
Hierar,chical Dummy Fill for Process Uniformity *

Yu Chen, Andrew B. Kahngt, Gabriel Robinst and Alexander Zelikovskyl

Computer Science Department, UCLA, Los Angeles, CA 90095-1596
‘UCSD CSE and ECE Departments, La Jolla, CA 92093-0114

$Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
TDepartment of Computer Science, Georgia State University, Atlanta, GA 30303
yuchen@cs.ucla.edu, abk@cs.ucsd.edu, robins@cs.virginia.edu, alexz@cs.gsu.edu

Abstract- To improve manufacturability and per-
formance predictability, we seek to make a layout uni-
form with respect to prescribed density criteria, by
inserting “fill” geometries into the layout. Previous
approaches for flat layout density control are not scal-
able due to the necessity of solving very large linear
programs, the large data volume of the solution, and
the impact of hierarchy-breaking on verification. In
this paper, we give the first methods for hierarchical
layout density control for process uniformity. Our ap-
proach trades off naturally between runtime, solution
quality, and output data volume. We also allow gen-
eration of compressed GDSII of fill geometries. Our
experiments show that this hybrid hierarchical fill-
ing approach saves data volume and is scalable, while
yielding solution quality that is competitive with ex-
isting Monte-Carlo and linear programming based ap-
proaches.

I. INTRODUCTION

To improve manufacturability and performance pre-
dictability, modern design methodologies must make lay-
outs uniform with respect to feature density criteria, by
inserting “dummy fill” geometries into layouts. Accord-
ing to [I], the so-called Filling Problem may be defined as
follows:

The Filling Problem: Given a design rule-correct lay-
out in an n x n layout region, along with a window size
w < n, and upper (U) and lower (L) bounds on the fea-
ture density in any window, add dummy fill geometries to
create a filled layout such that either:

(Man- Var Objective) the variation in window density
(i.e., maximum window density minus minimum win-
dow density) is minimized while the window density
does not exceed the given upper bound U ; or

* This research was supported by a grant from Cadence De-
sign Systems, Inc., by the MARCO/DARPA Gigascale Silicon Re-
search Center, by a Packard Foundation Fellowship, by a National
Science Foundation Young Investigator Award (MIP-9457412), by
NSF grant CCR-9988331, and by a GSU Research Initiation Grant.

(Man-Fall Objective) the number of inserted fill ge-
ometries is minimized while the density of any win-
dow remains in the given range (L, U).’

Literature on dummy fill has focused on chemical-
mechanical polishing (CMP) of spin-on glass (SOG) inter-
layer dielectrics (ILD) [6] [S] [13]. Post-polish ILD thick-
ness variation is kept within acceptable limits by con-
trolling local feature density, relative to a process-specific
“window size” (on the order of 1-3mm), that depends on
CMP pad material, slurry composition, and other factors
[3]. We observe that the 1999 International Technology
Roadmap for Semiconductors [9] added copper intercon-
nect dishing to the fundamental roadmap parameters for
interconnect. (The 2000 ITRS will add copper intercon-
nect thinning in CMP to the fundamental parameters.)
So, density-mediated process variation has become a first-
order concern for interconnects.

Applications of dummy fill on device layers (diffusion,
poly, thin-ox) are equally (or more) critical. Isolated tran-
sistors are susceptible to contact overetch in reactive ion
etch (RIE) process steps, which results in leakage. Chem-
ical vapor deposition steps are also subject to iso-dense
variations. CVD and etch process variation are particu-
larly troubling with respect to today’s lightly-doped drain
(LDD) device properties. The complex effects of these
process variations are well-known, e.g., Garofalo et al.
[4] document 10% error in interline capacitance result-
ing from a 5% variation in linewidth, and 12% error in
ring oscillator frequency solely from proximity effects. At
the same time, it is also well-known that the uniformity
of feature density obtained via dummy fill can mitigate
macroscopic process proximity effects such as contact etch
variation in reactive ion etch, and nonuniformity of chem-
ical vapor deposition.

Dummy fill creates a number of critical flow issues, in-
cluding:

‘The Min-Var objective was introduced in [5], and captures the
“manufacturing side” of the Filling Problem by seeking the most
uniform density distribution possible. The Min-Fill objective was
introduced in [12], and captures the “design side” by seeking to min-
imize total coupling capacitance and uncertainty caused by dummy
fill. Minimizing dummy fill has the side benefit of reducing the
complexity of the output GDSII.

139 0-7803-6633-6/01/$10.00 02001 IEEE.

mailto:yuchen@cs.ucla.edu
mailto:abk@cs.ucsd.edu
mailto:robins@cs.virginia.edu
mailto:alexz@cs.gsu.edu

physical design and verification must understand
the dummy fill in order to estimate RC parasitics,
gate/interconnect delays, and even device reliability;
master cell and macro characterizations (perfor-
mance models) must be a priori compatible with later
insertion of dummy fill; and
dummy fill must be consistent with design hierarchy
SO as not to break verification or data caDacitv.

The first issue applies to dummy fill on interconnect
layers, which have non-hierarchical layouts (with excep-
tion of memories, and logic M1 with certain combinations
of cell library and router styles). The second issue can be
avoided by judicious “buffer distance” rules for dummy fill
insertion (i.e., dummy fill is restricted to locations where
it does not change electrical performance). In this paper,
we focus on the third issue: dummy fill generation that is
consistent with hierarchy-related requirements.

Hierarchy arises in both custom and semi-custom de-
sign flows. In custom design, hierarchy is mostly for
management of the decomposition of the design problem.
In semi-custom design, hierarchy is associated more with
reuse of standard cells, whose layouts include device layers
and local interconnect, or IP blocks. The key observation
is that hierarchical designs become difficult to verify when
flattened. Hence, hierarchical dummy filling can enable
simpler and faster verification of the filled layout, since
verification can still follow the original hierarchy. Hierar-
chical filling can also decrease data volume for standard-
cell designs. (In general, data volume is a big issue for
dummy fill since a filling solution can consist of many
millions of tiny geometries.) Thus, hierarchical fill gen-
eration is an emerging requirement for future commercial
EDA tools [lo].

Our present work investigates approaches and trade-
offs inherent in filling master cells rather than individ-
ual instances, We consider hierarchical filling as a post-
processing step performed (on device layers) after place-
ment. When router access to local interconnect (salicide)
and M1 layers is strongly restricted2 then hierarchical fill-
ing may be performed after routing as well. Hierarchical
filling faces obvious difficulties:

when dummy fill is inserted into a master cell, it must
satisfy density constraints in all contexts for instan-
tiations of the master;
there are many interactions or interferences at master
cell boundaries and at distinct levels of the hierarchy;
solution quality in terms of either the Min-Var or
Min-Fill objective will be worse for hierarchical solu-
tions than flat solutions, simply because the former
are more constrained; and
hierarchical filling explodes the number of constraints
in linear programming formulations, and thus cannot
use the LP techniques which have been successful for
flat filling [5] [12].

2E.g., Cadence and Avant! gridded routers are often restricted
to well-defined pin availabilities at points of the routing grid.

The main contribution of this paper is a new proposed
hierarchical filling algorithm which mitigates these draw-
backs. Our approach is based on hybridizing hierarchical
filling techniques with a flat filling postprocessor, in a way
that smoothly trades off (in a user-controlled manner) the
efficiency of the former with the accuracy of the latter.

The remainder of this paper is organized as follows.
Section I1 reviews the various models for density calcu-
lation for CMP and previous approaches for solving the
flat Filling Problem, including linear programming for-
mulations and the Monte-Carlo approach. We give the
formulation of the Hierarchical Filling Problem and our
proposed solution to it in Section 111. Finally, computa-
tional results of our proposed hierarchical fill approach, as
compared with results for flattened hierarchical designs,
are reported in Section IV.

11. PREVIOUS WORK ON DUMMY FILL SYNTHESIS

A computationally efficient model for CMP of oxide
planarization proposed in [8] is based on the determina-
tion of the effective initial pattern density, and is easy to
calibrate [ll]. An approach that unifies the two pattern
density definitions studied in [5] and [12], enables the ap-
plication of the same layout density control methods to
both scenarios [l] (the pattern density is a local property
and therefore depends a t each point on the neighboring
spatial pattern density).

A standard practice in discretizing the filling problem is
to consider only windows (i.e., floating rectangle region of
given size) from a fixed dissection. However, bounding the
effective density in w x w windows of a fixed dissection
can incur error, since other windows that are not part
of the dissection could still violate the effective density
bounds. Therefore, a common industry practice is to en-
force density bounds in r2 overlapping dissections, where
r determines the “phase shift” wfr by which the dissec-
tions are offset from each other. Thus, density bounds
are enforced only for windows of the fixed r-dissection
(see Figure l), in the hope that this would also control
the density bounds of arbitrary window^.^

The work of [3] considers the deformation of the polish-
ing pad during the CMP process, while [12] uses an ellip-
tical weighting fundion with experimentally determined
constants. A discretized effective local pattern density p
for a window Wij in the fixed-dissection regime (hence-
forth referred to as efjective window density) is defined in
[12] as: /

3The n x n-layout is partitioned into tiles Tz3, then covered by
w x w-windows Wij , i, j = 1,. . . , E - 1, such that each window Wij

consists of r2 tiles T k l , k = 2 , . . . , I C + T - 1, 1 = j,. . . , j + T - 1 (see
Figure 1). Windows are “wrapped around” the layout, e.g., windows
overlapping the upper (left) edge of the layout also containing tiles
at the bottom (right) of the layout, reflecting the fact that density
at the edge of one die may affect CMP of the die’s neighbor on the
wafer.

140

4
Y

Figure 1: The fixed dissection approach: a layout
is divided into r2 (r = 4) distinct dissections (each
with window size w x w), into z x 5 tiles. Each
w x w window (dark) consists of r2 tiles, and pairs
of windows from different dissections may overlap.

a+r-1 j+r - l

p(WZj) = area(T~l).f(Ic-(i+r/2), 1 - (j+~/2))
k=a 1=j

where the arguments of the elliptical weighting functio6l)
are the x- and y-distances of the tile Tk1 from the center
of the window Waj . More recently, the authors of [12]
suggested a more accurate model that takes into account
the influence of density variation in lower layers of a layout
on the density variation in the upper layers.

Previous algorithms for generating flat dummy fill can
be classified into two categories: linear-programming
(LP) based approaches [5] [12], and Monte-Carlo based
methods [l] [2].

The first linear programming formulation for the Min-
Var objective was suggested in [5] , where for each tile the
computed fill amounts are constrained to not exceed the
actual area available for filling (slack), which is computed
during density analysis. The Min-Fill objective for the
Filling Problem corresponding to the Ranged Variation
LP formulation was proposed in [12]. Although an LP
solution is optimal, it has several drawbacks: (1) solving
a large LP is too time consuming (e.g., the runtime is
O(r6) since the number of variables and the number of
constraints in the LP are both O ((z) 2)) ; (2) the optimal
solution for a given number of dissections is not neces-
sarily the optimal solution for other dissections, and in
general may result in a high floating window density vari-
ation; and (3) when the tile size is sufficiently small the
problem becomes an instance of integer programming and
rounding errors become crucial.

A Monte-Carlo method for the Min-Var objective was
introduced in [2]. The Min-Var Monte-Carlo algorithm
chooses a tile and increments its density by a prescribed
fill amount, and this is repeated until the density of all
tiles exceeds the lower bound threshold. This process is

efficient, but has the drawback that it may insert an ex-
cessive amount of fill. This problem can be mitigated
by a Man-Fill Monte-Carlo approach, which attempts to
maintain the lower bound L on window density by itera-
tively deleting filling geometry from tiles [2]. The iterated
Monte-Carlo method alternates the Min-Var and Min-Fill
objectives, which tends to monotonically narrow the gap
between the minimum and maximum window densities.
Such an iterated approach is reasonably fast as well as
accurate, thus retaining the advantages of its non-iterated
counterparts. However, this method is still beset by the
large data volume problem associated with flat fill ap-
proaches.

While LP based algorithms are highly accurate, they
tend to be slow due to the large number of variables. For
flat layouts, Monte-Carlo methods are faster than LP ap-
proaches, although typically less accurate [l] [2].

111. THE HIERARCHICAL FILLING PROBLEM

The filling problem for hierarchical (standard-cell) lay-
outs is similar to its counterpart for flat layouts, except
that the hierarchical structure of master cells must be pre-
served, i.e., the same filling geometry is simultaneously
added to all instances of the same master cell. Here, we
assume that we can fill the slack area of each master cell
independently and uniformly, as is the case when the size
of fill geometries is sufficiently small.

The Hierarchical Filling Problem: Solve the Filling
Problem for a given standard-cell layout so that:

0 Filling geometries are added only to master cells;
0 Each cell of the filled layout is a filled version of the

0 The increase in (hierarchical) layout data volume

The above constraints make the LP approach for hierar-
chical filling problem infeasible. Instead of using O((z)2)
variables and constraints corresponding to each tile and
window in the LP formulation for flat fill, we must de-
fine the variables and constraints for each window, each
master cell instance, and all feasible fill positions for each
master cell and window combination. This will greatly
increase the number of variables and constraints (since
the number of grids is much larger than the number of
tiles). The LP formulation will furthermore be compli-
cated by the transformations of master cell instances and
the overlaps between the instances. Based on these con-
siderations, Monte-Carlo method becomes the only feasi-
ble approach for the hierarchical filling problem.

Our proposed hierarchical filling algorithm (see Figure
2) starts by computing the slack for all master cells (cell
overlaps are possible and must be addressed carefully, as
detailed below). We then create buffer zones around mas-
ter cells to avoid overfilling the regions near master cell

corresponding original master cell; and

does not exceed a given threshold.

141

boundaries. Master cells are then filled in a Monte-Carlo
fashion, according to a priority scheme where master cells
that are more severely underfilled receive higher priority
for filling at each iteration. This process continues un-
til all master cells are filled past the lower bound density
threshold or the slack in all underfilled master cells is ex-
hausted.

Monte-Carlo Hierarchical Fillin Alg orithm
Input:Aierarchical-fixed-§ion, buffer

distance, w x w window, upper bound U on . _ _
window density

Output:-HierarchiFal layout with filled master cells
1. For each Master Cell M ; in the lavout Do
2. Partition the Master Ckll Mq actordina to the

iven rid size

Mark fhe status of erid “OccuDied” if it is

v

3.
4.

fior a f rids in the Master Cell Do

covered by the orinrnal featuris
or the sub Master-Cell

5. For all instances Ij.of the Master Cell Mi Do
6. If the instance Ij is overlapped with features

or instances of other Master Cells Then
7. Update the status of rids which are covered
8. Calculate the Drioritv of the Master Cells
9. While the s u m of priority > 0 Do

10.

11.

12.

13.

14. Discard the insertion
15. Lock slack grid position
16.

Use the Monte-Carlo method to select one
Master Cell Mi
Randomly select a slack grid position in
the master cell
For each corresponding position of the grid
in all instances of the Master Cell Mi Do

If the insertion causes any window density
to exceed the upper bound U Then

Go over all other grids in master cell covered
bv the exceeded window and lock them

17. Else
18.
19.
20.

Increase the fill area of the Master Cell
Add the fill geometry into the Master Cell
Update the relevant windows’ densities

Figure 2: Monte-Carlo Hierarchical Filling Algorithm.

A. Slack Computation for Hierarchical Layouts

For each master cell, dummy fill may be inserted only
into the slack (i.e., free) area of a master cell, not into its
subcells. Computing the slack of a master cell proceeds by
first determining the number of grid positions inside the
bounding box of the master cell, while excluding all posi-
tions that overlap with either a “bloated” feature (Le., a
forbidden buffer zone around each feature) or a “bloated”
subcell. However, slack area computation is complicated
by the fact that instances of master cells may overlap.
Such overlaps can occur between the master cell instance
and the features, or between two or more master cell in-
stances (see Figure 3). In general, overlaps may have a
very complicated structure. We distinguish the following
cases:

(1) The overlap between a master cell instance and a
feature.

(2) The overlap between two instances of different master

(3) The overlap between more than two instances of dif-

(4) The overlap between two or more than two instances

For each region of master cell overlap we must deter-
mine which master cell “owns” that intersection region.
In other words, it is necessary to assign the space available
for filling to the slack of a single master cell. We resolve
the LLownershipl’ problem by fixing an order of all mas-
ter cells starting from the global master cell (containing
entire layout) down to individual features. The hierar-
chy can be represented as the acyclic directed graph H
with the set of nodes consisting of all master cells and
individual features. The graph H has an arc from the
master cell A to the master cell or the feature B if B
participates in the definition of A. The topological order
of the graph H is an order of its nodes in which the be-
ginning of any arc is later than its end in respect to this
order. The topological order of the graph H is obtained
by breadth-first-search traversing of H starting from the
global master cell. The containment-based topological or-
dering of the hierarchy corresponds to the topological or-
der of the graph H . Then no master cell later in the order
may use in its definition master cells appeared earlier in
the order. Every time when we have an intersection of
master cell instances, we check which of the master cells
appears later in the topological order and assign the in-
tersection area to this master cell. This way we correctly
resolve the overlap cases (1-3). Unfortunately, the case
(4) cannot be resolved in this manner because hierarchy
cannot distinguish different instances of the same master
cell. Thus, we exclude the overlapping regions from the
slack of the master cell thus leaving the them unavailable
for fill.

cells.

ferent master cells.

of the same master cell.

Figure 3: Computing master cell intersections: the
dark features and patterned subcells may either com-
pletely or partially overlap with a given master cell.

B. A Hybrid Hierarchical / Flat Filling Approach

Pure hierarchical filling may tend to result in some
sparse or unfilled regions (e.g., due to overlaps between
different instances of master cells and features or due to
the interactions among the “bloat” regions around master

142

cells), which could yield an unacceptably high layout den-
sity variation. A natural and simple solution is to apply
a post-processing “cleanup” phase, i.e., apply a standard
flat fill algorithm to the output of the hierarchical phase.
However, a purely flat fill approach, even when applied as
a secondary post-processing phase, may greatly increase
the resulting data volume and runtime, negating the ben-
efits of using a hierarchical approach in the first place.

We propose a new algorithm for mitigating this draw-
back, by combining hierarchical filling techniques with
a flat filling approach, in a way that smoothly trades
off the respective efficiency and accuracy of these two
approaches. In our proposed method, varying a user-
controlled parameter yields a smooth tradeoff among so-
lution quality, data volume, and runtime, as confirmed
by our computational experience. Our three-phase hybrid
hierarchical-flat filling approach is summarized as follows:

1. A purely hierarchical fill phase; followed by
2. A split-hierarchical phase, where certain master cells

that were deemed to be underfilled in phase 1, would
be replicated so that distinct copies of the same mas-
ter cell may be filled differently than other copies of
the same master cell; and finally,

3. A flat fill “cleanup” phase (say, Monte-Carlo based),
which will fill any remaining sparse or unfilled regions
that were not processed satisfactorily during the first
two phases.

The overall goal with this strategy is to quickly fill as
much of the layout as possible in phases 1 and 2 while
keeping the fill output data volume relatively low, and
then further improve and tune the resulting filled layout
using a flat filling approach in phase 3 on the (presumably
small number of) remaining sparse or unfilled areas.

In particular, phase 2 consists of repeatedly splitting
master cells located in regions which were determined to
be underfilled during phase 1, as follows. Given a top-
down containment-based topological ordering of the n
master cells, i.e. C1, C2, C3, . . . , Cn-2 , C,-l, C,, where
a master cell Ci can only contain master cell Cj iff i < j ,
a master cell Ci may be split into two master cells Ci,l
and Ci,2 and any Cj containing master cell Ci is then
modified to point to either the copy Ci91 or Ci,2 (say,
randomly chosen). More generally, rather than perform-
ing only two-way splits, we can perform k-way splits (see
Figure 4).

Varying the parameter IC (which controls the split fac-
tor) from 1 (pure hierarchical) to infinity (pure flat),
yields a smooth tradeoff between solution quality, data
volume, and runtime. As k is increased, the solution qual-
ity asymptotically approaches that of flat fill. If the result
of hierarchical filling does not satisfy the technological
constraints, then we recommend foregoing the original hi-
erarchy in favor of a more uniform filling. This can be
implemented by storing in the original cell library differ-
ent filled versions of each master. Such a scheme will not

necessarily slow down verification, since having fixed per-
manent structure, they can be “pre-verified” , and thus
dramatically improve the uniformity of hierarchical filling
without a large runtime increase.

orithm k-Way Master Cell Spl itting Alg
Input: Kerarchical layout, and a spIitting parameter k
OutDut: New hierarchical layout with new copies

of master cells
For i = 1 to n Do

Create k new copies of Ci, namely Ci,llCi,z, ... Ci,k
For an master cell C’ containing in the master cell c; I30

For all 1 5 j 5 k Do
put an arc from the master cell Ci,j to C’

For any master cell C which contains master cell Ci Do
Replace Ci inside C with copy Ci,j for
random j, 15 j 5 k
In hierarchy H , replace the arc (C, Ci) with (C, Ci,j)

Output resulting new hierarchical layout

Figure 4: Improving the hierarchical filling approach by
splitting master cells k-ways: each master cell is replaced
with k distinct masters, each of which may be filled inde-
pendently and differently.

Following the approach of [l], our implementation has
the following capabilities: grid slack computation; dough-
nut area computation; wraparound window density anal-
ysis and synthesis; and compressed fill insertion.

IV. COMPUTATIONAL EXPERIENCE

Our experimental testbed integrates GDSII Stream in-
put and internally-developed geometric processing en-
gines, coded in C++ under Solaris. Our experiments were
performed using part of a metal layer extracted from hi-
erarchical GDSII from an industry custom-block layout.
Table 1 lists the attributes of our three test cases, i.e.,
layout size and number of rectangle^.^

I Test Cases I

Table 1: Parameters of test cases.

Table 2 compares the minimum window density, data
volume (i.e., the number of fill geometry references in the
resulting GDSII output file), and the number of dummy
fill features (i.e., the number of fill geometries on the re-
sulting layout after flattening) for five heuristics: (i) hi-
erarchical, (ii) flat, (iii) 2-way splitting, (iv) hybrid of
hierarchical and flat, and (v) hybrid of the hierarchical,
splitting and flat approaches. For each test case, we ran

41n the given coordinate system, 40 units is equivalent to 1
micron.

143

all the five filling heuristics on both the spatial density
model and the effective density model, with the window
density upper bound equal to the original maximum win-
dow density.

H+S+F
Flat

. _..

4374 I17500 I 0.421 I/ 7234 120829 I 0.383
13974 1 13974 I 0.527 11 23415 I23415 1 0.443

Testcaw 3
OrgLayout

Hier
H+F
H+S

~ ._.. ~ _ _ -

0.000 0.091
4995 22566 0.071 4449 20320 0.157
7472 25043 0.532 9461 25332 0.371
9690 23622 0.102 8575 22990 0.159

H+S+F 1 1 12212 I26144 I 0.540 11 13285 I25700 1 0.394
Flat 11 17695 117695 I 0.547 11 31204 I31204 I 0.483

Table 2: The Hierarchical, Flat and Hybrid Filling Ap-
proaches. Notation: OrgLayout: original layout; Spatial
Den: spatial density model; Effective Den: effective den-
sity model; data: data volume, i.e., the number of fill
geometry references in resulting GDSII output file; # fill:
number of real dummy fill features on the resulting lay-
out; MinDen: minimum window density of the layout;
Hier: hierarchical filling approach; H+F: hierarchical +
flat filling approach; H+S: hierarchical + 2-way master
cell splitting filling approach; H + S f F : hierarchical + 2-
way master cell splitting + flat filling approach; Flat: flat
filling approach.

Table 2 indicates that the Flat Monte-Carlo approach
obtains the best-quality result (i.e., highest minimum den-
sity) but results in the largest data volume. On the other
hand, the Hierarchical Monte-Carlo approach saves on
data volume but yields low-quality results. The hybrids
of hierarchical and flat fill approaches produce substan-
tially improved results, with only a modest increase in
data volume. Finally, we observe that the IC-way Master
Cell Splitting approach smoothly trades off between per-
formance and data volume, i.e., it provides better results
than the pure Hierarchical Fill approach and less data
volume than the pure Flat Filling approach.

v. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we have addressed the hierarchical filling
problem in layout density control for CMP uniformity. We
presented a practical approach to hierarchical fill synthe-

sis, which trades off runtime, solution quality, and output
data volume. Distinct copies of a master cell are allowed
to be filled differently, which improves the solution quality
in a user-controlled manner. Our system also generates
filling geometries in compressed GDSII format, which re-
duces the resulting fill data volume. Experiments indi-
cate that this new hybrid hierarchical filling approach is
scalable, efficient, and highly competitive with previous
Monte-Carlo and LP-based methods.

Ongoing research includes developing alternate pure-
hierarchical filling heuristics, and developing more robust
hierarchy manipulators for in-memory layout representa-
tions, in order to enable smoother tradeoffs between solu-
tion quality and data volume. We also seek to make our
fill solutions reusable, so that fill solutions can be stored
in a library along with the master cells, and would not
have to be recomputed from scratch in cases where a cell
is used in a context that has different density constraints.
However, the reusability methodology can be only applied
to master cells which are neither overlapped with other
master cells, nor routed over. One way of achieving such
“unrollable” solutions is to produce and store a fill solu-
tion in a “monotone” manner, so that successively longer
prefixes of a fill solution would still constitute valid fill
solutions in lower density contexts.

REFERENCES
[l] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “Practi-

cal Iterated Fill Synthesis for CMP Uniformity”, Proc. Design
Automation Conf., June 2000, pp. 671-674.

[2] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “New
Monte-Carlo Algorithms for Layout Density Control”, Proc.

[3] R. R. Divecha, B. E. Stine, D. 0. Ouma, J . U. Yoon, D. S.
Boning, et al., “Effect of Fine-line Density and Pitch on In-
terconnect ILD Thickness Variation in Oxide CMP Process”,
Proc. CMP-MIC, 1998.

[4] 3. G. Garofalo, J. Q. Zhao, J . Blatchford and E. Nease, “Ap-
plications of enhanced optical proximity correction models”,
Proc. SPIE Optical Microlithography X I , SPIE Vol. 3334, Feb.
1998.

[5] A. B. Kahng, G. Robins, A. Singh, H. Wang and A. Zelikovsky,
“Filling Algorithms and Analyses for Layout Density Control”,
IEEE Trans. Computer-Aided Design 18(4) (1999), pp. 445-
462.

[6] H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman, et al.,
“Integration of Chemical-Mechanical Polishing into CMOS In-
tegrated Circuit Manufacturing”, Thin Solid Films 220(20)
(1992), pp. 1-7.

[7] W. Maly, “Moore’s Law and Physical Design of ICs”, (special
address), Proc. ISPD, 1998.

[B] G. Nanz and L. E. Camilletti, “Modeling of Chemical Mechan-
ical Polishing: A Review”, IEEE Trans. on Semiconductor
Manufacturing 8(4) (1995), pp. 382-389.

[9] International Technology Roadmap for Semiconductors, Dec
1999, www.itrs.net/l999-SIA_Roadmap/Home.htm

[lo] J. Rey, personal communication, 2000.
[ll] B. Stine, “A Closed-Form Analytical Model for ILD Thickness

Variation in CMP Processes”, Proc. CMP-MIC, 1997.
[12] R. Tian, D. Wong, and R. Boone, “Model-Based Dummy Fea-

ture Placement for Oxide Chemical-Mechanical Polishing Man-
ufacturability” Proc. Design Automation Conf., June 2000, pp.

[13] M. Tomozawa, “Oxide CMP Mechanisms”, Solid State Tech-

ASP-DAC, 2000, pp. 523-528.

667-670.

nology 40(7) (1997), pp. 169-175.

144

