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Abstract
We present optimal solutions to the test scheduling problem for

core-based systems. We show that test scheduling is equivalent
to them-processor open-shop scheduling problem and is there-
fore NP-complete. However, a commonly-encountered instance of
this problem (m = 2) can be solved in polynomial time. For the
general case (m > 2), we present a mixed-integer linear pro-
gramming (MILP) model for optimal scheduling and apply it to a
representative core-based system using an MILP solver. We also
extend the MILP model to allow optimal test set selection from a
set of alternatives. Finally, we present an efficient heuristic algo-
rithm for handling larger systems for which the MILP model may
be infeasible.

1 Introduction
Embedded cores are being increasingly used in the design of

large systems-on-a-chip [6]. In order to reduce cost and time-to-
market, the testing time for a core-based system must be mini-
mized by scheduling tests for the cores, and by designing an ap-
propriate test access architecture. Most of the previous research
on core testing at the system level has focussed only on the de-
sign of efficient test access architectures [3, 6]. Test scheduling
for core-based systems has received much less attention. Given a
set of tasks (test sets for the cores), a set of test resources and a test
access architecture, test scheduling refers to the problem of deter-
mining start times for the tasks such that the total test application
time is minimized.

A number of test scenarios are possible for core testing at the
system level. The embedded cores may be tested using built-in
self test (BIST), external testing, or a combination of both. For
external testing, the test buses that are used for test access may be
shared among multiple cores. If BIST is used, then a core may
either be “BIST-ed”, in which case it has dedicated BIST logic, or
it may simply be “BIST-ready” without containing BIST pattern
generators and response monitors. In the latter case, the system
integrator may design BIST logic that is shared by multiple cores.
In order to minimize the testing time, the test resources in the sys-
tem (test buses, BIST logic) should be carefully allocated cores,
and the tests for the cores should be optimally scheduled.

Sugihara et al. [5] recently addressed the problem of selecting
a test set for each core from a set of test sets provided by the core
vendor and scheduling these tests in order to minimize the testing
time. Each test set consists of a subset of patterns for BIST and
a subset of patterns for external testing. This approach requires
the core vendor to provide multiple test sets for each core, with
the test sets containing varying proportions of patterns for BIST
and external testing. The scheduling problem is formulated as a
combinatorial optimization problem and solved heuristically. The
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authors make two restrictive assumptions (i) every core has its own
BIST logic, i.e. the BIST components of the test sets for any two
cores can be assigned identical starting times, and (ii) external test-
ing can be carried out for only one core at a time, i.e. there is only
one test access bus at the system level.

We formulate a generalized test scheduling problem that in-
cludes the problem addressed in [5] as a special case. The main
contributions of the paper are summarized below.
� We relate the general problem of test scheduling to the NP-

complete open-shop scheduling problem [2].
� We relate a special case of the scheduling problem to the

problem of open-shop scheduling with two processors, and
present a polynomial-time algorithm for it.

� Even though the scheduling problem is NP-complete, we
show that it can be solved exactly for realistic core-based
systems using mixed-integer linear programming (MILP).

� In order to handle larger systems, we present a heuristic
“shortest-task-first” algorithm.

A generic example of core-based systems that we consider is
shown in Figure 1. For corei, we assume that external test appli-
cation takesei cycles and BIST takesbi cycles. Note that in this
generic example, Cores 1 and 2 are BIST-ed while Cores 3 and 4
share BIST logic. Also, Core 5 is tested entirely using BIST, while
Core 6 is tested entirely using external patterns.

2 Polynomial-time algorithm
In this section, we consider a special case in which the core-

based system has only one external bus and BIST logic is shared
by all the cores. The test set for every core includes BIST and
external test components. Figure 2 illustrates a system with four
cores; the test lengths for BIST and external testing are also shown.
For example, Core 1 requires 125 cycles for external testing and
100 cycles for BIST.

We first show that the test scheduling problem is equivalent to
open-shop scheduling [2]. In open-shop scheduling, we are given
ashopconsisting ofm processors, a setJ of jobs, each jobj 2 J
consisting ofm taskst1[j]; t2[j]; : : : ; tm[j], and a lengthl(t) � 0
for each task. A schedule for anm-shop is a set ofm processor
schedules, one for each processor in the shop. These schedules
must be such that no job is processed simultaneouly on more than
one processor. Thefinish timeof a schedule is the latest comple-
tion time of the individual processor schedules. The objective in
open-shop scheduling is to minimize the finish time.

In order to establish equivalence between test scheduling for
core-based systems and open-shop scheduling, we view the test
sets for the cores as jobs. Each job consists of two tasks, cor-
responding to the external test and BIST components of the test
set, respectively. For the problem instance being considered in
this section,m = 2, i.e. there are two processors in the system,
corresponding to the external test bus and the BIST resource, re-
spectively. An optimal schedule, i.e. one with the least finish time,
guarantees the shortest testing time for the core-based system. We
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Figure 1. An example of a core-based system.
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Figure 2. An example of a core-based system with one
external test bus and BIST logic shared by all the cores.

can obtain efficient test schedules by exploiting the fact that the 2-
shop scheduling problem can be solved efficiently using anO(n)
algorithm, wheren is the number of jobs (cores) [2]. Figure 3 pro-
vides a pseudocode description of this algorithm. The external test
schedule is denoted by the listS1, while S2 denotes the schedule
for BIST. The symbol “k” is used to denote concatenation.

For the core-based system of Figure 2, optimal schedules for
external test and BIST are given byS1: 3124 andS2: 4312, re-
spectively, and the optimum testing time for this system is 825
cycles. An optimal schedule can be derived fromS1 andS2.

As another example, we consider a representative core-based
systemS consisting of six ISCAS benchmarks (cores). These cir-
cuits are known to contain random-pattern-resistant faults, hence
we use pseudorandom patterns for BIST as well as deterministic
patterns (applied externally) for the hard faults. Table 1 presents
the test data for each embedded core in this system. We as-
sume that the s5378 circuit contains 4 internal scan chains, while
each of the s1196 and s953 circuits contain a single internal scan
chain. We also assume without loss of generality that a 32-bit ex-
ternal test bus is used. Finally, we use the parametertest width
�i = maxfni;mig, whereni (mi) equals the number of inputs
(outputs) for corei.

Let ti be the number of (scan) patterns for corei. The number
of external test cycles required by corei, Ti = ti if �i � 32, and
Ti = (�i � 31)ti if �i > 32. If �i > 32 then serialization of the
test data is necessary at the inputs and/or outputs of corei. If the
test bandwidth is adequate, i.e.�i � 32, then no serialization is
necessary and corei can be tested in exactlyti cycles.

ProcedureSCHEDULE(fei; big)
begin
T1 := 0; T2 := 0; e0 := 0; b0 := 0; l := 0; r := 0; S := �;
/* e0 andb0 are dummy variables */
for i:=1 to n do /* system containsn cores */
begin
T1 := T1 + ei; T2 := T2 + bi
if ei � bi then

if ei � br then
S := S k r; r := i;

else
S := S k i;

else
if bi � el then
S := l k S; l := i;

elseS := i k S;
end

if T1 � al < T2 � br then
S1 := S k r k l; S2 := l k S k r;

else
S1 := l k S k r; S2 := r k l k S;

deletezeros(); /* Delete all occurrences of zeros fromS1 andS2 */
end

Figure 3. An optimal test scheduling algorithm.

No. of No. of No. of No. of
Circuit scan test external test BIST BIST
(core) i pi patternsti cycles patterns cycles
c880 1 13 13 377 4096 4096
c2670 2 79 79 15958 64000 64000
c7552 3 48 48 8448 64000 64000
s953 4 45 1379 28959 4096 217140
s5378 5 59 2759 60698 4096 389214
s1196 6 40 778 778 4096 135200

Table 1. Test data for the cores in SystemS.

For the combinational cores,1 � i � 3, the number of
scan test cyclesti is equal to the number of test patternspi.
However, for the remaining three cores with internal scan,ti =
(pi + 1)dfi=Nie + pi, where corei containsfi flip-flops andNi

internal scan chains.
For this example, the two schedule lists areS1: 162345 and

S2: 516234, respectively. This yields an optimum testing time of
1152180 cycles. Once again, an optimal schedule can be easily
derived fromS1 andS2.

3 Test scheduling: General case
While the special case of the scheduling problem discussed in

Section 2 can be easily solved using a linear-time algorithm, the
general case ofm > 2 corresponding to more than one BIST re-
source in the system is NP-complete [2]. In this section, we de-
velop a mixed-integer linear programming (MILP) model to solve
the test scheduling problem.

A typical MILP model is described as follows [4]:minimize
Ax+By subject toCx+Dy � E, x � 0, y � 0, where
A andB are cost vectors,C andD are constraint matrices,E is
a column vector of constants,x is a vector of integer variables,
andy is a vector of real variables. Eficient MILP solvers are now
readily available, both commercially and in the public domain. For
our experiments, we used thelpsolvepackage [1].

Let T = ft1; t2; : : : ; t2NC
g denote the start times of the set of

test patterns (external and (BIST) that must be applied to theNC

cores in the system. The start time of the external test setei for
corei is denoted byt2i�1 while the start time of the BIST test set
bi for corei is denoted byt2i. For notational convenience, we will
interchangeably useei (bi) and2i� 1 (2i) to refer to the external
(BIST) component of the test set of corei.



MinimizeC subject to:
1. C � ti + li, 1 � i � 2NC

2. xij(sij1 � sij2 � lj�ij1) + xij(sij3 � sij4 � li�ij2) � 0,
1 � i; j � 2NC

3. �ij1 + �ij2 = 1, 1 � i; j � 2NC

4. sij1 �M�ij1 � 0, M =

NCX

i=1

li, 1 � i; j � 2NC

5. �ti + sij1 � 0, 1 � i; j � 2NC

6. ti � sij1 +M�ij1 �M , 1 � i; j � 2NC

7. �ij1; �ij2 = 0 or 1,1 � i; j � 2NC .

Figure 4. MILP model forP1.

Let L = fl1; l2; : : : ; l2NC
g denote the corresponding test

lengths (number of cycles) for the test sets. Note that if the test set
for corei has no external test (BIST) component, thent2i�1 = 0
andl2i�1 = 0 (t2i = 0 andl2i = 0). Two test setsi andj overlap
if either (i) ti < tj + lj andti + li > tj , or (ii) tj < ti + li and
tj + lj > ti. If there is only one external test bus, the external
test components for the cores in any valid test schedule must not
overlap. Note also that test setsi andj do not overlap if and only
if either (i) ti � tj � lj � 0, or (ii) tj � ti � li � 0.

Two test sets areconflicting if they cannot be applied to the
system at the same time. Test sets can be conflicting if (i) they
share an external test bus, (ii) they are BIST test sets for cores that
share a BIST resource, or (ii) they are the external and BIST com-
ponents of a core’s test set. Clearly, there cannot be any overlap
between conflicting test sets, and conflicts are reduced if the cores
are assigned to multiple test buses.

The optimization problem (P1) that we address is the min-
imization of system testing time by optimally determining the
start timest1; t2; : : : ; t2NC

for the various test sets. Letxij ,
1 � i; j � 2NC , be a 0-1 variable defined as follows:xij = 1
if the test setsi andj are conflicting, andxij = 0 otherwise. We
first formulate the model forP1 in terms of nonlinear constraints,
and then linearize it using standard techniques.

Objective: Minimize the cost functionC = maxfti+ lig subject
to: xij(ti � tj � lj) � 0 or xij(tj � ti � li) � 0.

The above minmax nonlinear cost function can easily be lin-
earized [4] by minimizing the (real) variableC and adding the
constraintsC � ti + li, 1 � i � 2NC . To linearize the nonlinear
constraints, we introduce 0-1 “indicator” variables�ij1 and�ij2.
The optimization problem is now restated as:

Objective: Minimize the cost functionC subject to:
1) C � ti + li, 1 � i � 2NC .
2) xij�ij1(ti � tj � lj) + xij�ij2(tj � ti � li) � 0.
3) �ij1 + �ij2 = 1, 1 � i; j � 2NC .
4) �ij1; �ij2 = 0 or 1,1 � i; j � 2NC .

The constraint 2) above is still nonlinear. We linearize it by
replacingti�ij1 by the (real) variablesij1 andtj�ij1 by the (real)
variablesij2. Similarly, we replacetj�ij2 by sij3 andtixij2 by
sij4. For each such substitution, we add three additional con-
straints. For example, for the substitution ofti�ij1 by sij1, we
add: (i) sij1 � M�ij1 � 0, (ii) �ti + sij1 � 0, and (iii)
ti � sij1 +M�ij1 �M , whereM =

PNC

i=1
li is an upper bound

on ti. The resulting MILP model is shown in Figure 4.
We applied the MILP model of Figure 4 to the core-based sys-

tem described in Table 1 for several test scenarios corresponding to

varying amount of on-chip BIST resources. Note that the schedul-
ing complexity does not depend on the sizes of the cores—it de-
pends only on the number of cores in the system, and on the num-
ber of resource conflicts.

We assumed that the application of a BIST pattern takes one
clock cycle and external test application is ten time slower. We
solved the ILP models using a Sun Ultra 10 workstation with a
333 MHz processor and 128 MB memory. We were unable to
obtain actual CPU times fromlpsolve; however, the user time was
less than one minute in each case. The optimum testing time for
this system is 1152180 cycles, e.g. see Figure 5.
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Figure 5. Optimal test schedules: (a) cores have dedicated
BIST; (b) cores share BIST resources.
Since test scheduling is NP-complete, the amount of time re-

quired for larger systems may be excessive. In order to handle
such systems, we present a shortest-task-first heuristic scheduling
algorithm (Figure 6). It initializes the start times of the test sets
(tasks) to zero, and then iteratively updates the start times until
all test conflicts are eliminated. Form tasks, its worst-case time
complexity isO(m3).

The shortest-task-first algorithm yields a testing time of
1204630 cycles for the system of Table 1 when each core has its
dedicated BIST circuit. This is only 4.5% greater than the opti-
mum testing time of 1152810 cycles.

4 Test scheduling with multiple test sets
In this section, we select test sets for the cores from a set of

alternatives, and optimally determine their start times. While Sug-
ihara et al. [5] provide a heuristic solution and make the restrictive
assumption that the cores do not share BIST logic, our general
MILP model allows sharing of BIST resources among cores and
provides an exact solution.



ProcedureSHORTEST-TASK-FIRST(ftig)
begin
for i:=1 to m do /* there arem tasks */
start timei := 0;

while flag = 1 do
begin
flag = 0;
for i:=1 to m do

for j:=i+ 1 to m do
if xij = 1 then /* xij = 1 if i andj are conflicting */

if OVERLAP(i; j) then
begin
if start timei + li � start timej + lj then

start timei := start timej + lj ;
elsestart timej := start timei + li;
flag = 1; end

end
end

Figure 6. The shortest-task-first procedure.
Suppose we haveNi alternative test sets for corei in the sys-

tem. These test sets may contain varying proportion of BIST pat-
terns. We denote the test lengths for the BIST patterns for corei
by l2i;1; l2i;2; : : : l2i;Ni

. Similarly, we denote the test lengths for
the external patterns for corei by l2i�1;1; l2i�1;2; : : : ; l2i�1;Ni

. If
thekth test set is chosen for corei, then it consists ofl2i;k cycles
for BIST andl2i�1;k cycles for external testing.

We use the parameterxij and the variablesti, �ij1, and�ij2
(1 � i; j;� 2NC ) as defined forP2. In addition, we use a 0-
1 indicator variable�ik (1 � i � 2NC ; 1 � k � Ni), which
is set to 1 if thekth test set (consisting of BIST and external test
patterns) is selected for corei. We now develop the MILP model
for the optimization problemP2.

Objective: MinimizeC = maxfti +
PNi

k=1
�iklikg subject to:

1)
PNi

k=1
�ik = 1, 1 � i � 2NC

2) If i andj refer to the same core (i � j = 1 andi is even),
then�ik � �jk = 0, 1 � k � Ni

3)
PNi

k=1
�ik = 1, 1 � i � 2NC

4) xij�ij1(ti � tj �
PNj

k=1
�jklj;k) + xij�ij2(tj � ti �PNi

k=1
�ikli;k) � 0

5) �ij1; �ij2 = 0 or 1,1 � i; j � 2NC .
Once again, the minmax nonlinear cost function can easily be

linearized [4] by minimizing the (real) variableC and adding the
constraintsC � ti +

PNi

k=1
�ikli;k, 1 � i � 2NC . In order to

linearize constraint 4) above, we replace the product of 0-1 vari-
ables�ij1�jk by uij1k and�ij2�ik by uij2k, 1 � i; j � 2NC .
We also need six constraints for each such substitution [4]. The
resulting MILP model forP2 shown in Figure 7.

We applied the MILP model to the example of four 16-bit mul-
tiplier cores used in [5]. Figure 8 shows the test lengths and an
optimal selection of test sets (highlighted) for these cores; an opti-
mal test schedule requires 188 cycles.

5 Conclusions
We have presented optimal solutions to the test scheduling

problem for core-based systems. We have shown that test schedul-
ing is equivalent tom-processor open-shop scheduling, and is
therefore NP-complete. However, it can be solved in polynomial
time if all the cores in the system share BIST logic. For the gen-
eral case, we have presented a mixed integer linear programming
(MILP) model for optimal scheduling. We have also extended the

Minimize C subject to:

1. C � ti +
PNi

k=1
�ikli;k

2. xij(sij1 � sij2 �
PNj

k=1
lkuijk1) + xij(sij3 � sij4 �PNi

k=1
lkuijk2) � 0, 1 � i; j � 2NC

3. sij1 �M�ij1 � 0, M =

NCX

i=1

li, 1 � i; j � 2NC

4. �ti + sij1 � 0, 1 � i; j � 2NC

5. ti � sij1 +M�ij1 �M , 1 � i; j � 2NC

6. �ij1; �ij2 = 0 or 1,1 � i; j � 2NC

7. �ij1 + �ij2 = 1, 1 � i; j � 2NC

8. If i and j refer to the same core (i � j = 1 and i is even), then
�ik � �jk = 0, 1 � k � Ni

9. uijk1 = 0 or 1,1 � i; j � 2NC , 1 � k � Nj

10. uijk2 = 0 or 1,1 � i; j � 2NC , 1 � k � Ni

11. ��jk + uij1k � 0, 1 � i; j � 2NC , 1 � k � Nj

12. ��ij1 + uij1k � 0, 1 � i; j � 2NC , 1 � k � Nj

13. �jk + �ij1 � uij1k � 1, 1 � i; j � 2NC , 1 � k � Nj

14. ��ik + uij2k � 0, 1 � i; j � 2NC , 1 � k � Ni

15. ��ij2 + uij2k � 0, 1 � i; j � 2NC , 1 � k � Ni

16. �ik + �ij2 � uij2k � 1, 1 � i; j � 2NC , 1 � k � Ni

Figure 7. MILP model forP2.
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Figure 8. An optimal test selection for the multiplier cores.

MILP model to allow optimal test set selection from a set of alter-
natives. Finally, we have presented an efficient heuristic schedul-
ing algorithm for handling larger systems.
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