
Algorithm Level Re-Computing --
A Register Transfer Level Concurrent Error Detection Technique*

Kaijie Wu and Ramesh Karri
Department of Electrical and Computer Engineering

Polytechnic University
6 Metrotech Center, Brooklyn NY 11201

kwu03@utopia.poly.edu ramesh@india.poly.edu

Abstract*: In this paper we propose two algorithm-level time
redundancy based Concurrent Error Detection (CED) schemes
that exploit diversity in a Register Transfer (RT) level
implementation. RT level diversity can be achieved either by
changing the operation-to-operator allocation (allocation
diversity) or by shifting the operands before re-computation
(data diversity). By enabling a fault to affect the normal result
and the re-computed result in two different ways, RT level
diversity yields good CED capability with low area overhead.
We used Synopsys Behavior Complier (BC) to implement the
technique.

1. Introduction
Deep sub-micron VLSI circuits are susceptible to permanent

and transient faults. Several techniques for Concurrent Error
Detection (CED) recovery and correction have been proposed
to target permanent and transient faults. Some of these CED
techniques are based on time and hardware redundancy.

Patel and Fung [1,2] developed a logic level time
redundancy technique called re-computing with shifted
operands (RESO) to detect permanent faults. If an ALU
performs a function f, and x is an input, then an error in the
ALU is detected by comparing f(x) with right_shift (f
(left_shift (x)). Error detection capability of RESO depends on
the amount of shift. Minero et. al. developed a similar
technique called pseudo-duplication [3]. Re-computing using
duplication with comparison (REDWC) is another time
redundancy technique [4]. [5] extends REDWC by increasing
the number of partitions. Some logic level time redundancy
techniques use alternating data by checking if () ()xfx =f ,

where x is the input and x is its complement [6]. A CED
technique for array multipliers using bi-directional operations
has been presented in [7]. The performance overhead of time
redundancy based CED is about 100%.

Triple modular redundancy (TMR) is a hardware
redundancy based error correction technique [8] and entails at
least 200% hardware overhead. A time redundancy variant of
TMR called RE-computing with Triplication With Voting
(RETWV) trades-off area overhead for increased error
detection/correction latency [9,10,11]. RETWV is similar to
REDWC except that it partitions the operations and operators
into thirds. RETWV has been applied to inner product units
and convolvers [9], Newton-Raphson dividers [10] and
Goldschmidt dividers [11]. Performance overhead of time
redundancy based error correction is about 200%. Mitra and
McCluskey [12] proposed a logic synthesis technique that uses
diverse implementations of combinational circuits for CED.

They presented a scheme [13] to choose between CED
techniques using diversity as a metric.

* Supported by an NSF CAREER award CCR 996139

Several RT level techniques for CED, recovery and
correction have been proposed. Karri and Orailoglu [14] and
Ravi et. al. [15] developed high-level synthesis algorithms
targeting self-recovering data paths. Duplication and
comparison of results at checkpoints was used in [14], while
duplication and comparison of results as soon as they become
available was used in [15]. Although these algorithms reduce
the comparison overhead, they do not reduce the almost 100%
hardware overhead of duplication. Karri and Iyer presented an
RT level CED technique that uses the spare computation
cycles and the spare data transfer cycles for CED [16]. Karri
and Orailoglu [17] and Lakshminarayana et. al. [18] presented
fault security based techniques that yield CED data paths with
less than proportional increase in hardware. An RT level built-
in self-repair using spare modules was proposed in [19].

In this paper we propose RT level time redundancy based
CED techniques that exploit allocation and data diversities. By
enabling a fault to affect the normal result and the re-
computed result in two different ways, RT level diversity
yields good CED capability with low area overhead. However,
there is a time overhead. We will describe algorithm level re-
computing in section 2, and discuss the underlying fault model
in section 3. Then we will describe algorithm level re-
computing using allocation diversity in section 4 and
algorithm level re-computing using data diversity in section 5.
CED capabilities of these schemes are analyzed and based on
this analysis we propose additional improvements.
Experimental results will be discussed in section 6. Finally,
conclusions are given in section 7.

2. Algorithm level Re-Computing
Consider a Control Data Flow Graph (CDFG) with four

additions and one multiplication shown in Figure 1. The
schedule in Figure 1 (a) uses two adders, one multiplier and
three clock cycles. It does not support CED. Figure 1 (b)
shows hardware redundancy based CED technique. C denotes
a comparison. Every large circle denotes a logic level fault
tolerant operator. This kind of operator duplicates the original
operation and carries it out in the same clock cycle as the
normal operation. The implementation of the duplicate
operation can be identical as the original design
(straightforward duplication), or can be different (design
diversity). It comes at the cost of double the hardware – four
adders and two multipliers, though the computation time has
not increased in this design. Figure 1 (c) shows a time
redundancy based CED. Here two logic level fault tolerant
adders and one logic level fault tolerant multiplier are used
and each operation consumes two clock cycles. Although there

mailto:kwu03@utopia.poly.edu
mailto:ramesh@india.poly.edu

is no increase in the number of operators, the computation
time increases by 100% to 6 clock cycles.

(a)
C

+

*

+

+ +

+

*

+

+ ++ +
+ +

*

++
C

++
C

++
C

++
C

**
C

+
+

C
+

+
C

+
+

C
+

+

C

*
*

C

(b) (c) (d)
Figure 1: Scheduled CDFG of (a) basic design (b) fastest
design with CED (c) design using logic fault tolerant operator
(d) Algorithm level re-computing

Finally, in Figure 1 (d), the comparisons are moved out of
the logic level operators to the end of the computation. First,
the normal inputs are applied to the design. When the normal
computation is finished, the results are saved to registers and
the same inputs are applied to the design for re-computation.
Following re-computation, the two results are compared with a
mismatch suggesting an error. This technique is algorithm
level re-computing and is the focus of this paper. By using
algorithm level re-computing we do not have to check all the
results like logic level CED techniques do; we can check the
results periodically.

Algorithm level re-computing is a time redundancy based
CED technique that uses two types of computations - the
normal computation and re-computation. The normal
computation is carried out on all input samples up to Rth
sample. After the Rth input sample is processed by the normal
computation, the result is stored. Then the Rth result is re-
computed and compared to the stored result with a mismatch
indicating an error. R, called the checking ratio, is the ratio of
the total number of results to the number of results that have
been re-computed. Assuming that one iteration of a
computation takes M clock cycles, a basic design without
CED capability takes N×M clock cycles to process N input
samples while the design using algorithm level re-computing
takes (N+N/R)×M clock cycles. Hence the time overhead is
1/R ([(N+N/R)M – NM]/NM).

Checking ratio R can be used to trade-off performance
overhead against detection latency and fault detection
capability. The smaller the value of R, the more results will be
re-computed and checked. If R is set to 1, all results are re-
computed and checked. Minimum detection latency can be
achieved while the time overhead is 100%. If R is set to 2 only
half of the results will be re-computed and checked. Detection
latency increases while the time overhead is reduced to 50%.

Different implementations of re-computation yield different
fault detection capabilities. For example, straightforward
duplication of operations in time can only detect transient
faults. Permanent faults will be missed because for the same
inputs, a hardware module with permanent faults will always
produce the same faulty outputs. In this paper we propose
allocation diversity and data diversity during re-computing to
improve the CED capability.

3. RT level fault model
We will focus on transient and permanent stuck-at faults.

Although the analysis in this paper is based on stuck-at-1
faults, the results extend to stuck-at-0 faults as well. We model
the faults as offsets from the correct result. Consider the 4-bit
array multiplier shown in Figure 2. The four adders enclosed
in a dashed square form the 3rd bit slice since their sums will
be accumulated into the 3rd result bit. Assuming that one of
connections (for example, the thick line shown in Figure 2) is
stuck-at-1, the faulty result output by the defective multiplier
is offset from the correct result by 23 if the correct output of
the thick line is 0. Table 1 summarizes all possible offsets due
to one stuck-at-1 fault. Effects of stuck-at faults can be
modeled as an offset from the correct result in other arithmetic
operators such as adders and subtractors.

X < 1 >X < 2 >X < 3 >

Y < 0 >

Y < 1 >

Y < 2 >

X < 0 >

Y < 3 >

+ + + +

+ + + +

+ + + +

+ + + +

Figure 2: 4-bit Array Multiplier

Offset Condition
2i If one Sum of ith adder slice or Carry of (i-1)th

adder slice is stuck-at-1 and the original output is 0
0 If one Sum of ith adder slice or Carry of (i-1)th

adder slice is stuck-at-1 and the original output is 1

Table 1: Possible offsets due to a stuck-at-1 fault of the array
multiplier

4. Allocation Diversity
In allocation diversity, normal computation and re-

computation use the same CDFG, identical RT level schedules
and operators to compute results. However, operations in the
CDFG that are carried out on an operator in the normal
computation are carried out on a different operator during re-
computation.

+ 1
a b

+ 2
c d

+ 3
e f

+ 4
g h

×1 ×2
+ 1 + 3

a b
+ 4
c d

+ 1
e f

+ 2
g h

×2 ×1
+ 2

Co u tp u t

(a)

(b)
Figure 3: Allocation diversity based CED uses either (a)
normal allocation for normal computation or (b) checking
allocation for re-computation

Figure 3 shows two implementations of a CDFG that
computes (a+b) × (c+d) + (e+f) × (g+h). Corresponding
operations in the normal and re-computations are allocated to
different operators. For example, addition a+b is carried out on
adder +1 in the normal computation and on adder +3 during
re-computation. At the beginning of each computation the
controller checks the checking ratio R to decide if it is a
normal computation or a re-computation. If it is a normal

computation the controller will select the normal allocation
shown in Figure 3 (a). Otherwise, the controller will select the
checking allocation shown in Figure 3 (b).

4.1 CED capability

Returning to example Figure 3, let us assume that only one
operator has a stuck-at-1 fault. The faulty results obtained in
the normal and re-computations due to this stuck-at-1 fault are
summarized in Table 2.

Possible faulty results from Defective
module

Normal computation Re-computation

Miss a
fault?

+3 (a+b)(c+d)+(e+f+2i)(g+h) (a+b+2i)(c+d)+(e+f)(g+h) No
+4 (a+b)(c+d)+(e+f)(g+h+2i) (a+b)(c+d+2i)+(e+f)(g+h) No
+1 (a+b+2i)(c+d)+(e+f)(g+h)

(a+b) (c+d)+(e+f)(g+h)+2i

(a+b+2i)(c+d)+(e+f)(g+h)+2i

(a+b)(c+d)+(e+f+2i)(g+h) No

+2 (a+b)(c+d+2i)+(e+f)(g+h) (a+b)(c+d)+(e+f)(g+h+2i)
(a+b)(c+d)+(e+f)(g+h)+2i

((a+b)(c+d)+(e+f)(g+h+2i)+2i

No

×1 ((a+b)(c+d)+2i)+(e+f)(g+h) (a+b)(c+d)+((e+f)(g+h)+2i) Yes
×2 (a+b)(c+d)+((e+f)(g+h)+2i) ((a+b)(c+d)+2i)+(e+f)(g+h) Yes

Table 2 Faulty results due to a single stuck-at-1 fault in one of
the modules used in Figure 3

A stuck-at-1 fault in adder +3 translates into a faulty result
of (a+b)(c+d)+(e+f+2i)(g+h) during normal computation and
a faulty result of (a+b+2i)(c+d)+(e+f)(g+h) during re-
computation. Since these two results differ by 2i((g+h)-(c+d)),
the fault can be detected if g+h≠c+d. Similarly, a stuck-at-1
fault in multiplier ×2 translates into a faulty result of
(a+b)(c+d)+((e+f)(g+h)+2i) during normal computation and a
faulty result of ((a+b)(c+d)+2i)+(e+f)(g+h) during re-
computation. In this case, since the two faulty results have the
same offset, the fault may not be detected.

We will now compute the probability of missing a fault
when allocation diversity based CED is used. Operations such
as multiplication and exponentiation magnify the effects of
faults at their inputs making them easy to detect. On the other
hand, since operations such as additions and subtractions do
not magnify the effects of faults at their inputs, we will focus
on parts of CDFGs that have only additions/subtractions. We
will consider stuck-at-1 faults in the analysis 1 . When a
defective module is used several times, let P0i be the
probability that the expected result is 0 due to the ith use of the
defective module. Similarly, let P1i be the probability that the
expected result is 1 due to the ith use of the defective module.

Consider the CDFG shown in Figure 4. This CDFG uses
two adders and takes two clock cycles. It implements (a+b) +
(c+d). Assuming the adder +2 (shaded in dark) is the defective
module. After the first use of the faulty adder in clock cycle 1,
let the probability of a correct result be P11 and the probability
of a wrong result be P01. Similarly, after the second use of the
faulty adder in clock cycle 2 (assuming that the inputs to the
second use are correct), let the probability of a correct result
be P12 and the probability of a wrong result be P02. Now we
will derive probabilities for three cases: a single stuck-at-1
fault, stuck-at-1 faults in non-adjacent bit positions and stuck-
at-1 faults in adjacent bit positions.

1 A similar analysis can be carried out for stuck-at-0 faults

a b

+ 2
c d

+ 1

+ 2
o u t p u t

Figure 4: Example CDFG

Case 1. A single stuck-at-1 fault
In Figure 4¸ every time the faulty adder +2 is used, it will

possibly offset the correct result 2 by X. We will have the
expected result (a+b)+(c+d) with probability P11×P12 and the
wrong result (a+b)+ (c+d+X) with probability P01×P12, the
wrong result ((a+b)+(c+d))+X with probability P11×P02 and the
wrong result (a+b)+(c+d+X)+X with probability P01×P02.
These probabilities for the general case when the defective
module is used N times are summarized in Table 3.

Offset Probability Comments
0 ∏

=

N

i
iP

1
1

 All correct results
are 1

X ∑ ∏
=

≠
=

N

i

N

ij
j

ji PP
1 1

10

 All correct results
except one are 1

t×X,
1 ≤ t ≤ N ∑ ∏∏

∈
∈
∉∈Nt

Nj
tj

j
ti

i PP 10

 t of the correct
results are 0

N×X
∏
=

N

i
iP

1
0

 All the correct
results are 0

Table 3: Probabilities. of different offsets due to a single
stuck-at-1 fault

A fault will not be detected when the faulty offset from the
normal computation is identical to the faulty offset from re-
computation. If the defective module is used N times in the
normal computation and M times in the re-computation, the
probability Pt that the two results are offset by the same
amount t×X is:

= ∑ ∏∏∑ ∏∏

∈
∉
∈∈∈

∉
∈∈ Mt

tj
Mj

j
ti

i
Nt

tj
Nj

j
ti

it PPPPP 1010

Hence, the probability Pu that a fault is not detected is:

∑ ∑ ∏∏∑ ∏∏∑
= ∈

∉
∈∈∈

∉
∈∈=

==

),min(

1
1010

),min(

1

MN

t Mt
tj
Mj

j
ti

i
Nt

tj
Nj

j
ti

i

MN

t
tu PPPPPP

Figure 5 plots Pu as a function of N and M assuming that P0i
= P1i = 0.5, (i.e. in the correct output, 1’s and 0’s are equally
likely). From this plot we can observe that the probability of
detecting a fault is lowest when N≈M. Further, the probability
of detecting a fault is highest when N >> M or M >> N.

Figure 5: The probability of missing a stuck-at-1 fault

2 A result is correct if it is the expected result for the inputs even though these
inputs may come from a faulty operation.

Error offset Probability Comments
0

∏∏
==

n

i
i

n

i
i PP

1

2
1

1

1
1

All the results are correct and happen
to be 1.

u×X + v×Y;

1≤ u, v ≤ N

∑ ∏∏∑ ∏∏
∈

∉
∈∈∈

∉
∈∈ nv

vj
njvinu

uj
njui

jiji
PPPP 2211

1010

One fault affects the result u times
while the other one affects the final
results v times.

N×X + N×Y
∏∏
==

n

i
i

n

i
i PP

1

2
0

1

1
0

 All correct results are 0.

Table 4: Probability of different offsets due to two non-adjacent stuck-at-1 faults in adder +2 of Figure 4

∑ ∑ ∑ ∏∏∑ ∏∏∑ ∏∏∑ ∏∏
= = ∈

∉
∈∈∈

∉
∈∈∈

∉
∈∈∈

∉
∈∈

=

),min(

1

),min(

1

22112211
10101010

mn

u

mn

v mv
vj
mjvimu

uj
mjuinv

vj
njvinu

uj
njui

u jijijiji
PPPPPPPPP

Equation 1: Probability of missing two non-adjacent stuck-at-1 faults

Case 2. Two stuck-at-1 faults in an operator
Let and be the above probabilities due to the first

fault and P and be the above probabilities due to the
second fault. Also, let X be the error offset due to the first fault
and Y be the error offset due to the second fault. Assuming that
the first fault occurs in a more significant bit position and
affects result u times while the second fault occurs in a less
significant bit position and affects result v times, the possible
final results are {u×X + v×Y; 0 ≤ u, v ≤ N, M}.

1
0iP 1

1iP
2

0i
2

1iP

a) Stuck-at-1 faults in non-adjacent bit positions
If the faulty bit positions are so far apart (such that X >

N×Y), that different (u,v) combinations yield different offsets,
the probabilities of correct and faulty results when the
defective module is used N times are summarized in Table 4.

The probability of missing a fault Pu can be calculated using
Equation 1. And if we assume P ,
Equation 1 can be simplified as follows:

5.02
1

2
0

1
1

1
0 ==== iiii PPP

() ()∑ ∑
= =

+

=

),min(

1

),min(

1

25.0
mn

u

mn

v

mn
u v

m
u
m

v
n

u
n

P

Figure 6(a) shows the probability of missing two non-adjacent
stuck-at-1 faults.
b) Stuck-at-1 faults in adjacent bit positions

Since the two faulty bit positions are adjacent, X = 2×Y and
hence faults with different (u, v) combinations can produce
identical faulty results. For example, a fault with combination
(u=1,v=2) has the same effect on the final result as the faults
with combinations (u=2,v=0) and (u=0,v=4). Figure 6 (b)
shows the probability of missing two adjacent stuck-at-1 faults.
Although faults will be missed with a higher probability
compared to Case 2a, it is still better than Case 1. Once again
the probability of detecting these faults is the highest when N
>> M or M >> N.

 Comparing Figure 6 (a, b) with Figure 5 shows that the
probability of missing a fault decreases as the number of faults
in the hardware increases. This is because as the number of
faults increases the number of possible faulty results increases
thereby reducing the possibility that these faulty results match.

(a) (b)

Figure 6: The probability of missing two (a) non-adjacent and
(b) adjacent stuck-at-1 faults

4.2 Improving CED capability of allocation diversity
From the above analysis, the CED capability of allocation

diversity can be improved by maximizing the difference
between the number of times a defective module is used in the
normal computation and the number of times it is used in the
re-computation. It is not always possible to achieve this
unevenness in the allocations for all hardware units in a design.
Let us consider Figure 7 as an example. Since the design uses
three adders, a single allocation cannot simultaneously
maximize the usage difference for all three adders. An
operation-to-operator allocation for the normal and the re-
computations are shown in Figure 7 (a) and (b), respectively.
This allocation minimizes the probability of missing the faults
introduced by faulty adder +2 by maximizing the difference
between the number of times it is used in the normal and re-
computations. In Figure 7 (a) and (b), adder +2 is used once in
normal computation and four times in re-computation yielding
0.125 probability of missing a single fault, 0.023 probability of
missing two non-adjacent faults and 0.033 probability of
missing two adjacent faults3. On the other hand, adder +1 is
used 4 times in normal computation and 2 times in re-
computation yielding a 0.219 probability of missing a single
fault, 0.055 probability of missing two non-adjacent faults and
0.082 probability of missing adjacent faults. Finally, adder +3
is used 2 times in normal computation and 1 time in re-

3 Here we use same assumption as above that one bit output has equal
likelihood to be 1 and 0.

computation yielding a 0.25 probability of missing a single
fault, 0.125 probability of missing two faults and 0.141
probability of missing two adjacent faults.

(a) (b)

+ 1 + 2

+ 1

+ 1

+ 3

+ 3

+ 1

+ 2 + 3

+ 2

+ 2

+ 1

+ 1

+ 2

(c) (d)

+ 1 + 2

+ 1

+ 1

+ 3

+ 3

+ 1

×
A

B

× ×

+ 2 + 3

+ 2

+ 2

+ 1

+ 1

+ 2

×
A

B

Figure 7: An example CDFG using allocation diversity (a)
normal allocation (b) checking allocation (c) Partitioned
CDFG of normal allocation (d) Partitioned CDFG of checking
allocation

Partitioning the CDFG into smaller sub-CDFGs and
checking the intermediate results output by these sub-CDFGs
can improve the CED capability of allocation diversity.
Figure 7 (c) (d) show two-way partitioning of the CDFG of
Figure 7 (a) (b). As shown in the figure, original CDFG has
been divided into two sub-CDFGs A and B and an “×” denotes
the intermediate results that are checked. For sub-CDFG A,
adder + 1 and adder +2 are used in the normal computation
while adder +2 and adder +3 are used in the re-computation.
Allocation of sub-CDFG A simultaneously maximizes the
usage differences of all three adders; adder +1 is used 4 times
in normal computation and 0 times in re-computation, adder
+2 is used once in normal computation and 4 times in the re-
computation and adder +3 is used once in normal computation
and 0 times in re-computation. Similarly allocation for sub-
CDFG B maximizes the usage differences for adder +3 and
adder +1. In all these cases, if a defective module is involved
either in normal computation or re-computation but not both,
the probability of missing a fault in it is 0.

5. Data diversity
In data diversity the normal computation is carried out on all

input samples up to Rth. After the Rth input sample is processed
by the normal computation, the result is stored in a register.
Then the Rth result is re-computed using shifted operands and
compared to the stored result with a mismatch suggesting an
error. We name this technique as algorithm level re-computing
with shifted operands (ARESO). The RT level data path used
in ARESO design is wider than the non-CED design. For
example, a data path with original 32-bit wide will increase to
34-bit wide to support 2-bit shift.

5.1 CED capability

Logic level RESO and its error detection capabilities have
been described in [1, 2]. In algorithm level re-computing,
since intermediate results are not checked and a defective
module can be used several times before checking the final
results, the effect of a fault accumulates. ARESO requires
more bits to be shifted to detect same faults as logic level
RESO. If a defective adder that offsets a result by 2i is used
twice, the possible offsets can be {0, 2i, 2×2i} and ARESO
with 1-bit shift is not guaranteed to detect this fault. We
calculated the probabilities of missing fault(s) for data
diversity using technique similar to that we used for allocation
diversity.

(a)

(b) (c)

Figure 8 The probabilities of missing (a) single stuck-at-1 fault
(b) two non-adjacent stuck-at-1 faults (c) two adjacent stuck-
at-1 faults by using data diversity

Figure 8 shows the probabilities of missing the single stuck-
at-1 fault, two non-adjacent stuck-at-1 faults and two adjacent
stuck-at-1 faults by using data diversity. In these plots, X-axis
stands for the number of times the defective module is used,
while the Y-axis stands for the number of bits shifted in the
data path. According to the plots, as the number of bits shifted
increases, the probability of missing faults decreases. When
only one bit is shifted and the defective module is used about 2
to 4 times, the detection probability is the worst. When two
bits are shifted in the data path, the probabilities of missing
these three types of faults are reduced.
5.2 Improving CED capability of data diversity

A straightforward approach to improve the CED capability
of a data diversity data path is to shift more bits. However it
entails hardware overhead. A second approach is to avoid
using a unit less than 4 times. Feasibility of this depends on
the number of operations in the CDFG and is not suitable for
small CDFGs. Another approach is to partition the CDFG and
check the outputs of all sub-CDFGs. If a defective module is
used in more than one sub-CDFG, there will be a higher
probability to detect the faults. In the CDFG shown in Figure 9
(a), adders 1, 2 and 3 are used 3, 2 and 2 times respectively.
Assuming that data path supports 1-bit shift, the probabilities
of missing a single stuck-at-1 fault, two non-adjacent stuck-at-
1 faults and two adjacent stuck-at-1 faults are {0.14, 0.02, 0.06}
for adder 1, and {0.13, 0.03, 0.07} for adders 2 and 3.

(a) (b)

+ 1 + 2

+ 3

+ 1

+ 3

+ 2

+ 1

×

+ 1 + 2

+ 3

+ 1

+ 3

+ 2

+ 1

×

A

B

Figure 9 (a) Original CDFG (b) Partitioned CDFG

Figure 9 (b) partitions the original CDFG into two sub-
CDFGs A and B. Outputs of both of them will be checked.
Adder 1 is used once in sub-CDFG A and twice in sub-CDFG
B, while adder 2 or 3 is used once in either sub-CDFG. The
probability of missing faults can be calculated as:

Pu = Pu of A×PB is correct + Pu of B ×PA is correct + Pu of A × Pu of B

Using this equation, the probabilities of missing the three

types of faults are {0.016, 0, 0} for adder 1 and {0,0,0} for
adder 2 and 3.

6. Experimental Results
We used Synopsys Behavioral Compiler (BC) [20] to

synthesize RT level designs with allocation diversity and data
diversity. In this section we will show the results on three
examples: Finite Impulse Response (FIR) filter, Windowed
Filter and 8-point Discrete Cosine Transform (DCT).
Although the experimental data and error detection
probabilities are based on stuck-at-1 fault, the technique
applies to stuck-at-0 faults as well.

6.1 FIR filter

A FIR filter implements: Out=In×Coef(0) +
∑i=1..16Coef(i)×In(i) where In(i) are previous inputs and Coef(i)
are constant coefficients. It accepts one input, produces one
output and contains 17 multiplications and 16 additions. Our
implementation uses three adders and four multipliers and
takes 8 clock cycles for each computation.

Table 5 shows the results for the non-CED design, CED
designs using allocation diversity and data diversity. The
second and third rows show the number of operators used by
these designs. The fourth row shows the area consumed in
terms of unit cells while the fifth row shows the corresponding
area overhead. Because the original design consumes very
little hardware, all the proposed schemes involve a large
overhead. Rows 6-8 show the probabilities of missing faults in
three adders. We considered single stuck-at-1 fault, two non-
adjacent stuck-at-1 faults and two adjacent stuck-at-1 faults
and combined these three probabilities into one set. Since the
four multipliers have similar RT level schedules, we reported
the probability of missing faults in one of them in the last row.
Allocation diversity using CDFG partitioning reduces the
probabilities of missing a fault from around 0.3 to less than
0.04, while data diversity with CDFG partitioning reduces the
probabilities of missing faults to almost 0.

Allocation diversity Data Diversity
 2-bit ARESO

 Non-
CED

basic partitioned
CDFG

basic partitioned
CDFG

Adders 3 3 3 3 3
Multipliers 4 4 4 4 4

Area (unit cell) 9639 11417 12495 12027 12432
Area overhead -- 18% 30% 25% 29%

Prob. of missing
faults in adder +1

{1,1,1} {0.16,0.03,0
.05}

{0,0,0} {0.015, 0,
0.001}

{0.002,
0, 0}

Prob. of missing
faults in adder +2

{1,1,1} {0.19,0.04
0.08}

{0.03,0,0} {0.024, 0,
0.003}

{0,
0,0.002}

Prob. of missing
faults in adder +3

{1,1,1} {0.24,0.06,0
.11}

{0.04,0,0} {0.016, 0,
0.003}

{0,0,0}

Prob. of missing
faults in a mult.

{1,1,1} {0.27,0.07,0
.12}

{0,0,0} {0.024, 0,
0.003}

{0,0,
0.002}

Table 5: Experimental results for FIR Filter

6.2 Windowed Filter
A windowed filter accepts one input, produces one output

and implements Out = ∑i=0..14 Coef(i)×[In(i)+In(29-i)] using 15
multiplications and 29 additions. Our implementation uses
four adders, four multipliers and takes 9 clock cycles for each
computation. Table 6 shows all the results. The meaning of
each row is same as in Table 5. In this case, because original
design consumes a large amount of hardware, area overheads
consumed by proposed schemes are around 15%. Both
schemes have a lower probability of missing faults in adders
than in multipliers. The reason for this is that among the
additions allocated to each adder, at least one of them is
carried out prior to a multiplication and the effect of the fault(s)
in adders is magnified by multiplication. By using CDFG
partitioning, the probabilities of missing all possible faults are
reduced to almost 0.

Allocation diversity Data Diversity
2-bits ARESO

 Non-CED

basic partitioned
CDFG

basic partitioned
CDFG

Adders 4 4 4 4 4
Multipliers 4 4 4 4 4

Area (unit cell) 72293 80940 82577 81071 82257
Area overhead -- 12% 14% 12% 14%

Prob. of missing
faults in adder +1

{1,1,1} {0, 0, 0} {0, 0, 0} {0.004, 0, 0} {0, 0, 0}

Prob. of missing
faults in adder +2

{1,1,1} {0, 0, 0} {0, 0, 0} {0, 0, 0} {0, 0, 0}

Prob. of missing
faults in adder +3

{1,1,1} {0, 0, 0} {0, 0, 0} {0, 0, 0} {0, 0, 0}

Prob. of missing
faults in adder +4

{1,1,1} {0, 0, 0} {0, 0, 0} {0, 0, 0} {0, 0, 0}

Prob. of missing
faults in mults ×1

{1,1,1} {0.11, 0.01,
0.02}

{0, 0, 0} {0.022, 0,
0.002}

{0.004, 0,
0.001}

Prob. of missing
faults in mults ×2

{1,1,1} {0.11, 0.01,
0.02}

{0, 0, 0} {0.015, 0.001,
0.007}

{0, 0,
0.004}

Prob. of missing
faults in mults ×3

{1,1,1} {0.27, 0.07,
0.11}

{0, 0, 0} {0, 0.011,
0.013}

{0, 0,
0.006}

Prob. of missing
faults in mult ×4

{1,1,1} {0.27, 0.07,
0.11}

{0, 0, 0} {0, 0.016,
0.023}

{0,0,0}

Table 6: Experimental results for Windowed Filter

6.3 A one-dimensional eight-point DCT

An eight points DCT design accepts 8 inputs and produces 8
outputs using 4 adders, 4 multipliers and 19 clock cycles for
one computation. Table 7 summarizes the results. In this
design, each of the outputs corresponds to a independent sub
CDFG. Since in algorithm level re-computing we check all
outputs, straightforward allocation diversity achieves 0
probability of missing fault(s).

 Non-CED Allocation
diversity

Data Diversity
(2-bit ARESO)

Adders 4 4 4
Multipliers 4 4 4
Total area 42168 48682 53962

Area overhead -- 15% 28%
Prob. of missing

faults in one operator
{1,1,1} {0, 0, 0} {0, 0, 0}

Table 7: Experimental results for DCT

7. Conclusions
We proposed two algorithm level re-computing CED

schemes using allocation diversity and data diversity. In
allocation diversity the operation-to-operator allocation used
in the normal computation is different from the one used in re-

computation. In data diversity operands are shifted before the
re-computation. These techniques entail about 10-30% area
overhead depending on the size of the original design.
Although in some designs these techniques provide good CED
capability, they do not do as well in other designs. For such
designs partitioning the CDFG and checking some
intermediate results increases the CED capability. The area
overhead for this enhancement is only slightly larger than that
for the basic techniques.

8. Reference
1. J.H. Patel, L.Y. Fung, “Concurrent Error Detection in

ALUs by Recomputing with Shifted Operands,” IEEE
Transaction on Computer, Vol. C.31, No.7, pp. 589 – 595,
Jul. 1982.

2. J.H. Patel, L. Fung, “Concurrent Error Detection in
Multiply and Divide Arrays,” IEEE Transactions on
Computer, Vol. c32, No. 4, pp. 417-422, Apr. 1983.

3. R. H. Minero, A.J. Anello, R.G. Furey, L.R Palounek,
“Checking by Pseuduplication,” US3660646, May 1972.

4. B.W. Johnson, J.H. Aylor, H.H. Hana, “Efficient Use of
Time and Hardware Redundancy for Concurrent Error
Detection in a 32-bit VLSI Adder,” IEEE Journal of
Solid-State-Circuits, pp. 208-215, Feb. 1988.

5. T.H. Chen, L.G. Chen, Y.S. Chang, “Design of Concurrent
Error-Detectable VLSI-Based Array Dividers,”
Proceedings of IEEE International Conference on
Computer Design, pp. 72-75, Oct. 1992

6. D.A. Reynolds, G. Metze, “Fault Detection Capabilities of
Alternating Logic,” IEEE Transactions on Computers, Vol.
C27, No.12, pp. 1093-1098, Dec. 1978

7. T.H. Chen, Y.P. Lee, L.G. Chen, “Concurrent Error
Detection in Array Multipliers by BIDO,” Proceedings of
IEE Computers and Digital Techniques. Vol. 142, No.6,
pp. 425 – 430, Nov. 1995.

8. B.W. Johnson, “Design and Analysis of Fault-Tolerant
Digital Systems,” Addison-Wesley, 1989.

9. E. Swartzlander, Y.M. Hsu, “Efficient Time Redundancy
for Error Correcting Inner-Product Units and
Convolvers,” Proceedings of IEEE International
workshop on defect and fault tolerance in VLSI systems,
pp. 198-206, Nov. 1995.

10. W.L. Gallagher, E.E. Swartzlander, “Fault Tolerant

Newton-Raphson Dividers using Time Shared TMR,”
Proceedings of IEEE International Symposium on defect
and fault tolerance in VLSI systems, pp. 240 – 248, Nov.
1996.

11. W.L. Gallagher, E.E. Swartzlander, “Error-Correcting
Goldschmidt Dividers Using Time Shared TMR,”
Proceedings of IEEE International Symposium on defect
and fault tolerance in VLSI systems, pp. 224 – 232, Nov.
1998.

12. S. Mitra, E.J. McCluskey, “Combinational Logic
Synthesis for Diversity in Duplex System”, Proceedings
of IEEE International Test Conference, pp. 179-188, Oct.
2000.

13. S. Mitra, E.J. McCluskey, “Which Concurrent Error
Detection Scheme to Choose”, Proceedings of IEEE
International Test Conference, pp. 985-994, Oct. 2000.

14. R. Karri, A. Orailoglu, “Scheduling with Rollback
Constraints in High-level Synthesis of Self-Recovering
ASICs,” Proceedings of Fault Tolerant Computing, pp.
519-526, Jul. 1992

15. S.S. Ravi, R. Narasimhan, D.J. Rosekrantz, “Efficient
Algorithms for Analyzing and Synthesizing Fault-Tolerant
Datapaths,” Proceedings of IEEE International workshop
on defect and fault tolerance in VLSI systems, pp. 81 – 89,
Nov. 1995.

16. R. Karri, B. Iyer, “Introspection: A register Transfer Level
Technique for Concurrent Error Detection and
Diagnosis,” ACM Transactions on Design Automation of
Electronic Systems, vol. 7, no.1, Jan. 2002.

17. R. Karri, A. Orailoglu, “Time-constrained scheduling
during high-level synthesis of fault-secure VLSI digital
signal processors,” IEEE Transactions on Reliability, pp.
404 – 412, Sep. 1996.

18. G. Lakshminarayana, A. Raghunathan, N.K. Jha,
“Behavioral Synthesis of Fault Secure
Controller/Datapaths using Aliasing Probability
Analysis,” Proceedings of Fault Tolerant Computing, pp.
336 –345, Jun. 1996.

19. L.M. Guerra, M.M. Potkonjak, J.M. Rabaey, “High level
synthesis techniques for efficient built-in-self-repair,”
Proceedings of IEEE International Workshop on Defect
and Fault Tolerance in VLSI Systems, pp. 41 –48, 1993.

20. http://www.synopsys.com/

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

