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Abstract 

     In this paper, we present novel algorithms that 
effectively combine physical layout and early logic 
synthesis to improve overall design quality. In addition, we 
employ partitioning and clustering algorithms to achieve 
faster turn around times. 
    With the increasing complexity of designs, the 
traditional separation of logic and physical design leads to 
sub-optimal results as the cost functions employed during 
logic synthesis do not accurately represent physical design 
information. While this problem has been addressed 
extensively, the existing solutions apply only simple 
synthesis transforms during physical layout and are 
generally unable to reverse decisions made during logic 
minimization and technology mapping, that have a major 
negative impact on circuit structure.  
     In our novel approach, we propose congestion aware 
algorithms for layout driven decomposition and technology 
mapping, two of the steps that affect congestion the most  
during logic synthesis, to effectively decrease wire length 
and improve congestion.  In addition, to improve design 
turn-around-time and handle large designs, we present an 
approach in which synthesis partitioning and placement 
clustering co-exist, reflecting the different characteristics 
of logical and physical domain. 

 
1 Introduction 

     The increasing complexity of microelectronic designs 
and the continuous development of smaller sized 
fabrication processes create new challenges to existing 
design automation tools. One of the most important 
problems in the design of VLSI circuits is the interaction 
of logical and physical domains. Due to the development 
of ever finer-featured integrated circuits, the traditional 
separation of logic and physical design proves to be 
disadvantageous as the cost functions employed during 
logic synthesis become increasingly inaccurate during later 
design stages.  
     While this problem has been addressed extensively, all 
existing solutions employ only trivial logic synthesis 
transforms late in the design process, during physical 
design [11, 12]. These mainly local transformations are 

generally unable to reverse adverse decisions made during 
logic minimization and technology mapping based on 
inaccurate cost functions, namely literal count and gate-
based path delay, not reflecting the physical properties of 
the design. Existing layout driven logic synthesis 
algorithms [9] only utilize the layout information for 
improved timing information using estimated wire delay 
and to minimize area using cell and estimated wiring area. 
However, reducing overall congestion for better 
wireability, a very important objective function besides 
timing closure, in conjunction with timing and area 
optimization, has not been addressed. In [10], Pedram et. 
al. propose a decomposition and factoring based on a 
relatively simple one-dimensional input location 
assignment. We present an exact and a greedy algorithm to 
perform decomposition based on an accurate two-
dimensional input location modeling. 
     In addition, the increasing size of designs leads to 
infeasible turn-around times. This particularly applies to 
the field of logic synthesis. Logic minimization algorithms, 
e.g. kernel extraction and factoring, among others, are 
generally expensive algorithms. Therefore, current design 
sizes already present a considerable challenge to existing 
tools, while future synthesis tools are expected to handle 
millions of gates in a reasonable amount of time. Existing 
solutions often require the designer to manually partition a 
circuit which results in a much more complex design flow 
and leads to sub-optimal results during placement. 
Effective approaches using a multi-level clustering have 
been proposed in [1, 2, 3]. However, these existing 
approaches only reflect connectivity properties and not the 
functionality of the netlist. To incorporate clustering into a 
layout driven synthesis flow, simultaneously existing 
synthesis partitioning and placement clustering is a 
necessity.   
 To solve the aforementioned problems, we have 
developed algorithms employing physical design 
information early during logic independent optimization. 
Specifically, we create an initial placement of the 
technology-independent netlist and apply the thereby 
gathered layout information during logic optimization and 
technology mapping. We utilize the geographical location 
of the objects in the netlist, for example the location of a 
signals origin, and the estimated wire length to perform 



 

congestion aware decomposition and technology mapping. 
By decomposing gates depending on the location of their 
sources and grouping gates that are located close to each 
other during technology mapping, we are able to reduce 
total wire length and overall congestion by distributing the 
wiring instead of concentrating it in a small area. 
Furthermore, to handle the increasing complexity of 
designs, we use a partitioning algorithm for synthesis that 
identifies and groups reconvergent regions using signal 
flow which extends the previous work in [8]. We use a 
simple connectivity-based clustering to speed-up the 
placement. In addition, clustering for placement generall y 
improves overall congestion as high connectivity is 
grouped in clusters and more evenly distributed over the 
entire layout area. 
     The main contributions of this paper are congestion 
aware decomposition and technology mapping algorithms 
using geographical information coupled with effective 
coexisting synthesis partitioning and placement clustering 
to form an integrated synthesis and placement flow.  
     The remainder of this paper is organized as follows. In 
section 2 we explain the general concept of layout aware 
logic synthesis and propose our layout based 
decomposition and technology mapping algorithms. 
Section 3 describes our synthesis partitioning algorithm 
based on reconvergent regions and explains the different 
nature of partitioning for synthesis and clustering for 
placement. In section 4 we present our integrated synthesis 
and placement flow, while section 5 shows experiments 
and results, followed by conclusions and future work in 
section 6.  
 
2 Congestion Aware Synthesis 

     To effectively combine logic synthesis and placement, 
we create an initial placement of the technology-
independent netli st and use the placement coordinates of 
the objects to improve synthesis transformations. For this 
purpose, we use a quadratic placement solver with 
quadrisection to minimize quadratic net length. This type 
of placement algorithm is relatively stable with respect to 
local netli st changes. Even though this placement is not 
legal and the netli st is technology independent, it 
represents a good estimation of the actual location of the 
objects in the final design. 
     Decomposition and technology mapping are among the 
most important steps determining overall congestion and 
wire length, as we break up technology-independent gates 
and group them into their technology gate implementation. 
Following, we will outline our congestion aware 
decomposition and technology mapping algorithms. 
 
2.1  Decomposition 

     Our decomposition algorithm first groups the netli st 
into large gates with many inputs and then decomposes the 

netli st into 2-input gates. It works on a network consisting 
of only AND and XOR primiti ve cell s with input and 
output negations. In the first step, we reduce the number of 
levels in the design by moving a fanout stem from the 
output of a gate to its inputs. Following, we combine 
adjacent gates of similar functionalit y. In the final step, the 
circuit is transformed into a fanout-free decomposition 
consisting of 2-input gates.  
Motivation: Traditionally, the algorithm [14] uses the 
arrival time at the input pins to create a delay optimal 
decomposition. In our layout aware approach, we include 
wiring delay based on the estimated net length and 
geographical location of the input signals. Let us first 
demonstrate the importance of geographical location for 
decomposition on a simple example. Consider the case of 
decomposing a gate with four input pins and respective 
arrival times tAT,1 … tAT,4, as shown in Figure 1a. Assume 
the order of arrival times to be tAT,1 

�  tAT,2 
�  tAT,3 

�  tAT,4 , 
however, all arrival times are within close range, i.e. the 
slowest signal is only marginall y slower than the fastest 
signal, or identical. A timing based decomposition 
algorithm would pick the first two fastest pins, i.e. pin p1 
and p2 of gate g1 and group them into a 2-input gate. 
Following, pins p3 and p4, now the fastest pins will be 
decomposed. It is obvious that due to the geographical 
location of the feeding signals, this will not only cause 
longer net length, but also higher wiring congestion. 
Consequently, the better choice is to decompose pins p1 

and p4 and their respective nets n1 and n4 into gate g2, and 
nets n2 and n3 feeding pins p2 and p3 into gate g3, as shown 
in Figure 1b, effectively resulting in shorter wiring length 
and better congestion. In conclusion, we comprehend that 
it is important to group input pins into a gate to be 
extracted those signal origins are close to each other. 
Accurate decomposition is particularly important as any 
decision made at this point is in most cases only reversible 
at significant cost in later design stages.  
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Figure 1: Layout based Decomposition Example 



 

     In [10], Pedram et. al. propose a layout based 
decomposition and factoring algorithm which uses a 
relatively simple assignment of the input signal locations. 
All incoming signal edges are placed along a circle and the 
best combination of nearby signals along the circle is 
selected. However, this approach only considers one 
dimension, in fact, signals could be nearby, yet placed on 
opposite sides of the circle. Hence, a two-dimensional 
approach is needed.    
Problem Formulation: Based on the previous observations, 
we can formulate the problem of decomposing a subject 
graph into a network of 2-input gates as follows. We 
define the cost of grouping two candidate pins into a gate 
to be decomposed as the Manhattan distance between their 
respective signal origins. Following, we want to minimize 
the total cost of grouping subject to a timing constraint. 
That is, to combine layout information with timing, we 
only consider candidate pins within a certain timing range.  
Therefore, the problem can be formulated as follows: 

In the above equation, L1(p1,i, p2,i) is the Manhattan 
distance between the signal origins of candidate pins p1 
and p2 in iteration i of the decomposition process. Only 
candidate pins with an arrival time tAT below an upper 
bound Tmax are considered. To find the optimal 
decomposition minimizing our cost function, we have to 
consider at most n � (n-1)/2 possible decompositions during 
the first iteration, where n is the number of input pins of 
the original target gate to be decomposed. Each 
decomposition of one 2-input gate removes two candidate 
pins but introduces one new candidate pin, thus changing 
the input space of the problem. Hence, in the next iteration, 
we have at most (n-1) � (n-2)/2 possible decompositions. 
The total problem complexity follows as n! � (n-1)!/2n-1. 
An Exact Algorithm: To reduce the complexity of the 
problem, we employ a branch and bound algorithm. We 
traverse the search space depth first choosing the path with 
minimum cost. Our upper bound is the best solution found 
thus far. Since our objective function subject to 
minimization is monotonous, branches yielding a cost 
higher than the upper bound can be pruned. In addition, the 
search space is generally smaller since only candidate pins 
within a certain arrival time range are considered. 
However, the algorithm is still prohibitively expensive for 
large n and a less expensive approach is needed. 
A Greedy Algorithm: Our greedy approach chooses the 
best possible solution during each iteration of the 
decomposition process. Thus, we select the pair of 
candidate pins with the minimum distance between their 
respective input signal origins. Obviously, the greedy 
approach might yield sub-optimal results as the best 
solution within an iteration might force suboptimal input 

pin pairing during later iterations. However, particularly 
for large n, the input space is large enough to yield near-
optimal results at a much lower complexity compared to 
the exact algorithm. The pseudo code of our greedy 
algorithm is shown in Figure 2. We first order the input 
pins by increasing arrival time tAT, considering gate delays 
and estimated wiring delay and calculate the Manhattan 
distances between all pairs of pins. The wiring delay is 
estimated assuming one-bend connections. Note that 
calculating distances for all pairs of candidate pins is of 
quadratic time complexity, however, the candidate set is a 
function of the maximum number of inputs of the 
decomposed gate, and not related to the size of the design.  
We then choose candidate pins using a timing window of a 
defined width T, hence we only consider pins with an 
arrival time faster than the minimum arrival time of all 
pins plus the width of our timing window T. Typically, we 
choose the value of T as the delay of one 2-input gate, i.e. 
one level of the decomposition tree. Following, we select 
the pair of pins (p1, p2) with the minimum cost of 
grouping, i.e. the minimum distance between the locations 
of their signal origins. After the actual decomposition, pin 
p2 is removed from the set of candidate pins and pin p1 is 
substituted with the newly created pin. Arrival times of p1 
and L1 distances to all other pins are updated. The process 
stops when the original target gate is completely 
decomposed into a tree of 2-input gates.    
In other words, we choose the pair of pins based on a 
combination of fast arrival time and closeness of its 
sources in the physical layout. The selection process in the 

  Order candidate pins by arrival time; 
  for (i=1 to n)  
    for(j=i+1 to n) { 
      Calculate L1 distance(pin i, pin j); 
    } 
  } 
 
  Greedy_Decomposition(gate g) { 
    For_all_pairs_of_pins(tAT < tAT,min + T)  
      (p1,p2) = Pins with min L1 distance; 
    Decompose(g, p1, p2); 
    If (pins of g == 2) return; 
    Remove p2 from candidate pins; 
    Update arrival time of p1; 
    Update L1 distances(p1);  
    Greedy_Decomposition(g); 
  } 
 

Figure 2: Greedy Decomposition Algorithm 
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three-dimensional space (x, y, t) is illustrated in Figure 3. 
The timing window of size T is shown as shaded region 
while candidate pins are shown as dots. For simplicity, the 
two-dimensional coordinate space (x, y) is pictured in one 
dimension as the manhattan distance L1 between the signal 
origin of a given pin i and all other pins j �  i, hence 
showing only one plane of the entire solution space. 
     Each newly created gate in the decomposition process 
has to be assigned to a placement coordinate. We calculate 
the new location of the gate as the center of gravity of all 
input and output connections of the new gate to existing 
objects with a given location.  Therefore, we maintain 
layout locations throughout the entire decomposition 
process for all objects in the design. 
     In general, by ignoring the arrival time at the input pins, 
the algorithm performs purely layout based decomposition, 
e.g. grouping pins based only on geographical location. In 
that case, the set of candidate pins includes all input pins of 
the gate to be decomposed. 

 
2.2  Technology Mapping 

    Following decomposition, we technology map the netlist 
using layout information in a similar manner. Our 
technology mapping algorithm is based on the concept of 
wavefront technology mapping as described in [14]. The 
wavefront algorithm traverses the network in a levelized 
order from the primary inputs to the outputs using a 
wavefront of specified width w. Within the width of the 
wavefront, bound by its head and tail, all possible 
technology matches are created and implemented, 
effectively creating multi-source nets. The final technology 
implementation is chosen by identifying the fastest driver 
pin of the multi-source net. Due to the load-independent 
delay modeling in our gain-based delay model, a delay 
optimal technology implementation is created. We refer to 
[14] for a complete description of wavefront technology 
mapping under a gain-based delay model.       
     Let us illustrate on an example how layout information 
benefits technology mapping. Consider the example circuit 
in Figure 4a. We assume a wavefront width of 3 levels, as 
shown by the dashed lines. Within the width of the 
wavefront, all technology matches will be created. In our 
example, we create the following matches, among others. 
Technology-independent gates g1, g2, g3, g5 and g6 can be 
implemented with an AO222 and g4 as an AND gate, or 
gates g1, g2, g3 as AO22, g4 and g5 as 3-way AND and g6 as 
an OR gate. Only considering timing and/or area, the first 
implementation, shown in Figure 4b might be chosen. 
However, in our example, gates (g1, g2, g3), (g4, g5) and 
(g6) are placed in different regions of the circuit, i.e. their 
locations are distant from one another. Therefore, grouping 
gates (g1, g2, g3, g5, g6) will result in increased wiring and 
local congestion because their input sources are located in 
different regions of the circuit, which is exactly the reason 
why these gates are placed far away from each other. If 

instead, we group gates (g1, g2, g3), (g4, g5) and (g6), as 
shown in Figure 4c, we not only decrease total wire length 
because fewer wires are used along the long connections, 
we effectively improve overall congestion. In Figure 4b, 
wiring congestion is created because wiring is 
concentrated by the big AO222 gate having many long 
wires. Contrary, we have fewer long wires and a better 
distribution of wiring in Figure 4c. Similarly to 
decomposition, we define a cost function that weighs 
timing (and/or area) and layout information. To effectively 
group close objects, we define a cost of grouping by 
calculating the additional wiring created by moving each 
technology-independent gate from its existing location to 
the new location, i.e. the placement location of the actual 
implemented technology gate. The location of the 
technology gate is determined by calculating its center of 
gravity with respect to all input and output connections. 
 We define the cost of grouping n gates as follows: 

In the above equation, L1(si,j, gi) is the Manhattan distance 
between si,j, the external source or sinks of pin j in the 
technology independent gate i and L1(si,j, m) is the distance 
between the same source and sinks and the mapped gate m, 
while wi is the wiring saved by eliminating the internal 
wires. Note that calculating the additional wiring in certain 
cases creates a small error when using the location of 
objects whose final technology implementation, and hence 
final location has not been determined yet. This error is 
generally small as it is offset by the fact that we only group 
close objects, thus the location of the final technology 
implementation is close to the location of the technology-
independent objects it implements. However, it can be 
improved by using a two-pass approach. Instead of 
keeping only one match, two or more possible matches are 
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g5 
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g4 
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Figure 4: a) Original circuit, b) Generic  Mapping, 
                c) Layout driven Mapping 
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stored. During the second pass, the best combination of 
matches can be chosen using the known location of the 
technology implementation.  
     In conclusion, instead of choosing the technology 
implementation with the minimal arrival time tAT,m (and/or 
minimal area), we choose the technology dependent 
implementation as the minimum of the cost function 
Cg(tAT, x, y) subject to a timing (or area) constraint. 
Similarly to our cost function for decomposition, we 
consider estimated wiring delay and choose a timing 
window to consider only technology matches within a 
certain range of arrival times. However, by eliminating 
timing, the algorithm becomes completely layout based 
and will choose matches solely based on the geographical 
information.  
     In conclusion, by incorporating geographical layout 
information into the cost function for technology mapping, 
we are able to reduce total wire length resulting in less 
global congestion. Even more important, by grouping gates 
that are located close to each other in the layout, we 
distribute the wiring instead of concentrating it in single 
points which yields less local congestion.      
 
3 Partitioning and Clustering 

     To handle the increasing size of designs, we apply 
partitioning and clustering to reduce overall problem size. 
This allows us to handle large designs and achieves a faster 
overall design turn around time. In addition, our layout 
aware decomposition and mapping algorithm rely on an 
initial placement of the technology-independent netlist. In 
most cases, the number of objects in the technology-
independent representation will be significantly larger than 
the final technology implementation, thus, clustering of the 
netlist to reduce the number of objects is a necessity. 
     An important aspect of clustering and partitioning in the 
overall design flow is the decidedly different nature of 
logical and physical domain. The objective functions of 
partitioning a netlist for logic optimization and physical 
design are substantially different. The main goal during 
placement is to minimize the total netlength of a weighted 
graph, thus clustering algorithms focus on grouping highly 
connected objects, based on local [4] as well as global 
connectivity [5]. A clustering approach, however, is 
generally not suited for logic synthesis. Instead of 
clustering objects which reduces the overall problem size 
by reducing the number of objects, the obvious solution is 
to partition the netlist into parts of disjoint functionality. In 
most cases, complete disjointness does not exist, however, 
minimizing the sharing of common boolean expressions 
between the partitions is an excellent objective function to 
allow the most freedom of choice for restructuring and 
technology mapping algorithms within each partition.  
     In order to integrate synthesis and placement, we need 
to combine the different clustering and partitioning 
approaches reflecting the distinct nature of logical and 

physical domain. Therefore, we propose an approach with 
simultaneously existing partitions for synthesis and 
clusters for placement. Effectively, we have two different 
representations for each domain that exist simultaneously 
in the overall flow. Hence, each object is part of two 
different representations of the netlist, i.e. a gate is part of 
a placement cluster as well as part of a synthesis partition.   
     For placement, we group the netlist into fine-grained 
clusters based on local connectivity. Clustering also helps 
to improve congestion as high connectivity is grouped in 
clusters and more evenly distributed over the entire layout 
area. Our cluster size is fairly small, which is necessary to 
still provide enough detail to accurately determine the 
geographical locations of individual objects which 
provides the input to our layout driven decomposition and 
technology mapping algorithms as described in the 
previous section. Our synthesis partitioning is based on the 
analysis of reconvergent signal regions which has been 
applied to test generation and fault simulation [6, 7], and 
more recently to circuit partitioning for resynthesis of large 
networks [8]. For easier understanding, we revisit the 
following known properties of a circuit graph G (V, E).  
 
Definition 1: Given nodes r and s �  V, if there are more 
than one disjoint path from s to r, r is a reconvergent node 
for s, and s is a reconvergent fanout stem.   
 
Definition 2: Let s be a reconvergent fanout stem. Then, a 
reconvergent region of  s consists of all the nodes and 
output edges that are located on all the paths from s to any 
of its final reconvergent nodes r that do not drive any other 
reconvergent node of s.  
 
We use a modified version of the algorithm in [7] to find 
all reconvergent regions of a node s by searching for all 
reconvergent nodes of a fanout stem. Unfortunately, this 
algorithm is of complexity O(n2), however, we noticed that 
the size of a reconvergent region is limited, and usually 
independent of the number of total nodes, i.e. the size of 
the design. Therefore, we limit the search space from a 
fanout node to a constant k and achieve linear time 
complexity O(n) which is much better suited for 
partitioning large designs.  
     To create the final partitions, reconvergent regions are 

I 

II 

III 

IV 

Figure 5: Partitioning of Reconvergent Regions 



 

grouped based on region overlap. Contrary to the greedy 
approach used in [8], we group reconvergent regions in the 
order of decreasing overlap and favor regions that overlap 
within at least one of the final reconvergent nodes of either 
region and at least one other input node, also known as 
converging regions. Consequently, we group regions with 
the maximal number of common boolean expressions to 
improve synthesis quality. The overlap of two regions is 
easily computed during the backward phase of our 
modified algorithm of [7] that identifies the reconvergent 
regions.  Again, this algorithm is of linear time complexity 
as the number of possible memberships of a node is limited 
by the constant search space, i.e. the limited size of a 
reconvergent region.  
     In many cases, almost all regions are overlapping, thus 
grouping all regions would result in covering almost the 
entire circuit in only one or two partitions. Therefore, we 
use an upper bound to control the maximum size of a 
partition. Hence some regions can initially not be included 
in any of the partitions because they overlap more than one 
existing partition and merging the partitions would result 
in a too large partition. Their disjoint part is added to the 
partition with the most overlap. After grouping all regions 
into partitions, all remaining nodes which are not part of a 
reconvergent region are absorbed into their neighboring 
partitions based on their connectivity to input lines of these 
partitions.  
     Consider the example shown in Figure 5. Initially, we 
merge regions III and IV due to the maximum number of 
shared nodes, creating partition P1. Note that region IV 
converges with region III. Now, regions I and II have the 
most overlap, however, region II is also shared with the 
newly created partition P1. Dependent on the maximum 
partition size allowed, we either add regions I and II into 
P1, or merge region I and the non-disjoint part of region II 
to form a second partition P2.  
     After partitioning the design, we perform logic 
minimization and technology mapping on each of the 
individual partitions. By dividing the design , we achieve a 
speedup because most expensive synthesis transforms have 
a time complexity far greater than O(n). For optimal 
speedup, the partitions would have to be synthesized in 
parallel. However, to take full advantage of parallelism, 
dynamic timing assertion generation at the partition 
boundaries is necessary.  This is generally a non-trivial 
task that will be address in future work. 
 
4 Integrated Synthesis and Placement 

     Following, we explain how the concepts outlined in the 
previous sections are combined to form an integrated 
synthesis and placement flow. The overall flow is depicted 
in Figure 6. We start with the technology independent, 
unoptimized netlist of the design. Initially, we partition the 
design using our synthesis partitioning algorithm based on 
reconvergent signal regions, as explained in the previous 

section. In the next step, we run logic minimization 
algorithms, e.g. kernel factoring, common subexpression 
extraction, on the synthesis partitions. Subsequently, we 
cluster the netlist using our connectivity based clustering 
algorithm into relatively small clusters. In our model, both 
cluster and partition based representations coexist to serve 
the individual needs of logic synthesis and placement. In 
other words, pure synthesis operations only utilize the 
synthesis partitions while placement only uses the cluster 
representation. The layout-driven part of logic synthesis 
however, i.e. our previously proposed decomposition and 
technology mapping algorithms make use of both 
representations.  
     After clustering, we create an initial placement using a 
quadratic placement algorithm with quadrisection to place 
the clustered technology-independent netlist. Each member 
of a cluster is assigned the layout location of the parent 
cluster. Succeeding, we perform congestion-aware layout 
driven decomposition and technology mapping, as 
described in the previous sections, on the synthesis 
partitions. Note that we retain placement information by 
assigning a layout location to each newly created gate. 
However, retaining cluster information at this point is an 
infeasible task. Instead, we create updated clusters of 

Figure 6: Integrated Synthesis and Placement Flow 
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bigger size, now using the actual layout locations of the 
objects in the netlist. We now have a technology-mapped 
pre-placed design and continue global placement using our 
quadratic placement algorithm. Finally, we uncluster the 
netlist and perform detailed placement and legalization.  
 
5 Experiments and Results 

  The proposed integrated synthesis and placement flow 
has been implemented in C++ within the framework of the 
logic synthesis tool BooleDozer [13]. We employ the 
proposed layout aware decomposition and technology 
mapping algorithms in conjunction with partitioning for 
synthesis and clustering for placement. During 
decomposition, we use a combination of the exact branch 
and bound based algorithm for small number of inputs and 
our greedy algorithm for larger ones. Table 1 presents 
results of the layout driven optimization process for a 
number of IBM ASIC designs. Lit flat and Lit part show 
the amount of literals after logic minimization on the flat 
and synthesis partitioned design, respectively. On average, 
optimization of the partitioned design results in less than 
2% more literals compared to the flat design, achieved due 
to the high degree of functional disjointness of the 
individual partitions. Delaylayout represents the increase (or 
decrease) of the delay of the most critical path during 

layout driven optimization in comparison to the purely 
timing based decomposition and technology mapping. Avg 
Cong and Max Cong show the average and maximum 
horizontal and vertical congestion, for layout driven and 
purely timing based optimization. Due to the decreased 
amount of wire length and by avoiding  local areas of high 
congestion, achieved by grouping only close objects, we 
can generally improve congestion compared to the timing 
based only optimization. In addition, by balancing timing 
and layout information, we can improve congestion while 
achieving timing closure. Figure 7 shows the congestion 
maps for circuit design1 after synthesis and placement in 
the standard flow in comparison with our layout driven 
approach. Congestion across the horizontal and vertical 
cuts is shown in different colors ranging from blue 
(lighter) for the lowest to red (darker) for the highest 
congestion. Of particular importance is the maximum 
congestion which determines the routability of a design, 
which is consistently improved by avoiding local areas of 
high congestion.   
     Furthermore, we show results of the overall speedup 
achieved by our partitioning and clustering approach. 
CPUlayout denotes the runtime of the integrated synthesis 
flow in comparison to a completely flat approach. In 
general, further run time improvement is possible but will 
usually result in a lower quality of results.  

Table 1: Optimization Results 

          
design1 138332 375302 382698 -0.01 24.3% 22.2% 122.1% 103.2% 0.28 
design2 92582 244417 249060 -0.04 37.1% 32.2% 82.7% 78.1% 0.46 
design3 43145 127749 132521 0.00 51.2% 48.2% 153.1% 127.3% 0.73 
design4 101452 334822 342081 0.00 57.4% 52.2% 127.0% 121.8% 0.31 
design5 97165 331383 336697 -0.02 48.2% 43.7% 121.1% 112.3% 0.29 
design6 84292 320308 326646 0.00 39.2% 37.9% 101.7% 98.1% 0.32 
design7 77215 221437 224651 0.00 47.1% 44.4% 158.5% 132.3% 0.35 

 

Circuit  Lit flat CPUlayout  Gates Lit part Delaylayout  Avg Conglayout Avg Congtime   Max Conglayout Max Congtime  

Figure 7: Congestion Maps for a) Standard Flow and b) Layout Driven Optimization 

a) b) 



 

6 Conclusions and Future Work 

     The proposed placement and synthesis framework 
integrates the use of layout information for logic synthesis 
and the concept of co-existing synthesis partitioning and 
placement clustering to achieve better quality of results in 
a shorter time. We proposed congestion aware layout 
driven decomposition and technology mapping algorithms 
to effectively decrease overall wire length and improve 
congestion. In addition, we outlined the concept of co-
existing synthesis partitions and placement cluster to 
reflect the different requirements of optimization in the 
logical and physical domains.  
     Future work will focus on the development of layout 
driven logic restructuring algorithms and the application of 
multi-level clustering during placement. In addition, the 
non-trivial task of parallelizing logic minimization of the 
synthesis partitions yields the potential for further speedup. 
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