. K. Brayton, A. Sangiovanni-Vincentelli, “Tim-
ing Optimization of Combinational Logic”, Proc. of ICCAD-
88, pp. 282–285, 1988.

[4] H. Savoj, K. Xiang, K. Pan, and A. Domic, “Technology De-
pendent Timing Optimization”, Workshop Note of IWLS ’97,
Session 2–10, 1997.

[5] E. A. Dinic, “Algorithm for solution of a problem of maxi-
mum flow in a network with power estimation”, Soviet Math-
ematics Doklady, 11, pp. 1277–1280, 1970.

[6] J. Vasudevamurthy, J. Rajski, “A Method for Concurrent
Decomposition and Factorization of Boolean Expressions”,
Proc. of ICCAD-90, pp. 510–513, 1990.

[7] M. Fujita, H. Fujisawa, N. Kawato, “Evaluation and Improve-
ments of Boolean Comparison Method Based on Binary De-
cision Diagrams”, Proc. of ICCAD-88, pp. 2–5, 1988.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

