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Abstract
We describe a simulation-based test generation procedure for
scan designs. A test sequence generated by this procedure con-
sists of a sequence of one or more primary input vectors embed-
ded between a scan-in operation and a scan-out operation. We
consider the set of faults that can be detected by test sequences
of this form, compared to the case where scan is applied with
every test vector. The proposed procedure constructs test
sequences that traverse as many pairs of fault-free/faulty states
as possible, and thus avoids the use of branch-and-bound test
generation techniques. Additional techniques are incorporated
into this basic procedure to enhance its effectiveness.

1. Introduction
Simulation-based test generation procedures were shown to be
effective in achieving high fault coverages for both combina-
tional and synchronous sequential circuits [1]-[12]. Simulation-
based procedures have the advantage that they can be modified
relatively easily to consider various levels of circuit description
and various fault models. This can be done by replacing the logic
and/or fault simulation procedures embedded in them with the
appropriate procedures that handle the circuit description or fault
model of interest. In addition, these procedures avoid the need
for complex test generation procedures based on branch and
bound. The procedures of [1]-[12] can be classified into proce-
dures based on randomized and directed searches [1], [9], proce-
dures based on genetic optimization [2]-[8], and procedures
based on circuit properties [10]-[12]. The procedure described in
this paper belongs to the class of property-based procedures. It is
different from previous procedures in this class in that it targets
scanned circuits with full or partial scan.

In the proposed procedure, a test sequence consists of a
scan-in vector followed by one or more primary input vectors.
The sequence ends with another scan operation to observe values
of state variables (and possibly scan in the scan-in vector of the
next test sequence). Between the two scan operations of a test
sequence, flip-flop values are determined through the combina-
tional logic of the circuit, without using any additional scan
operations. Thus, even for full-scan circuits, the procedure may
apply several consecutive primary input vectors without using
the scan chain. This contributes to at-speed testing of the circuit.

After a scan-in operation, the values of the scanned flip-
flops are known. Values of non-scanned flip-flops are assumed
to be unknown. This allows us to accommodate the situation
where the non-scanned flip-flop values cannot be maintained
during scan. It also allows us to apply the generated test
sequences in any order.
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We use several techniques used in earlier simulation-
based test generation procedures, and adopt them to handle scan-
based circuits and test sequences. The techniques we use include
the following. (1) Traversing as many different circuit states as
possible. This was used in the logic simulation-based procedure
LOCSTEP[10]. (2) Generating a test sequence based on the
fault free circuit and a faulty circuit in the presence of one yet-
undetected fault. This was used inACTIV − LOCSTEP[11]. (3)
Repeating a primary input vector several times. This technique
was introduced in [13], and used in the simulation-based test
generation procedurePROPTEST[12] for non-scan circuits. (4)
Static test compaction. This was used inPROPTEST[12] to
improve the fault coverage of existing sequences.

The proposed procedure is unique in the way it combines
these techniques, and in the fact that it targets full or partial scan
circuits. In addition, we consider the following issues.

Instead of the test application process we assume in this
work, it is possible to assume that the output of a scanned flip-
flop becomes a primary input of the circuit, and the input of a
scanned flip-flop becomes a primary output of the circuit. This
implies that scan is applied with every primary input vector to
control and observe the states of the scanned flip-flops, while
holding the values of the non-scanned flip-flops so that they do
not change. For partial scan circuits, we show in this work that a
fault, which is detectable if scan is used with every primary input
vector, may not be detectable if scan is used only at the begin-
ning and at the end of the test sequence. This observation is
important since it establishes that a different upper bound on
fault coverage may exist depending on the test generation and
test application methods used. Nevertheless, we use the test
application scheme where a single scan-in and a single scan-out
operation are used with every test sequence, since it requires sig-
nificantly lower test application times, and it removes the need to
hold non-scanned flip-flop states. Many commercial test genera-
tors for partial scan circuits also make a similar assumption on
test application.

In some cases, test application may be simplified if the
primary input sequences contained in the different test sequences
are of a small number of different lengths. We take this into
account indirectly, by applying a static compaction procedure to
reduce the total number of test sequences. It is also possible to
achieve this goal by modifying the proposed procedure.

The paper is organized as follows. In Section 2 we dis-
cuss the dependence of the detectable fault set on the test
sequence format. In Section 3 we describe the basic procedure
for generating test sequences that traverse new states. In Section
4 we add to the basic procedure of Section 3 a method to extract
test sequences for additional faults out of the existing test
sequences. We also add a compaction procedure that reduces the
test length, and at the same time potentially increases the number
of detected faults. Experimental results are given in Section 5.
Section 6 concludes the paper.
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2. Detectable faults
A test sequence we consider consists of a scan-in operation that
specifies the values of the scanned flip-flops, followed by pri-
mary input vectors applied without using scan. The values of the
scanned flip-flops are then scanned-out. A different test applica-
tion scheme consists of the use of scan with every primary input
vector.

For full scan circuits, every combinationally detectable
fault can be detected with either one of the test application
schemes above. This can be achieved using a test sequence that
consists of a single primary input vector embedded between a
scan-in and a scan-out operation. Such a test sequence is applica-
ble under both test application schemes. For partial scan cir-
cuits, it may be necessary to use test sequences consisting of
more than one primary input vector in order to detect some
faults. As a result, some faults that can be detected when scan is
applied with every primary input vector may not be detectable if
scan is used only at the beginning and the end of the test
sequence. The following example demonstrates such a case. We
use three-value simulation for this example.

Table 1: An example fault

Y1Y2, z
y1y2 I = 0 I = 1
00 11,0 10,0
01 00,0 01,0
10 10,0 11,0
11 01,0 00,1/0

Consider the circuit whose state table is shown in Table 1.
The fault under consideration changes the primary output value
in state 11 under input 1 from 1 to 0 (shown as 1/0 in Table 1).
Suppose thaty2 is scanned. Using scan with every primary input
vector, it is possible to detect the fault as follows.
1. Sety1 = x. Scan in the valuey2 = 0, and apply the primary
input value 0. The next state isy1 = 1.
2. Scan iny2 = 1 (bringing the circuit to state 11), and apply the
primary input value 1. The primary output will be set to 1 in the
fault free circuit, and to 0 in the faulty circuit. The fault is thus
detected.

Next, we consider the same fault, this time assuming that
scan will be used only at the beginning and the end of the test
sequence. The following assignments are possible.
1. It is possible to scan iny2 = 0, or y2 = 1. With y1 = x and
y2 = 0, the next value ofy1 is 1 and the next value ofy2 is
unknown. This is independent of the input value. Withy1 = x
and y2 = 1, the next value ofy1 is 0 and the next value ofy2 is
unknown, again, independent of the input value.
2. From state 1x or 0x, the next state isxx independent of the
input value (the test application scheme prevents us from setting
the value ofy2 using scan). From statexx, the circuit cannot be
brought to state 11 where the fault can be detected.

The example above shows that the fault coverage
expected for partial scan circuits using test sequences that per-
form scan only at the beginning and the end of a test sequence is
lower than the fault coverage expected for the same circuits
when scan can be used at any time unit. Note that to detect the
fault using scan at every time unit requires holding the state of
the non-scanned flip-flops during scan. In many partial scan
designs this may not be possible.

3. Test sequences traversing new states
In this section, we describe the generation of test sequences that
traverse new states. The proposed test generation procedure per-
forms several iterations. In each iteration, test sequences are gen-
erated using the fault free circuit and the faulty circuit in the
presence of a single target faultf . The goal of test generation is
to take the fault free and faulty circuits through as many different
states as possible, without repeating any state in a single itera-
tion. The proposed procedure is different fromLOCSTEP[10]
and other procedures proposed earlier in several ways.
(1) The proposed procedure never repeats a state in the same
iteration. An iteration terminates when the procedure cannot
reach a new state. InLOCSTEP, states may be repeated, and
there are several heuristics that control the way in which states
are repeated. This difference is related to the fact thatLOCSTEP
was developed for non-scan circuits, whereas here, we are inter-
ested in circuits with scan. When scan is available, it is possible
to scan-in a new state even if one cannot be reached by applying
primary input vectors. In addition, it is possible to observe fault
effects through scan. Consequently, it is not necessary to tra-
verse previously-visited states in order to achieve these goals.
The scan option is not available toLOCSTEP, and consequently,
it must continue applying input vectors in order to reach new
states and propagate fault effects even if these input vectors do
not result in new states during one or more time units.
(2) LOCSTEPconsidered only the fault free circuit. Here, we
use a single target fault per iteration, and consider the combined
fault-free/faulty state. This speeds up the detection of target
faults, at the cost of doubling the simulation effort in generating
a test sequence.ACTIV − LOCSTEPalso considered the fault
free circuit and one faulty circuit. However, it imposed stricter
requirements on the test sequences it generated by requiring that
the target fault would be activated, and that the fault free circuit
would go into a cycle. Here, we only require that the circuits
would go into new states with every additional vector.
(3) It was observed in [13] and later in [12] that input sequences
where input vectors appear repeatedly are effective in achieving
high fault coverages for non-scan circuits. We also allow input
vectors to be repeated. However, in [12] and [13], the numbers
of repetitions were either predetermined, or determined ran-
domly. Here, we allow an input vector to be repeated only as
long as it allows us to reach new states.

We use the following notation to describe the proposed
procedure. Thei-th test sequence generated in a particular itera-
tion is denoted byTi . The primary input vector at time unitu of
Ti is denoted byTi (u). The length ofTi is denoted byLi . The
sequence of states the circuit traverses underTi is denoted bySi .
The state at time unitu of Si is denoted bySi (u). The initial state
Si (0) always leaves the non-scanned state variables unspecified.
The values of the scanned state-variables are assigned by scan-
ning them in. Each stateSi (u) consists of a fault free state
Sff

i (u), and a faulty stateSfy
i (u). We haveSi (u) = Sff

i (u)/Sfy
i (u).

During the generation of test sequencesT1, T2, . . . , Tm in
a particular iteration based on a single target faultf , we ensure
that Si (u) does not cover any stateSj (v) such thatj < i or v < u.
An example of two test sequences that satisfy this condition is
shown in Table 2. The sequences are generated using the same
target fault f . In this example, the circuit has four inputs and
three state variables. The first two state variables are scanned.
This third one is not scanned, and it therefore assumes unspeci-
fied values at time unit 0 of every sequence. Considering the



-- --

states by increasing time unit and increasing sequence index, it
can be seen that none of the states covers a state that appears
before it. State S2(2) = 000/000 is covered by state
S1(0) = 00x/00x, however, we allow this relationship sinceS2(2)
has more specified values thanS1(0) that was reached earlier.

Table 2: An example of test sequences with new states

u T1(u) S1(u) u T2(u) S2(u)
0 1111 00x/00x 0 1110 11x/11x
1 0100 100/xx0 1  0011 100/100
2 1100 001/0x0 2  0011 000/000
3 101/100 3 010/010

Procedure 1 below describes the generation of test
sequences in an arbitrary iteration with a target faultf . In Pro-
cedure 1,Ψ is the set of states traversed by the generated test
sequences, andT is the set of test sequences generated so far.
Initially, Ψ = φ andT is the set of sequences generated in previ-
ous iterations. For the first iteration,T = φ andi = 1.

An initial state for a new test sequence is selected in Step
2. The state is selected by randomly generatingNRAND states, and
checking whether one of them is new with respect toΨ. If no
new state can be found, the procedure terminates.

A new input vector is added toTi in Step 4. The input
vector is selected out ofNRAND input vectors. The first input vec-
tor considered is the same as the previous vector inTi , if it
exists. Otherwise, the vector is randomly set. A vector is
selected if it brings the circuit into a new state. Construction of
Ti stops if none of the vectors brings the circuit into a new state,
or when the length ofTi reaches a preselected bound,L.

If construction ofTi stops before its length reachesL, we
add one more vector toTi . This allows us to take advantage of
the last state ofTi , in case this state contributes to the detection
of any fault.

The procedure terminates when the number of sequences
in T reaches a boundNSEQ, or in Step 2 when no new initial state
can be selected. Thus, at mostNSEQ sequences are generated in
an iteration. This number may be lower ifT is not empty at the
beginning of Procedure 1, or if no new initial states can be
selected before the number of sequences inT reachesNSEQ.
Procedure 1:Generation of test sequences for a target faultf
(1) Set Ψ = φ . Let T = { T1, T2, . . . , Tm} be the set of test

sequences generated so far. Seti = m + 1 (the index of
the next sequence to be included inT).

(2) Forr = 1, 2,. . . , NRAND:
Select a stateS where the non-scanned state vari-
ables are unspecified, and the remaining state
variables are set randomly. IfS/S does not cover
any state inΨ, setSi (0) = S/S, addS/S to Ψ, and
go to Step 3.

ReturnT and stop.
(3) Setu = 0.
(4) Forr = 1, 2,. . . , NRAND:

(a) Select an input vectort as follows. If r = 1 and
u > 0, sett = Ti (u − 1). Else, sett to be a random
vector.

(b) Simulate the fault free and faulty circuits in the
presence off under t starting from stateSi (u).
Let the next state beQ = Qff /Qfy.

(c) If Q does not cover any state inΨ, setTi (u) = t,
Si (u + 1) = Q, addQ to Ψ, and go to Step 5.

Go to Step 6.
(5) Setu = u + 1. If u < L, go to Step 4.
(6) If the length ofTi is smaller thanL:

(a) Select an input vectort as follows. If r = 1 and
u > 0, sett = Ti (u − 1). Else, sett to be a random
vector.

(b) SetTi (u) = t.
(7) Seti = i + 1. If i < NSEQ, go to Step 2.

Procedure 1 considers a single target faultf , and it may
result in a set of sequencesT that containsNSEQ sequences.
Consequently, additional calls to Procedure 1 may not produce
new sequences. In Procedure 2 given below, we call Procedure 1
repeatedly with a new target fault every time. Fault simulation
of the new sequences added toT in Step 5 of Procedure 2 identi-
fies sequences inT that do not detect any yet-undetected faults.
Such sequences are removed fromT in Step 5 of Procedure 2.
Note thatΨ is initialized every time Procedure 1 is called. Thus,
test sequences generated in different iterations may traverse the
same states.

One of the parameters used by Procedure 1 is the maxi-
mum length of a test sequence,L. There are several competing
effects that need to be considered in determining the value ofL.
(1) Shorter test sequences take advantage of scan more often in
order to set initial states and observe fault effects. (2) Longer test
sequences use scan less often and thus have reduced test applica-
tion time. In addition, some faults may require longer sequences
for propagation to primary outputs or scanned state variables.
As a compromise, we start with longer test sequences, and then
reduce the test length in steps. Initially,L is set equal to a prese-
lected constantLs. It is then reduced until it reaches a final value
L f . The procedure reduces the value ofL after NSAME iterations
with no improvement in fault coverage. The procedure termi-
nates afterNSAME iterations withL = L f that do not improve the
fault coverage, or when the list of target faultsF becomes empty.
Procedure 2:Test generation based on new states
(1) SetT = φ . Let F be the set of target faults. SetFtarg = φ .

Setnsame= 0. SetL = Ls.
(2) If Ftarg = φ , setFtarg = F.
(3) Select a faultf ∈ Ftarg. Removef from Ftarg.
(4) Call Procedure 1 to generate test sequences based onf ,

with an upper bound ofL on test sequence length.
(5) Fault simulate the new test sequences added toT in Step

4. Remove fromT every sequence that does not detect
any new faults. Drop the detected faults fromF and from
Ftarg. If any faults are dropped, setnsame= 0. Else, set
nsame= nsame+ 1.

(6) If F is empty, stop.
(7) If nsame< NSAME, go to Step 2.
(8) If L ≠ L f , reduceL to its next value, and go to Step 2.

4. Adding subsequences and compaction
In this section, we extend the procedure of the previous section
by extracting subsequences that detect target faults, and by per-
forming compaction.

To demonstrate how subsequences of the sequences
included inT can be useful in detecting target faults, consider
the test sequenceT3 shown in Table 3. The circuit is the same
one considered in Table 2, where the first two state variables are
scanned. The faulty states shown belong to a faultf which is not
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detected byT1, T2 or T3. It can be seen that althoughT3 does
not detectf , it is possible to detectf by scanning out the state at
time unit 2 of T3. Thus, the sequenceT4 shown in Table 3,
which consists of the scan-in vector ofT3 and its first two pri-
mary input vectors, detectsf .

Table 3: An example of subsequence extraction

u T3(u) S3(u) u T4(u) S4(u)
0 1111 00x/00x 0 1111 00x/00x
1 0000 000/000 1 0000 000/000
2 1100 001/010 2 001/010
3 0011 111/110
4 111/111

We identify subsequences such asT4 by capturing for
every sequenceTi ∈ T the time units where fault effects reach
scanned state variables. If the effects of a yet-undetected faultf
reach a scanned state variable at time unitu under a sequence
Ti ∈ T, then the subsequence consisting of the scan-in vector of
Ti and its firstu − 1 primary input vectors detectsf . We add this
subsequence toT.

We search for subsequences to detect yet-undetected
faults after every call to Procedure 1. This is shown in Step 3 of
Procedure 3 below. Procedure 3 is similar to Procedure 2, except
that the extensions described in this section have been added to
it. At odd iterations of Procedure 3, we call Procedure 1. At even
iterations, we try to extract subsequences of the sequences gener-
ated in the previous iteration.
Procedure 3:Test generation
(1) SetT = φ . Let F be the set of target faults. SetFtarg = φ .

Setnsame= 0. Setniter = 1. SetL = Ls.
(2) If Ftarg = φ , setFtarg = F.
(3) If niter is odd:

(a) Select a faultf ∈ Ftarg. Removef from Ftarg.
(b) Call Procedure 1 to generate test sequences based

on f , with an upper bound ofL on test sequence
length.

Else:
For every sequence added toT in the previous
iteration, check if there exist subsequences that
detect at least one fault out ofF. Add all such
subsequences toT.

(4) Fault simulate the new test sequences added toT in Step
3. Remove fromT every sequence that does not detect
any new faults. Drop the detected faults fromF and from
Ftarg. If any faults are dropped, setnsame= 0. Else, set
nsame= nsame+ 1.

(5) Reduce the lengths of the sequences added toT in the
current iteration as much as possible without reducing the
fault coverage. If any new faults are detected, drop them
from F and fromFtarg.

(6) If F is empty, stop.
(7) Setniter = niter + 1. If nsame< NSAME, go to Step 2.
(8) If L ≠ L f , reduceL to its next value, and go to Step 2.

Step 5 of Procedure 3 is a compaction step where we
attempt to reduce the lengths of the test sequences added toT in
the current iteration. Length reduction for test sequences of scan
circuits was considered in [14]. LetFi be the set of faults
detected by a test sequenceTi . Let Fi ,PO be the set of faults
detected byTi on primary outputs, and letFi ,SO be the set of
faults detected during the scan-out operation at the end ofTi . For

every fault f ∈ Fi ,PO, let udet( f ) be the time unit wheref is
detected byTi . Let the length ofTi be Li . This length is reduced
to L̂i that satisfies the following conditions.
(1) L̂i > udet( f ) for every f ∈ Fi ,PO. This ensures that every
fault detected byTi on the primary outputs will continue to be
detected on the same primary outputs after the length ofTi is
reduced.
(2) Every f ∈ Fi ,SO is propagated to a scanned flip-flop at time
unit L̂i − 1. This ensures that the faults inFi ,SO will continue to
be detected byTi after its length is reduced.

In the worst case,̂Li = L will satisfy these conditions.
The length ofTi is reduced tôLi in Step 5 of Procedure 3.

Following Procedure 3, we also perform reverse order
simulation of the test sequences inT, and drop sequences that do
not detect any faults.

5. Experimental results
In this section, we report the results of the procedure described
in the previous sections. We consider ISCAS-89 and ITC-99
benchmark circuits. We use the following parameters.

We generate up toNSEQ = 500 test sequences in every
iteration. The initial test lengthL = Ls is equal to the number of
state variables in the circuit, or to 100 if the number of state vari-
ables is larger than 100. The value ofL is reduced to 10, then to
5, and finally it is reduced by one until it reaches 1. A test length
of 1 is useful for full scan circuits. We allow at most
NSAME = 100 iterations with no improvement in fault coverage
before switching to the next value ofL, or terminating the proce-
dure. For example, for a circuit with 120 state variables, we con-
sider L = 100, 10, 5, 4, 3, 2 and finally 1, each value for at most
NSAME = 100 iterations with no improvement. For a circuit with
8 state variables, we considerL = 8, 5, 4, 3, 2 and 1. We select a
state or input vector out ofNRAND = 100 candidates.

We measure the fault simulation time throughout all the
iterations of Procedure 3, and denote this time byRsim. We also
measure the time to generate test sequences throughout all the
iterations of Procedure 3, and denote this time byRgen. We report
the normalized timeRgen/Rsim.

The results for full scan circuits are shown in Table 4, and
the results for circuits with 90% scan are shown in Table 5. To
obtain 90% scan, we arbitrarily select 90% of the circuit flip-
flops, and assume that they are scanned. The tables are organized
as follows. After the circuit name, we show the total number of
faults, the number of detectable faults, and the number of faults
detected by the proposed procedure. The number of detectable
faults excludes faults that are known to be combinationally
redundant, but includes all other faults. Thus, this number is an
upper bound on the number of detectable faults for partial scan
circuits. Next, we show the number of iterations until the proce-
dure terminates, and the number of iterations until the fault cov-
erage reaches its final value. We then show the number of test
sequences inT at the end of Procedure 3, and the total length of
all the test sequences inT (the length of a test sequence is the
number of primary input vectors it contains). In the last column,
we show the normalized run timeRgen/Rsim. The following
points can be seen from Tables 4 and 5.

In most of the circuits with full scan and some of the cir-
cuits with 90% scan, we obtain 100% fault coverage. For such
circuits, the number of iterations is relatively small. Larger num-
bers of iterations are typically required for circuits that have
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Table 4: Full scan circuits

det. iterations
circuit flts able detect all to f.c seq length n.time
s208 215 215 215 69 69 29 50 45.99
s298 308 308 308 1 1 16 124 4.05
s344 342 342 342 1 1 11 92 4.41
s382 399 399 399 5 5 26 194 0.70
s420 430 430 425 1075 975 58 75 8.31
s444 474 460 460 705 5 26 121 0.52
s526 555 554 554 711 11 43 378 3.31
s641 467 467 467 69 69 34 442 11.70
s820 850 850 850 555 555 91 221 3.40
s1196 1242 1242 1242 27 27 90 886 1.61
s1423 1515 1501 1501 713 13 49 770 0.27
s1488 1486 1486 1486 137 137 78 218 1.76
s5378 4603 4563 4563 1383 1283 242 1960 0.01
b01 135 135 135 3 3 11 32 2.22
b02 72 72 72 5 5 8  19 5.00
b03 452 452 452 9 9 22 122 1.38
b04 1396 1396 1394 711 111 32 889 0.82
b06 206 206 206 1 1 13 28 25.84
b09 436 436 436 619 619 30 143 2.15
b10 522 522 522 6 6 33 176 1.80
b11 1175 1175 1166 723 23 35 515 0.57

Table 5: Circuits with 90% scan

det. iterations
circuit flts able detect all to f.c seq length n.time
s208 215 215 175 649 49 18 33 2.37
s298 308 308 291 775 75 19 135 4.59
s344 342 342 342 5 5 11 120 8.07
s382 399 399 391 703 3 23 173 4.21
s420 430 430 366 875 175 46 73 1.41
s444 474 460 457 711 11 26 96 1.84
s526 555 554 458 1075 675 51 153 0.32
s641 467 467 467 65 65 32 229 10.44
s820 850 850 651 1209 809 61 217 0.27
s1196 1242 1242 1242 17 17 90 884 1.27
s1423 1515 1501 1450 977 477 53 1026 0.07
s1488 1486 1486 822 961 361 41 100 0.13
s5378 4603 4563 4507 1173 1073 256 2062 0.01
b01 135 135 135 7 7 12 36 1.65
b02 72 72 72 41 41 9 22 1.88
b03 452 452 445 771 171 25 164 1.93
b04 1396 1396 1376 711 111 35 857 0.24
b06 206 206 194 635 35 9 59 7.88
b09 436 436 426 729 629 31 198 1.06
b10 522 522 500 859 259 25 218 2.98
b11 1175 1175 1136 753 553 38 397 0.29

combinationally redundant faults, for partial scan circuits with
undetectable faults, or when the proposed procedure otherwise
fails to detect some faults. In these cases, the fault coverage
reaches its final value after a smaller number of iterations, but
additional iterations are required to satisfy the termination condi-
tion. For example,s526 has one combinationally redundant fault
that causes the proposed procedure to go through 711 iterations
before it terminates in the case of full scan, even though the final
fault coverage is achieved after only 11 iterations. The extra iter-
ations can be saved by identifying undetectable faults in
advance, or by setting different termination conditions.

We do not have information about undetectable faults in
the partial scan circuits considered. Therefore, we do not know
whether the faults that remain undetected by the proposed proce-
dure are undetectable. However, we observe that the fault cover-
age is high in all the cases. To provide additional information,

we experimented with all possible selections of 90% partial scan
in s208, s298 ands1488. We only considered one test length,
L = Ls, in Procedure 3. Fors208 ands1488, 90% partial scan
implies that one flip-flop remains unscanned. Fors298, 90%
partial scan implies that two flip-flops remain unscanned. In
Table 6, we report on the scan configuration that resulted in the
highest fault coverage. Table 6 is organized similar to Tables 4
and 5, except that after the circuit name, we show the indices of
the unscanned flip-flops. Table 6 shows that the partial scan
selection can have a significant effect on fault coverage.

Table 6: Considering all scan configurations

det. iterations
circuit unscan flts able detect all to f.c seq length n.time
s208 4 215 215 192 181 81 27 40 3.59
s298 7,11 308 308 307 101 1 18 150 36.02
s1488 1 1486 1486 1235 425 325 58 227 0.26

Next, we present the results of applying the compaction
procedure of [14] to some of the circuits reported in Tables 4 and
5. The procedure of [14] reduces the test application time by
combiningtest sequences. To combine test sequencesT1 andT2,
the procedure of [14] removes the scan-out operation at the end
of T1, removes the scan-in operation at the beginning ofT2, and
concatenates the primary input vectors ofT1 andT2. This is done
without reducing the fault coverage. The removal of scan opera-
tions reduces the test application time of the test set. In some
cases, combining test sequences increases the fault coverage.
The fact that compaction can increase the fault coverage was
observed in previous works on compaction as well.

In applying the procedure of [14], our goal is also to
reduce the number of different test sequence lengths in the test
set. The number of different lengths affects the complexity of
test application. With fewer lengths that the tester needs to sup-
port, the test application process is simplified. To improve the
ability of the procedure from [14] to reduce the number of
lengths, we apply the procedure in a way that ensures the follow-
ing properties. (1) The minimum sequence length is as high as
possible, and the maximum sequence length is as low as possi-
ble. This ensures that the range of possible lengths is as low as
possible, resulting in a small number of different possible
lengths. (2) For every sequence length that exists in the final test
set, we obtain as many sequences of the same length as possible.
This also ensures that we obtain as small a number of different
lengths as possible. We achieve these properties by combining
sequences in the following way. We define a variableLtarg that
assumes values out of {2, 3, 4. . .}. For every value ofLtarg, we
apply the procedure of [14] only to pairs of test sequences whose
total length is equal toLtarg. Denoting the length of the test
sequence Ti by Li , we combine T1 and T2 only if
L1 + L2 = Ltarg. In this way, we control the resulting test
sequence lengths.

The value ofLtarg is determined as follows. Suppose that
in the current test set, we have test sequences of lengths
{ L1, L2, . . . , LN}. Suppose thatL1 < L2 < . . . < LN. In the first
phase of the compaction procedure, we consider
Ltarg = L2, . . . , LN (in this order). For every value ofLtarg, we
combine as many test sequences as possible whose total length is
Ltarg. By starting with low values ofLtarg that already exist in
the test set, we ensure that as many short sequences as possible
will be combined, increasing the minimum sequence length in
the test set without adding new lengths. To obtain additional
compaction, we perform a second phase of compaction where we
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allow the procedure to add new test lengths by considering
Ltarg = 2, 3,. . . , 2LN. Again, most of the compaction occurs for
short sequences. When we reach the high sequence lengths, the
test set is already compacted, and it is less likely to be possible
to combine the longer sequences. This keeps the maximum
sequence length low. Finally, in the third phase of the procedure,
we again considerLtarg = L2, . . . , LN, where {L1, L2, . . . , LN}
are the lengths in the current test set. This ensures that any addi-
tional compaction would be done without increasing the number
of different lengths.

We report the results of compaction in Table 7. For space
considerations, we only report on several of the ISCAS-89
benchmark circuits with 100% scan. Under columnbefore com-
pact, we repeat the results from Table 4 regarding the number of
detected faults, the number of sequences, and the total sequence
length. We also show the number of different test sequence
lengths under subcolumndif.l. Under columncompact phase 1,
we show the same information after the first phase of the com-
paction procedure. Under columncompact phase 3, we show
the same information after all three phases of the compaction
procedure. We mark by asterisks cases where the number of dif-
ferent test lengths is lower than the number before compaction.
The following points should be noted.

Table 7: Results after compaction

det. before compact compact phase 1 compact phase 3
circuit able det seq len dif.l det seq len dif.l det seq len dif.l

s298 308 308 16 124 7 308 14 124 *6 308 10 124 7
s382 399 399 26 194 9 399 20 194 *8 399 19 194 *8
s444 460 460 26 121 8 460 21 121 *7 460 19 121 9
s526 554 554 43 378 18 554 35 378 *16 554 29 378 19
s641 467 467 34 332 18 467 21 329 *8 467 7 329 *7
s820 850 850 91 221 5 850 59 221 *4 850 45 221 9
s1196 1242 1242 90 886 17 1242 58 881 *10 1242 15 881 *12
s1423 1501 1501 49 770 21 1501 32 770 *15 1501 28 770 *17

(1) Compaction reduces the number of test sequences in
all cases. In some cases, it also reduces the total number of vec-
tors. Both of these effects reduce the test application time by
reducing the number of scan operations and/or the number of
input vectors that need to be applied. (2) Compaction can reduce
the number of different sequence lengths, especially in the first
phase of the compaction procedure.

6. Concluding remarks
We described a simulation-based test generation procedure for
full and partial scan designs. A test sequence generated by this
procedure consisted of primary input vectors embedded between
a scan-in and a scan-out operation. In an odd iteration (starting
from the first iteration), the proposed procedure considers one
target fault, and constructs test sequences that traverse as many
pairs of fault-free/faulty states as possible. Repetition of input
vectors is used whenever possible to enhance the effectiveness of
the procedure. In an odd iteration, subsequences that detect yet-
undetected faults are extracted from the existing test sequences.
This is possible if a fault is activated but not detected during an
existing test sequence. By defining a new test sequence that ter-
minates when the fault is activated, it is possible to detect the
fault by a scan-out operation. An iteration of the procedure is
followed by fault simulation to drop detected faults, and com-
paction to reduce the sequence lengths. Experimental results
were presented to demonstrate the effectiveness of the procedure

for full and partial scan circuits.
We also considered the set of faults that can be detected

by test sequences where primary input vectors are embedded
between two scan operations, compared to the set of detectable
faults when scan is used with every primary input vector. We
showed that in partial scan circuits, there are faults detectable by
the latter method that cannot be detected by the former method.
Nevertheless, the former method is preferable in terms of test
application time, and since it removes the need to hold non-
scanned flip-flop states as required by the latter method.
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