
Congestion Aware Layout Driven Logic Synthesis

Thomas Kutzschebauch
Leon Stok

IBM TJ Watson Research Center
Yorktown Heights, NY

{kutzsche, stokl}@watson.ibm.com

Abstract

 In this paper, we present novel algorithms that
effectively combine physical layout and early logic
synthesis to improve overall design quality. In addition, we
employ partitioning and clustering algorithms to achieve
faster turn around times.
 With the increasing complexity of designs, the
traditional separation of logic and physical design leads to
sub-optimal results as the cost functions employed during
logic synthesis do not accurately represent physical design
information. While this problem has been addressed
extensively, the existing solutions apply only simple
synthesis transforms during physical layout and are
generally unable to reverse decisions made during logic
minimization and technology mapping, that have a major
negative impact on circuit structure.
 In our novel approach, we propose congestion aware
algorithms for layout driven decomposition and technology
mapping, two of the steps that affect congestion the most
during logic synthesis, to effectively decrease wire length
and improve congestion. In addition, to improve design
turn-around-time and handle large designs, we present an
approach in which synthesis partitioning and placement
clustering co-exist, reflecting the different characteristics
of logical and physical domain.

1 Introduction

 The increasing complexity of microelectronic designs
and the continuous development of smaller sized
fabrication processes create new challenges to existing
design automation tools. One of the most important
problems in the design of VLSI circuits is the interaction
of logical and physical domains. Due to the development
of ever finer-featured integrated circuits, the traditional
separation of logic and physical design proves to be
disadvantageous as the cost functions employed during
logic synthesis become increasingly inaccurate during later
design stages.
 While this problem has been addressed extensively, all
existing solutions employ only trivial logic synthesis
transforms late in the design process, during physical
design [11, 12]. These mainly local transformations are

generally unable to reverse adverse decisions made during
logic minimization and technology mapping based on
inaccurate cost functions, namely literal count and gate-
based path delay, not reflecting the physical properties of
the design. Existing layout driven logic synthesis
algorithms [9] only utilize the layout information for
improved timing information using estimated wire delay
and to minimize area using cell and estimated wiring area.
However, reducing overall congestion for better
wireability, a very important objective function besides
timing closure, in conjunction with timing and area
optimization, has not been addressed. In [10], Pedram et.
al. propose a decomposition and factoring based on a
relatively simple one-dimensional input location
assignment. We present an exact and a greedy algorithm to
perform decomposition based on an accurate two-
dimensional input location modeling.
 In addition, the increasing size of designs leads to
infeasible turn-around times. This particularly applies to
the field of logic synthesis. Logic minimization algorithms,
e.g. kernel extraction and factoring, among others, are
generally expensive algorithms. Therefore, current design
sizes already present a considerable challenge to existing
tools, while future synthesis tools are expected to handle
millions of gates in a reasonable amount of time. Existing
solutions often require the designer to manually partition a
circuit which results in a much more complex design flow
and leads to sub-optimal results during placement.
Effective approaches using a multi-level clustering have
been proposed in [1, 2, 3]. However, these existing
approaches only reflect connectivity properties and not the
functionality of the netlist. To incorporate clustering into a
layout driven synthesis flow, simultaneously existing
synthesis partitioning and placement clustering is a
necessity.
 To solve the aforementioned problems, we have
developed algorithms employing physical design
information early during logic independent optimization.
Specifically, we create an initial placement of the
technology-independent netlist and apply the thereby
gathered layout information during logic optimization and
technology mapping. We utilize the geographical location
of the objects in the netlist, for example the location of a
signals origin, and the estimated wire length to perform

congestion aware decomposition and technology mapping.
By decomposing gates depending on the location of their
sources and grouping gates that are located close to each
other during technology mapping, we are able to reduce
total wire length and overall congestion by distributing the
wiring instead of concentrating it in a small area.
Furthermore, to handle the increasing complexity of
designs, we use a partitioning algorithm for synthesis that
identifies and groups reconvergent regions using signal
flow which extends the previous work in [8]. We use a
simple connectivity-based clustering to speed-up the
placement. In addition, clustering for placement generall y
improves overall congestion as high connectivity is
grouped in clusters and more evenly distributed over the
entire layout area.
 The main contributions of this paper are congestion
aware decomposition and technology mapping algorithms
using geographical information coupled with effective
coexisting synthesis partitioning and placement clustering
to form an integrated synthesis and placement flow.
 The remainder of this paper is organized as follows. In
section 2 we explain the general concept of layout aware
logic synthesis and propose our layout based
decomposition and technology mapping algorithms.
Section 3 describes our synthesis partitioning algorithm
based on reconvergent regions and explains the different
nature of partitioning for synthesis and clustering for
placement. In section 4 we present our integrated synthesis
and placement flow, while section 5 shows experiments
and results, followed by conclusions and future work in
section 6.

2 Congestion Aware Synthesis

 To effectively combine logic synthesis and placement,
we create an initial placement of the technology-
independent netli st and use the placement coordinates of
the objects to improve synthesis transformations. For this
purpose, we use a quadratic placement solver with
quadrisection to minimize quadratic net length. This type
of placement algorithm is relatively stable with respect to
local netli st changes. Even though this placement is not
legal and the netli st is technology independent, it
represents a good estimation of the actual location of the
objects in the final design.
 Decomposition and technology mapping are among the
most important steps determining overall congestion and
wire length, as we break up technology-independent gates
and group them into their technology gate implementation.
Following, we will outline our congestion aware
decomposition and technology mapping algorithms.

2.1 Decomposition

 Our decomposition algorithm first groups the netli st
into large gates with many inputs and then decomposes the

netli st into 2-input gates. It works on a network consisting
of only AND and XOR primiti ve cell s with input and
output negations. In the first step, we reduce the number of
levels in the design by moving a fanout stem from the
output of a gate to its inputs. Following, we combine
adjacent gates of similar functionalit y. In the final step, the
circuit is transformed into a fanout-free decomposition
consisting of 2-input gates.
Motivation: Traditionally, the algorithm [14] uses the
arrival time at the input pins to create a delay optimal
decomposition. In our layout aware approach, we include
wiring delay based on the estimated net length and
geographical location of the input signals. Let us first
demonstrate the importance of geographical location for
decomposition on a simple example. Consider the case of
decomposing a gate with four input pins and respective
arrival times tAT,1 … tAT,4, as shown in Figure 1a. Assume
the order of arrival times to be tAT,1

� tAT,2
� tAT,3

� tAT,4 ,
however, all arrival times are within close range, i.e. the
slowest signal is only marginall y slower than the fastest
signal, or identical. A timing based decomposition
algorithm would pick the first two fastest pins, i.e. pin p1
and p2 of gate g1 and group them into a 2-input gate.
Following, pins p3 and p4, now the fastest pins will be
decomposed. It is obvious that due to the geographical
location of the feeding signals, this will not only cause
longer net length, but also higher wiring congestion.
Consequently, the better choice is to decompose pins p1

and p4 and their respective nets n1 and n4 into gate g2, and
nets n2 and n3 feeding pins p2 and p3 into gate g3, as shown
in Figure 1b, effectively resulting in shorter wiring length
and better congestion. In conclusion, we comprehend that
it is important to group input pins into a gate to be
extracted those signal origins are close to each other.
Accurate decomposition is particularly important as any
decision made at this point is in most cases only reversible
at significant cost in later design stages.

2
1

4
3

n1

n2
n3

n4

g1

a)

g1

g2

g3
`

b)

Figure 1: Layout based Decomposition Example

 In [10], Pedram et. al. propose a layout based
decomposition and factoring algorithm which uses a
relatively simple assignment of the input signal locations.
All incoming signal edges are placed along a circle and the
best combination of nearby signals along the circle is
selected. However, this approach only considers one
dimension, in fact, signals could be nearby, yet placed on
opposite sides of the circle. Hence, a two-dimensional
approach is needed.
Problem Formulation: Based on the previous observations,
we can formulate the problem of decomposing a subject
graph into a network of 2-input gates as follows. We
define the cost of grouping two candidate pins into a gate
to be decomposed as the Manhattan distance between their
respective signal origins. Following, we want to minimize
the total cost of grouping subject to a timing constraint.
That is, to combine layout information with timing, we
only consider candidate pins within a certain timing range.
Therefore, the problem can be formulated as follows:

In the above equation, L1(p1,i, p2,i) is the Manhattan
distance between the signal origins of candidate pins p1
and p2 in iteration i of the decomposition process. Only
candidate pins with an arrival time tAT below an upper
bound Tmax are considered. To find the optimal
decomposition minimizing our cost function, we have to
consider at most n � (n-1)/2 possible decompositions during
the first iteration, where n is the number of input pins of
the original target gate to be decomposed. Each
decomposition of one 2-input gate removes two candidate
pins but introduces one new candidate pin, thus changing
the input space of the problem. Hence, in the next iteration,
we have at most (n-1) � (n-2)/2 possible decompositions.
The total problem complexity follows as n! � (n-1)!/2n-1.
An Exact Algorithm: To reduce the complexity of the
problem, we employ a branch and bound algorithm. We
traverse the search space depth first choosing the path with
minimum cost. Our upper bound is the best solution found
thus far. Since our objective function subject to
minimization is monotonous, branches yielding a cost
higher than the upper bound can be pruned. In addition, the
search space is generally smaller since only candidate pins
within a certain arrival time range are considered.
However, the algorithm is still prohibitively expensive for
large n and a less expensive approach is needed.
A Greedy Algorithm: Our greedy approach chooses the
best possible solution during each iteration of the
decomposition process. Thus, we select the pair of
candidate pins with the minimum distance between their
respective input signal origins. Obviously, the greedy
approach might yield sub-optimal results as the best
solution within an iteration might force suboptimal input

pin pairing during later iterations. However, particularly
for large n, the input space is large enough to yield near-
optimal results at a much lower complexity compared to
the exact algorithm. The pseudo code of our greedy
algorithm is shown in Figure 2. We first order the input
pins by increasing arrival time tAT, considering gate delays
and estimated wiring delay and calculate the Manhattan
distances between all pairs of pins. The wiring delay is
estimated assuming one-bend connections. Note that
calculating distances for all pairs of candidate pins is of
quadratic time complexity, however, the candidate set is a
function of the maximum number of inputs of the
decomposed gate, and not related to the size of the design.
We then choose candidate pins using a timing window of a
defined width T, hence we only consider pins with an
arrival time faster than the minimum arrival time of all
pins plus the width of our timing window T. Typically, we
choose the value of T as the delay of one 2-input gate, i.e.
one level of the decomposition tree. Following, we select
the pair of pins (p1, p2) with the minimum cost of
grouping, i.e. the minimum distance between the locations
of their signal origins. After the actual decomposition, pin
p2 is removed from the set of candidate pins and pin p1 is
substituted with the newly created pin. Arrival times of p1
and L1 distances to all other pins are updated. The process
stops when the original target gate is completely
decomposed into a tree of 2-input gates.
In other words, we choose the pair of pins based on a
combination of fast arrival time and closeness of its
sources in the physical layout. The selection process in the

 Order candidate pins by arrival time;
 for (i=1 to n)
 for(j=i+1 to n) {
 Calculate L1 distance(pin i, pin j);
 }
 }

 Greedy_Decomposition(gate g) {
 For_all_pairs_of_pins(tAT < tAT,min + T)
 (p1,p2) = Pins with min L1 distance;
 Decompose(g, p1, p2);
 If (pins of g == 2) return;
 Remove p2 from candidate pins;
 Update arrival time of p1;
 Update L1 distances(p1);
 Greedy_Decomposition(g);
 }

Figure 2: Greedy Decomposition Algorithm

L1

tAT

T

Figure 3: Timing Window based Set of Candidate Pins

iiATiAT

i

ii

TttMaxts

ppLMin

max,,2,,1,

,2,11

),(..

)),((

<

∑
(1)

three-dimensional space (x, y, t) is illustrated in Figure 3.
The timing window of size T is shown as shaded region
while candidate pins are shown as dots. For simplicity, the
two-dimensional coordinate space (x, y) is pictured in one
dimension as the manhattan distance L1 between the signal
origin of a given pin i and all other pins j � i, hence
showing only one plane of the entire solution space.
 Each newly created gate in the decomposition process
has to be assigned to a placement coordinate. We calculate
the new location of the gate as the center of gravity of all
input and output connections of the new gate to existing
objects with a given location. Therefore, we maintain
layout locations throughout the entire decomposition
process for all objects in the design.
 In general, by ignoring the arrival time at the input pins,
the algorithm performs purely layout based decomposition,
e.g. grouping pins based only on geographical location. In
that case, the set of candidate pins includes all input pins of
the gate to be decomposed.

2.2 Technology Mapping

 Following decomposition, we technology map the netlist
using layout information in a similar manner. Our
technology mapping algorithm is based on the concept of
wavefront technology mapping as described in [14]. The
wavefront algorithm traverses the network in a levelized
order from the primary inputs to the outputs using a
wavefront of specified width w. Within the width of the
wavefront, bound by its head and tail, all possible
technology matches are created and implemented,
effectively creating multi-source nets. The final technology
implementation is chosen by identifying the fastest driver
pin of the multi-source net. Due to the load-independent
delay modeling in our gain-based delay model, a delay
optimal technology implementation is created. We refer to
[14] for a complete description of wavefront technology
mapping under a gain-based delay model.
 Let us illustrate on an example how layout information
benefits technology mapping. Consider the example circuit
in Figure 4a. We assume a wavefront width of 3 levels, as
shown by the dashed lines. Within the width of the
wavefront, all technology matches will be created. In our
example, we create the following matches, among others.
Technology-independent gates g1, g2, g3, g5 and g6 can be
implemented with an AO222 and g4 as an AND gate, or
gates g1, g2, g3 as AO22, g4 and g5 as 3-way AND and g6 as
an OR gate. Only considering timing and/or area, the first
implementation, shown in Figure 4b might be chosen.
However, in our example, gates (g1, g2, g3), (g4, g5) and
(g6) are placed in different regions of the circuit, i.e. their
locations are distant from one another. Therefore, grouping
gates (g1, g2, g3, g5, g6) will result in increased wiring and
local congestion because their input sources are located in
different regions of the circuit, which is exactly the reason
why these gates are placed far away from each other. If

instead, we group gates (g1, g2, g3), (g4, g5) and (g6), as
shown in Figure 4c, we not only decrease total wire length
because fewer wires are used along the long connections,
we effectively improve overall congestion. In Figure 4b,
wiring congestion is created because wiring is
concentrated by the big AO222 gate having many long
wires. Contrary, we have fewer long wires and a better
distribution of wiring in Figure 4c. Similarly to
decomposition, we define a cost function that weighs
timing (and/or area) and layout information. To effectively
group close objects, we define a cost of grouping by
calculating the additional wiring created by moving each
technology-independent gate from its existing location to
the new location, i.e. the placement location of the actual
implemented technology gate. The location of the
technology gate is determined by calculating its center of
gravity with respect to all input and output connections.
 We define the cost of grouping n gates as follows:

In the above equation, L1(si,j, gi) is the Manhattan distance
between si,j, the external source or sinks of pin j in the
technology independent gate i and L1(si,j, m) is the distance
between the same source and sinks and the mapped gate m,
while wi is the wiring saved by eliminating the internal
wires. Note that calculating the additional wiring in certain
cases creates a small error when using the location of
objects whose final technology implementation, and hence
final location has not been determined yet. This error is
generally small as it is offset by the fact that we only group
close objects, thus the location of the final technology
implementation is close to the location of the technology-
independent objects it implements. However, it can be
improved by using a two-pass approach. Instead of
keeping only one match, two or more possible matches are

g1
g3

g2

g5

g6

g4
a)

b) c)

Figure 4: a) Original circuit, b) Generic Mapping,
 c) Layout driven Mapping

0 1 2 3

()∑ ∑ 





−−=

∈i

i

iPj

ig wmsLgsLC jiji

)(

11),(),(,, (2)

stored. During the second pass, the best combination of
matches can be chosen using the known location of the
technology implementation.
 In conclusion, instead of choosing the technology
implementation with the minimal arrival time tAT,m (and/or
minimal area), we choose the technology dependent
implementation as the minimum of the cost function
Cg(tAT, x, y) subject to a timing (or area) constraint.
Similarly to our cost function for decomposition, we
consider estimated wiring delay and choose a timing
window to consider only technology matches within a
certain range of arrival times. However, by eliminating
timing, the algorithm becomes completely layout based
and will choose matches solely based on the geographical
information.
 In conclusion, by incorporating geographical layout
information into the cost function for technology mapping,
we are able to reduce total wire length resulting in less
global congestion. Even more important, by grouping gates
that are located close to each other in the layout, we
distribute the wiring instead of concentrating it in single
points which yields less local congestion.

3 Partitioning and Clustering

 To handle the increasing size of designs, we apply
partitioning and clustering to reduce overall problem size.
This allows us to handle large designs and achieves a faster
overall design turn around time. In addition, our layout
aware decomposition and mapping algorithm rely on an
initial placement of the technology-independent netlist. In
most cases, the number of objects in the technology-
independent representation will be significantly larger than
the final technology implementation, thus, clustering of the
netlist to reduce the number of objects is a necessity.
 An important aspect of clustering and partitioning in the
overall design flow is the decidedly different nature of
logical and physical domain. The objective functions of
partitioning a netlist for logic optimization and physical
design are substantially different. The main goal during
placement is to minimize the total netlength of a weighted
graph, thus clustering algorithms focus on grouping highly
connected objects, based on local [4] as well as global
connectivity [5]. A clustering approach, however, is
generally not suited for logic synthesis. Instead of
clustering objects which reduces the overall problem size
by reducing the number of objects, the obvious solution is
to partition the netlist into parts of disjoint functionality. In
most cases, complete disjointness does not exist, however,
minimizing the sharing of common boolean expressions
between the partitions is an excellent objective function to
allow the most freedom of choice for restructuring and
technology mapping algorithms within each partition.
 In order to integrate synthesis and placement, we need
to combine the different clustering and partitioning
approaches reflecting the distinct nature of logical and

physical domain. Therefore, we propose an approach with
simultaneously existing partitions for synthesis and
clusters for placement. Effectively, we have two different
representations for each domain that exist simultaneously
in the overall flow. Hence, each object is part of two
different representations of the netlist, i.e. a gate is part of
a placement cluster as well as part of a synthesis partition.
 For placement, we group the netlist into fine-grained
clusters based on local connectivity. Clustering also helps
to improve congestion as high connectivity is grouped in
clusters and more evenly distributed over the entire layout
area. Our cluster size is fairly small, which is necessary to
still provide enough detail to accurately determine the
geographical locations of individual objects which
provides the input to our layout driven decomposition and
technology mapping algorithms as described in the
previous section. Our synthesis partitioning is based on the
analysis of reconvergent signal regions which has been
applied to test generation and fault simulation [6, 7], and
more recently to circuit partitioning for resynthesis of large
networks [8]. For easier understanding, we revisit the
following known properties of a circuit graph G (V, E).

Definition 1: Given nodes r and s � V, if there are more
than one disjoint path from s to r, r is a reconvergent node
for s, and s is a reconvergent fanout stem.

Definition 2: Let s be a reconvergent fanout stem. Then, a
reconvergent region of s consists of all the nodes and
output edges that are located on all the paths from s to any
of its final reconvergent nodes r that do not drive any other
reconvergent node of s.

We use a modified version of the algorithm in [7] to find
all reconvergent regions of a node s by searching for all
reconvergent nodes of a fanout stem. Unfortunately, this
algorithm is of complexity O(n2), however, we noticed that
the size of a reconvergent region is limited, and usually
independent of the number of total nodes, i.e. the size of
the design. Therefore, we limit the search space from a
fanout node to a constant k and achieve linear time
complexity O(n) which is much better suited for
partitioning large designs.
 To create the final partitions, reconvergent regions are

I

II

III

IV

Figure 5: Partitioning of Reconvergent Regions

grouped based on region overlap. Contrary to the greedy
approach used in [8], we group reconvergent regions in the
order of decreasing overlap and favor regions that overlap
within at least one of the final reconvergent nodes of either
region and at least one other input node, also known as
converging regions. Consequently, we group regions with
the maximal number of common boolean expressions to
improve synthesis quality. The overlap of two regions is
easily computed during the backward phase of our
modified algorithm of [7] that identifies the reconvergent
regions. Again, this algorithm is of linear time complexity
as the number of possible memberships of a node is limited
by the constant search space, i.e. the limited size of a
reconvergent region.
 In many cases, almost all regions are overlapping, thus
grouping all regions would result in covering almost the
entire circuit in only one or two partitions. Therefore, we
use an upper bound to control the maximum size of a
partition. Hence some regions can initially not be included
in any of the partitions because they overlap more than one
existing partition and merging the partitions would result
in a too large partition. Their disjoint part is added to the
partition with the most overlap. After grouping all regions
into partitions, all remaining nodes which are not part of a
reconvergent region are absorbed into their neighboring
partitions based on their connectivity to input lines of these
partitions.
 Consider the example shown in Figure 5. Initially, we
merge regions III and IV due to the maximum number of
shared nodes, creating partition P1. Note that region IV
converges with region III. Now, regions I and II have the
most overlap, however, region II is also shared with the
newly created partition P1. Dependent on the maximum
partition size allowed, we either add regions I and II into
P1, or merge region I and the non-disjoint part of region II
to form a second partition P2.
 After partitioning the design, we perform logic
minimization and technology mapping on each of the
individual partitions. By dividing the design , we achieve a
speedup because most expensive synthesis transforms have
a time complexity far greater than O(n). For optimal
speedup, the partitions would have to be synthesized in
parallel. However, to take full advantage of parallelism,
dynamic timing assertion generation at the partition
boundaries is necessary. This is generally a non-trivial
task that will be address in future work.

4 Integrated Synthesis and Placement

 Following, we explain how the concepts outlined in the
previous sections are combined to form an integrated
synthesis and placement flow. The overall flow is depicted
in Figure 6. We start with the technology independent,
unoptimized netlist of the design. Initially, we partition the
design using our synthesis partitioning algorithm based on
reconvergent signal regions, as explained in the previous

section. In the next step, we run logic minimization
algorithms, e.g. kernel factoring, common subexpression
extraction, on the synthesis partitions. Subsequently, we
cluster the netlist using our connectivity based clustering
algorithm into relatively small clusters. In our model, both
cluster and partition based representations coexist to serve
the individual needs of logic synthesis and placement. In
other words, pure synthesis operations only utilize the
synthesis partitions while placement only uses the cluster
representation. The layout-driven part of logic synthesis
however, i.e. our previously proposed decomposition and
technology mapping algorithms make use of both
representations.
 After clustering, we create an initial placement using a
quadratic placement algorithm with quadrisection to place
the clustered technology-independent netlist. Each member
of a cluster is assigned the layout location of the parent
cluster. Succeeding, we perform congestion-aware layout
driven decomposition and technology mapping, as
described in the previous sections, on the synthesis
partitions. Note that we retain placement information by
assigning a layout location to each newly created gate.
However, retaining cluster information at this point is an
infeasible task. Instead, we create updated clusters of

Figure 6: Integrated Synthesis and Placement Flow

Synthesis Partitioning

Perform Logic Minimization
on Synthesis Partitions

Clustering for Placement

Initial Placement

Layout Driven Decomposition
and Technology Mapping

Layout Based Re-Clustering

Global Placement

Unclustering

Detailed Placement and
Legalization

bigger size, now using the actual layout locations of the
objects in the netlist. We now have a technology-mapped
pre-placed design and continue global placement using our
quadratic placement algorithm. Finally, we uncluster the
netlist and perform detailed placement and legalization.

5 Experiments and Results

 The proposed integrated synthesis and placement flow
has been implemented in C++ within the framework of the
logic synthesis tool BooleDozer [13]. We employ the
proposed layout aware decomposition and technology
mapping algorithms in conjunction with partitioning for
synthesis and clustering for placement. During
decomposition, we use a combination of the exact branch
and bound based algorithm for small number of inputs and
our greedy algorithm for larger ones. Table 1 presents
results of the layout driven optimization process for a
number of IBM ASIC designs. Lit flat and Lit part show
the amount of literals after logic minimization on the flat
and synthesis partitioned design, respectively. On average,
optimization of the partitioned design results in less than
2% more literals compared to the flat design, achieved due
to the high degree of functional disjointness of the
individual partitions. Delaylayout represents the increase (or
decrease) of the delay of the most critical path during

layout driven optimization in comparison to the purely
timing based decomposition and technology mapping. Avg
Cong and Max Cong show the average and maximum
horizontal and vertical congestion, for layout driven and
purely timing based optimization. Due to the decreased
amount of wire length and by avoiding local areas of high
congestion, achieved by grouping only close objects, we
can generally improve congestion compared to the timing
based only optimization. In addition, by balancing timing
and layout information, we can improve congestion while
achieving timing closure. Figure 7 shows the congestion
maps for circuit design1 after synthesis and placement in
the standard flow in comparison with our layout driven
approach. Congestion across the horizontal and vertical
cuts is shown in different colors ranging from blue
(lighter) for the lowest to red (darker) for the highest
congestion. Of particular importance is the maximum
congestion which determines the routability of a design,
which is consistently improved by avoiding local areas of
high congestion.
 Furthermore, we show results of the overall speedup
achieved by our partitioning and clustering approach.
CPUlayout denotes the runtime of the integrated synthesis
flow in comparison to a completely flat approach. In
general, further run time improvement is possible but will
usually result in a lower quality of results.

Table 1: Optimization Results

design1 138332 375302 382698 -0.01 24.3% 22.2% 122.1% 103.2% 0.28
design2 92582 244417 249060 -0.04 37.1% 32.2% 82.7% 78.1% 0.46
design3 43145 127749 132521 0.00 51.2% 48.2% 153.1% 127.3% 0.73
design4 101452 334822 342081 0.00 57.4% 52.2% 127.0% 121.8% 0.31
design5 97165 331383 336697 -0.02 48.2% 43.7% 121.1% 112.3% 0.29
design6 84292 320308 326646 0.00 39.2% 37.9% 101.7% 98.1% 0.32
design7 77215 221437 224651 0.00 47.1% 44.4% 158.5% 132.3% 0.35

Circuit Lit flat CPUlayout Gates Lit part Delaylayout Avg Conglayout Avg Congtime Max Conglayout Max Congtime

Figure 7: Congestion Maps for a) Standard Flow and b) Layout Driven Optimization

a) b)

6 Conclusions and Future Work

 The proposed placement and synthesis framework
integrates the use of layout information for logic synthesis
and the concept of co-existing synthesis partitioning and
placement clustering to achieve better quality of results in
a shorter time. We proposed congestion aware layout
driven decomposition and technology mapping algorithms
to effectively decrease overall wire length and improve
congestion. In addition, we outlined the concept of co-
existing synthesis partitions and placement cluster to
reflect the different requirements of optimization in the
logical and physical domains.
 Future work will focus on the development of layout
driven logic restructuring algorithms and the application of
multi-level clustering during placement. In addition, the
non-trivial task of parallelizing logic minimization of the
synthesis partitions yields the potential for further speedup.

References

[1] T.F. Chan, J. Cong et. al. Multilevel Optimization for
Large-Scale Circuit Placement. In Proceedings of the
International Conference on Computer Aided Design,
pp. 171-176, November 2000

[2] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar.
Multilevel Hypergraph Partitioning: Application in
VLSI Domain. In Proceedings of the Design Automation
Conference, pp. 526-529, 1997

[3] G. Karypis and V. Kumar. Multilevel k-way Hyper-
graph Partitioning. In VLSI Design, Vol. 11, 3(2000),
pp. 285-300

 [4] D. M. Schuler and E. G. Ulrich. Clustering and Linear
Placement. In Proceedings of the Design Automation
Conference, 1972

 [5] J. Cong and S. K. Lim. Edge Separability Based
Circuit Clustering with Application to Circuit
Partitioning. In Proceedings of the Conference on Asia
and South Pacific Design Automation, pp.429-434, 2000

[6] H. Fujiwara and T. Shimono. On the Acceleration of
Test Generation Algorithms. In IEEE Transactions on
Computers, (32), pp. 1137-1144, December 1983

[7] F. Maamari and J. Rajski. A Reconvergent Fanout
Analysis for Efficient Exact Fault Simulation of
Combinatorial Circuits. In Proceedings 18th Int.
Symposium Fault Tolerant Computing, June 1988

[8] S. Dey, F. Brglez and G. Kedem. Corolla Based Circuit
Partitioning and Resynthesis. In Proc. Design
Automation Conference, pp. 607-612, June 1990

[9] J. Lou, W. Chen and M. Pedram. Concurrent Logic
Restructuring and Placement for Timing Closure. In
International Conference on Computer-Aided Design,
pp. 31-36, 1999

[10] M. Pedram and N. Bhat. Layout Driven Logic
Restructuring/Decomposition. In Proceedings of the Int.
Conf. on Computer Aided Design, pp.134-137, 1991

[11] W. Donath, P. Kudva, P. Villarrubia, L. Stok et. al.
Transformational Placement and Synthesis. In
Proceedings of The Conference on Design, Automation
and Test in Europe, pp. 194-201, 2000

[12] G. Stenz et. al. Timing Driven in Interaction with
Netlist Transformations. In Proceedings of the
International Symposium on Physical Design, 1997

[13] L. Stok, D. Brand, D. Kung et. al. Booledozer: Logic
synthesis for ASICs. In IBM Journal of Research and
Development, 40(4), pp. 515-547, July 1996

[14] L. Stok, M. A. Iyer and A. J. Sullivan. Wavefront
Technology Mapping. In Proceedings of the Conference
on Design, Automation and Test in Europe, pp. 108-113,
1999

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

