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Abstract*: In this paper we propose two algorithm-level time 
redundancy based Concurrent Error Detection (CED) schemes 
that exploit diversity in a Register Transfer (RT) level 
implementation. RT level diversity can be achieved either by 
changing the operation-to-operator allocation (allocation 
diversity) or by shifting the operands before re-computation 
(data diversity). By enabling a fault to affect the normal result 
and the re-computed result in two different ways, RT level 
diversity yields good CED capability with low area overhead. 
We used Synopsys Behavior Complier (BC) to implement the 
technique. 

1. Introduction 
Deep sub-micron VLSI circuits are susceptible to permanent 

and transient faults. Several techniques for Concurrent Error 
Detection (CED) recovery and correction have been proposed 
to target permanent and transient faults. Some of these CED 
techniques are based on time and hardware redundancy. 

Patel and Fung [1,2] developed a logic level time 
redundancy technique called re-computing with shifted 
operands (RESO) to detect permanent faults. If an ALU 
performs a function f, and x is an input, then an error in the 
ALU is detected by comparing f(x) with right_shift (f 
(left_shift (x)). Error detection capability of RESO depends on 
the amount of shift. Minero et. al. developed a similar 
technique called pseudo-duplication [3]. Re-computing using 
duplication with comparison (REDWC) is another time 
redundancy technique [4]. [5] extends REDWC by increasing 
the number of partitions. Some logic level time redundancy 
techniques use alternating data by checking if ( ) ( )xfx =f , 

where x is the input and x  is its complement [6]. A CED 
technique for array multipliers using bi-directional operations 
has been presented in [7]. The performance overhead of time 
redundancy based CED is about 100%. 

Triple modular redundancy (TMR) is a hardware 
redundancy based error correction technique [8] and entails at 
least 200% hardware overhead. A time redundancy variant of 
TMR called RE-computing with Triplication With Voting 
(RETWV) trades-off area overhead for increased error 
detection/correction latency [9,10,11]. RETWV is similar to 
REDWC except that it partitions the operations and operators 
into thirds. RETWV has been applied to inner product units 
and convolvers [9], Newton-Raphson dividers [10] and 
Goldschmidt dividers [11]. Performance overhead of time 
redundancy based error correction is about 200%. Mitra and 
McCluskey [12] proposed a logic synthesis technique that uses 
diverse implementations of combinational circuits for CED. 

They presented a scheme [13] to choose between CED 
techniques using diversity as a metric. 
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Several RT level techniques for CED, recovery and 
correction have been proposed. Karri and Orailoglu [14] and 
Ravi et. al. [15] developed high-level synthesis algorithms 
targeting self-recovering data paths. Duplication and 
comparison of results at checkpoints was used in [14], while 
duplication and comparison of results as soon as they become 
available was used in [15]. Although these algorithms reduce 
the comparison overhead, they do not reduce the almost 100% 
hardware overhead of duplication. Karri and Iyer presented an 
RT level CED technique that uses the spare computation 
cycles and the spare data transfer cycles for CED [16]. Karri 
and Orailoglu [17] and Lakshminarayana et. al. [18] presented 
fault security based techniques that yield CED data paths with 
less than proportional increase in hardware. An RT level built-
in self-repair using spare modules was proposed in [19]. 

In this paper we propose RT level time redundancy based 
CED techniques that exploit allocation and data diversities. By 
enabling a fault to affect the normal result and the re-
computed result in two different ways, RT level diversity 
yields good CED capability with low area overhead.  However, 
there is a time overhead. We will describe algorithm level re-
computing in section 2, and discuss the underlying fault model 
in section 3. Then we will describe algorithm level re-
computing using allocation diversity in section 4 and 
algorithm level re-computing using data diversity in section 5. 
CED capabilities of these schemes are analyzed and based on 
this analysis we propose additional improvements. 
Experimental results will be discussed in section 6. Finally, 
conclusions are given in section 7. 

2. Algorithm level Re-Computing 
Consider a Control Data Flow Graph (CDFG) with four 

additions and one multiplication shown in Figure 1. The 
schedule in Figure 1 (a) uses two adders, one multiplier and 
three clock cycles. It does not support CED. Figure 1  (b) 
shows hardware redundancy based CED technique. C denotes 
a comparison. Every large circle denotes a logic level fault 
tolerant operator. This kind of operator duplicates the original 
operation and carries it out in the same clock cycle as the 
normal operation. The implementation of the duplicate 
operation can be identical as the original design 
(straightforward duplication), or can be different (design 
diversity). It comes at the cost of double the hardware  – four 
adders and two multipliers, though the computation time has 
not increased in this design. Figure 1 (c) shows a time 
redundancy based CED. Here two logic level fault tolerant 
adders and one logic level fault tolerant multiplier are used 
and each operation consumes two clock cycles. Although there 
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is no increase in the number of operators, the computation 
time increases by 100% to 6 clock cycles. 
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Figure 1: Scheduled CDFG of (a) basic design (b) fastest 
design with CED (c) design using logic fault tolerant operator 
(d) Algorithm level re-computing 

Finally, in Figure 1 (d), the comparisons are moved out of 
the logic level operators to the end of the computation. First, 
the normal inputs are applied to the design. When the normal 
computation is finished, the results are saved to registers and 
the same inputs are applied to the design for re-computation. 
Following re-computation, the two results are compared with a 
mismatch suggesting an error. This technique is algorithm 
level re-computing and is the focus of this paper. By using 
algorithm level re-computing we do not have to check all the 
results like logic level CED techniques do; we can check the 
results periodically.  

Algorithm level re-computing is a time redundancy based 
CED technique that uses two types of computations - the 
normal computation and re-computation. The normal 
computation is carried out on all input samples up to Rth 
sample. After the Rth input sample is processed by the normal 
computation, the result is stored. Then the Rth result is re-
computed and compared to the stored result with a mismatch 
indicating an error. R, called the checking ratio, is the ratio of 
the total number of results to the number of results that have 
been re-computed. Assuming that one iteration of a 
computation takes M clock cycles, a basic design without 
CED capability takes N×M clock cycles to process N input 
samples while the design using algorithm level re-computing 
takes (N+N/R)×M clock cycles. Hence the time overhead is 
1/R ([(N+N/R)M – NM]/NM).  

Checking ratio R can be used to trade-off performance 
overhead against detection latency and fault detection 
capability. The smaller the value of R, the more results will be 
re-computed and checked. If R is set to 1, all results are re-
computed and checked. Minimum detection latency can be 
achieved while the time overhead is 100%. If R is set to 2 only 
half of the results will be re-computed and checked. Detection 
latency increases while the time overhead is reduced to 50%. 

Different implementations of re-computation yield different 
fault detection capabilities. For example, straightforward 
duplication of operations in time can only detect transient 
faults. Permanent faults will be missed because for the same 
inputs, a hardware module with permanent faults will always 
produce the same faulty outputs. In this paper we propose 
allocation diversity and data diversity during re-computing to 
improve the CED capability. 

3. RT level fault model 
We will focus on transient and permanent stuck-at faults. 

Although the analysis in this paper is based on stuck-at-1 
faults, the results extend to stuck-at-0 faults as well. We model 
the faults as offsets from the correct result. Consider the 4-bit 
array multiplier shown in Figure 2. The four adders enclosed 
in a dashed square form the 3rd bit slice since their sums will 
be accumulated into the 3rd result bit. Assuming that one of 
connections (for example, the thick line shown in Figure 2) is 
stuck-at-1, the faulty result output by the defective multiplier 
is offset from the correct result by 23 if the correct output of 
the thick line is 0. Table 1 summarizes all possible offsets due 
to one stuck-at-1 fault. Effects of stuck-at faults can be 
modeled as an offset from the correct result in other arithmetic 
operators such as adders and subtractors. 
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Figure 2: 4-bit Array Multiplier 

Offset Condition 
2i If one Sum of ith adder slice or Carry of (i-1)th 

adder slice is stuck-at-1 and the original output is 0  
0 If one Sum of ith adder slice or Carry of (i-1)th 

adder slice is stuck-at-1 and the original output is 1 

Table 1: Possible offsets due to a stuck-at-1 fault of the array 
multiplier 

4. Allocation Diversity 
In allocation diversity, normal computation and re-

computation use the same CDFG, identical RT level schedules 
and operators to compute results. However, operations in the 
CDFG that are carried out on an operator in the normal 
computation are carried out on a different operator during re-
computation.  
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Figure 3: Allocation diversity based CED uses either (a) 
normal allocation for normal computation or (b) checking 
allocation for re-computation 

Figure 3 shows two implementations of a CDFG that 
computes (a+b) × (c+d) + (e+f) × (g+h). Corresponding 
operations in the normal and re-computations are allocated to 
different operators. For example, addition a+b is carried out on 
adder +1 in the normal computation and on adder +3 during 
re-computation. At the beginning of each computation the 
controller checks the checking ratio R to decide if it is a 
normal computation or a re-computation. If it is a normal 



computation the controller will select the normal allocation 
shown in Figure 3 (a). Otherwise, the controller will select the 
checking allocation shown in Figure 3 (b). 
 
4.1 CED capability 

Returning to example Figure 3, let us assume that only one 
operator has a stuck-at-1 fault. The faulty results obtained in 
the normal and re-computations due to this stuck-at-1 fault are 
summarized in Table 2. 

Possible faulty results from Defective 
module 

Normal computation Re-computation 

Miss a 
fault? 

+3 (a+b)(c+d)+(e+f+2i)(g+h) (a+b+2i)(c+d)+(e+f)(g+h) No 
+4 (a+b)(c+d)+(e+f)(g+h+2i) (a+b)(c+d+2i)+(e+f)(g+h) No 
+1 (a+b+2i)(c+d)+(e+f)(g+h) 

(a+b) (c+d)+(e+f)(g+h)+2i 

(a+b+2i)(c+d)+(e+f)(g+h)+2i 

(a+b)(c+d)+(e+f+2i)(g+h) No 

+2 (a+b)(c+d+2i)+(e+f)(g+h) (a+b)(c+d)+(e+f)(g+h+2i) 
(a+b)(c+d)+(e+f)(g+h)+2i 

((a+b)(c+d)+(e+f)(g+h+2i)+2i 

No 

×1 ((a+b)(c+d)+2i)+(e+f)(g+h) (a+b)(c+d)+((e+f)(g+h)+2i) Yes 
×2 (a+b)(c+d)+((e+f)(g+h)+2i) ((a+b)(c+d)+2i)+(e+f)(g+h) Yes 

Table 2 Faulty results due to a single stuck-at-1 fault in one of 
the modules used in Figure 3 

A stuck-at-1 fault in adder +3 translates into a faulty result 
of  (a+b)(c+d)+(e+f+2i)(g+h) during normal computation and 
a faulty result of (a+b+2i)(c+d)+(e+f)(g+h) during re-
computation. Since these two results differ by 2i((g+h)-(c+d)), 
the fault can be detected if g+h≠c+d. Similarly, a stuck-at-1 
fault in multiplier ×2 translates into a faulty result of 
(a+b)(c+d)+((e+f)(g+h)+2i) during normal computation and a 
faulty result of ((a+b)(c+d)+2i)+(e+f)(g+h) during re-
computation. In this case, since the two faulty results have the 
same offset, the fault may not be detected. 

We will now compute the probability of missing a fault 
when allocation diversity based CED is used. Operations such 
as multiplication and exponentiation magnify the effects of 
faults at their inputs making them easy to detect. On the other 
hand, since operations such as additions and subtractions do 
not magnify the effects of faults at their inputs, we will focus 
on parts of CDFGs that have only additions/subtractions. We 
will consider stuck-at-1 faults in the analysis 1 . When a 
defective module is used several times, let P0i be the 
probability that the expected result is 0 due to the ith use of the 
defective module. Similarly, let P1i be the probability that the 
expected result is 1 due to the ith use of the defective module.  

Consider the CDFG shown in Figure 4. This CDFG uses 
two adders and takes two clock cycles. It implements (a+b) + 
(c+d). Assuming the adder +2 (shaded in dark) is the defective 
module. After the first use of the faulty adder in clock cycle 1, 
let the probability of a correct result be P11 and the probability 
of a wrong result be P01. Similarly, after the second use of the 
faulty adder in clock cycle 2 (assuming that the inputs to the 
second use are correct), let the probability of a correct result 
be P12 and the probability of a wrong result be P02. Now we 
will derive probabilities for three cases: a single stuck-at-1 
fault, stuck-at-1 faults in non-adjacent bit positions and stuck-
at-1 faults in adjacent bit positions. 

                                                 
1 A similar analysis can be carried out for stuck-at-0 faults 
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Figure 4: Example CDFG 

Case 1. A single stuck-at-1 fault  
In Figure 4¸ every time the faulty adder +2 is used, it will 

possibly offset the correct result 2  by X. We will have the 
expected result (a+b)+(c+d) with probability P11×P12 and the 
wrong result (a+b)+ (c+d+X) with probability P01×P12, the 
wrong result ((a+b)+(c+d))+X with probability P11×P02 and the 
wrong result (a+b)+(c+d+X)+X with probability P01×P02. 
These probabilities for the general case when the defective 
module is used N times are summarized in Table 3. 
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Table 3: Probabilities. of different offsets due to a single 
stuck-at-1 fault 

A fault will not be detected when the faulty offset from the 
normal computation is identical to the faulty offset from re-
computation. If the defective module is used N times in the 
normal computation and M times in the re-computation, the 
probability Pt that the two results are offset by the same 
amount t×X is: 
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Hence, the probability Pu that a fault is not detected is: 
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Figure 5 plots Pu as a function of N and M assuming that P0i 
= P1i = 0.5, (i.e. in the correct output, 1’s and 0’s are equally 
likely). From this plot we can observe that the probability of 
detecting a fault is lowest when N≈M. Further, the probability 
of detecting a fault is highest when N >> M or M >> N. 

 

Figure 5: The probability of missing a stuck-at-1 fault 
                                                 
2 A result is correct if it is the expected result for the inputs even though these 
inputs may come from a faulty operation. 
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One fault affects the result u times 
while the other one affects the final 
results v times. 
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Table 4: Probability of different offsets due to two non-adjacent stuck-at-1 faults in adder +2 of Figure 4 
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Equation 1: Probability of missing two non-adjacent stuck-at-1 faults 

 

Case 2. Two stuck-at-1 faults in an operator 
Let  and  be the above probabilities due to the first 

fault and P  and  be the above probabilities due to the 
second fault. Also, let X be the error offset due to the first fault 
and Y be the error offset due to the second fault. Assuming that 
the first fault occurs in a more significant bit position and 
affects result u times while the second fault occurs in a less 
significant bit position and affects result v times, the possible 
final results are {u×X + v×Y; 0 ≤ u, v ≤ N, M}. 
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a) Stuck-at-1 faults in non-adjacent bit positions 
If the faulty bit positions are so far apart (such that X > 

N×Y), that different (u,v) combinations yield different offsets, 
the probabilities of correct and faulty results when the 
defective module is used N times are summarized in Table 4.  

The probability of missing a fault Pu can be calculated using 
Equation 1. And if we assume P , 
Equation 1 can be simplified as follows:  
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Figure 6(a) shows the probability of missing two non-adjacent 
stuck-at-1 faults. 
b) Stuck-at-1 faults in adjacent bit positions 

Since the two faulty bit positions are adjacent, X = 2×Y and 
hence faults with different (u, v) combinations can produce 
identical faulty results. For example, a fault with combination 
(u=1,v=2) has the same effect on the final result as the faults 
with combinations (u=2,v=0) and (u=0,v=4). Figure 6 (b) 
shows the probability of missing two adjacent stuck-at-1 faults. 
Although faults will be missed with a higher probability 
compared to Case 2a, it is still better than Case 1. Once again 
the probability of detecting these faults is the highest when N 
>> M or M >> N. 

 Comparing Figure 6 (a, b) with Figure 5 shows that the 
probability of missing a fault decreases as the number of faults 
in the hardware increases. This is because as the number of 
faults increases the number of possible faulty results increases 
thereby reducing the possibility that these faulty results match. 

 
(a)                                                   (b) 

Figure 6: The probability of missing two (a) non-adjacent and 
(b) adjacent stuck-at-1 faults   

4.2 Improving CED capability of allocation diversity 
From the above analysis, the CED capability of allocation 

diversity can be improved by maximizing the difference 
between the number of times a defective module is used in the 
normal computation and the number of times it is used in the 
re-computation. It is not always possible to achieve this 
unevenness in the allocations for all hardware units in a design. 
Let us consider Figure 7 as an example. Since the design uses 
three adders, a single allocation cannot simultaneously 
maximize the usage difference for all three adders. An 
operation-to-operator allocation for the normal and the re-
computations are shown in Figure 7 (a) and (b), respectively. 
This allocation minimizes the probability of missing the faults 
introduced by faulty adder +2 by maximizing the difference 
between the number of times it is used in the normal and re-
computations. In Figure 7 (a) and (b), adder +2 is used once in 
normal computation and four times in re-computation yielding 
0.125 probability of missing a single fault, 0.023 probability of 
missing two non-adjacent faults and 0.033 probability of 
missing two adjacent faults3. On the other hand, adder +1 is 
used 4 times in normal computation and 2 times in re-
computation yielding a 0.219 probability of missing a single 
fault, 0.055 probability of missing two non-adjacent faults and 
0.082 probability of missing adjacent faults. Finally, adder +3 
is used 2 times in normal computation and 1 time in re-

                                                 
3 Here we use same assumption as above that one bit output has equal 
likelihood to be 1 and 0. 



computation yielding a 0.25 probability of missing a single 
fault, 0.125 probability of missing two faults and 0.141 
probability of missing two adjacent faults. 
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Figure 7: An example CDFG using allocation diversity (a) 
normal allocation (b) checking allocation (c) Partitioned 
CDFG of normal allocation (d) Partitioned CDFG of checking 
allocation 

Partitioning the CDFG into smaller sub-CDFGs and 
checking the intermediate results output by these sub-CDFGs 
can improve the CED capability of allocation diversity.  
Figure 7 (c) (d) show two-way partitioning of the CDFG of 
Figure 7 (a) (b). As shown in the figure, original CDFG has 
been divided into two sub-CDFGs A and B and an “×” denotes 
the intermediate results that are checked. For sub-CDFG A, 
adder + 1 and adder +2 are used in the normal computation 
while adder +2 and adder +3 are used in the re-computation. 
Allocation of sub-CDFG A simultaneously maximizes the 
usage differences of all three adders; adder +1 is used 4 times 
in normal computation and 0 times in re-computation, adder 
+2 is used once in normal computation and 4 times in the re-
computation and adder +3 is used once in normal computation 
and 0 times in re-computation. Similarly allocation for sub-
CDFG B maximizes the usage differences for adder +3 and 
adder +1. In all these cases, if a defective module is involved 
either in normal computation or re-computation but not both, 
the probability of missing a fault in it is 0. 

5. Data diversity 
In data diversity the normal computation is carried out on all 

input samples up to Rth. After the Rth input sample is processed 
by the normal computation, the result is stored in a register. 
Then the Rth result is re-computed using shifted operands and 
compared to the stored result with a mismatch suggesting an 
error. We name this technique as algorithm level re-computing 
with shifted operands (ARESO). The RT level data path used 
in ARESO design is wider than the non-CED design. For 
example, a data path with original 32-bit wide will increase to 
34-bit wide to support 2-bit shift. 
 
5.1 CED capability 

Logic level RESO and its error detection capabilities have 
been described in [1, 2]. In algorithm level re-computing, 
since intermediate results are not checked and a defective 
module can be used several times before checking the final 
results, the effect of a fault accumulates. ARESO requires 
more bits to be shifted to detect same faults as logic level 
RESO. If a defective adder that offsets a result by 2i is used 
twice, the possible offsets can be {0, 2i, 2×2i} and ARESO 
with 1-bit shift is not guaranteed to detect this fault. We 
calculated the probabilities of missing fault(s) for data 
diversity using technique similar to that we used for allocation 
diversity. 

 
(a) 

 
(b)                                                       (c) 

Figure 8 The probabilities of missing (a) single stuck-at-1 fault 
(b) two non-adjacent stuck-at-1 faults (c) two adjacent stuck-
at-1 faults by using data diversity 

Figure 8 shows the probabilities of missing the single stuck-
at-1 fault, two non-adjacent stuck-at-1 faults and two adjacent 
stuck-at-1 faults by using data diversity. In these plots, X-axis 
stands for the number of times the defective module is used, 
while the Y-axis stands for the number of bits shifted in the 
data path. According to the plots, as the number of bits shifted 
increases, the probability of missing faults decreases. When 
only one bit is shifted and the defective module is used about 2 
to 4 times, the detection probability is the worst. When two 
bits are shifted in the data path, the probabilities of missing 
these three types of faults are reduced. 
5.2 Improving CED capability of data diversity 

A straightforward approach to improve the CED capability 
of a data diversity data path is to shift more bits. However it 
entails hardware overhead. A second approach is to avoid 
using a unit less than 4 times. Feasibility of this depends on 
the number of operations in the CDFG and is not suitable for 
small CDFGs. Another approach is to partition the CDFG and 
check the outputs of all sub-CDFGs. If a defective module is 
used in more than one sub-CDFG, there will be a higher 
probability to detect the faults. In the CDFG shown in Figure 9 
(a), adders 1, 2 and 3 are used 3, 2 and 2 times respectively. 
Assuming that data path supports 1-bit shift, the probabilities 
of missing a single stuck-at-1 fault, two non-adjacent stuck-at-
1 faults and two adjacent stuck-at-1 faults are {0.14, 0.02, 0.06} 
for adder 1, and {0.13, 0.03, 0.07} for adders 2 and 3. 
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Figure 9 (a) Original CDFG (b) Partitioned CDFG 



Figure 9 (b) partitions the original CDFG into two sub-
CDFGs A and B. Outputs of both of them will be checked. 
Adder 1 is used once in sub-CDFG A and twice in sub-CDFG 
B, while adder 2 or 3 is used once in either sub-CDFG. The 
probability of missing faults can be calculated as: 

 
Pu = Pu of A×PB is correct + Pu of B ×PA is correct + Pu of A × Pu of B 

 
Using this equation, the probabilities of missing the three 

types of faults are {0.016, 0, 0} for adder 1 and {0,0,0} for 
adder 2 and 3.  

6. Experimental Results 
We used Synopsys Behavioral Compiler (BC) [20] to 

synthesize RT level designs with allocation diversity and data 
diversity. In this section we will show the results on three 
examples: Finite Impulse Response (FIR) filter, Windowed 
Filter and 8-point Discrete Cosine Transform (DCT). 
Although the experimental data and error detection 
probabilities are based on stuck-at-1 fault, the technique 
applies to stuck-at-0 faults as well. 

  
6.1 FIR filter 

A FIR filter implements: Out=In×Coef(0) + 
∑i=1..16Coef(i)×In(i) where In(i) are previous inputs and Coef(i) 
are constant coefficients. It accepts one input, produces one 
output and contains 17 multiplications and 16 additions. Our 
implementation uses three adders and four multipliers and 
takes 8 clock cycles for each computation.  

Table 5 shows the results for the non-CED design, CED 
designs using allocation diversity and data diversity. The 
second and third rows show the number of operators used by 
these designs. The fourth row shows the area consumed in 
terms of unit cells while the fifth row shows the corresponding 
area overhead. Because the original design consumes very 
little hardware, all the proposed schemes involve a large 
overhead. Rows 6-8 show the probabilities of missing faults in 
three adders. We considered single stuck-at-1 fault, two non-
adjacent stuck-at-1 faults and two adjacent stuck-at-1 faults 
and combined these three probabilities into one set. Since the 
four multipliers have similar RT level schedules, we reported 
the probability of missing faults in one of them in the last row. 
Allocation diversity using CDFG partitioning reduces the 
probabilities of missing a fault from around 0.3 to less than 
0.04, while data diversity with CDFG partitioning reduces the 
probabilities of missing faults to almost 0. 

Allocation diversity Data Diversity 
 2-bit ARESO 

 Non-
CED  

basic partitioned 
CDFG 

basic partitioned 
CDFG 

Adders 3 3 3 3 3 
Multipliers 4 4 4 4 4 

Area (unit cell) 9639 11417 12495 12027 12432 
Area overhead -- 18% 30% 25% 29% 

Prob. of missing 
faults in adder +1 

{1,1,1} {0.16,0.03,0
.05} 

{0,0,0} {0.015, 0, 
0.001} 

{0.002, 
0, 0} 

Prob. of missing 
faults in adder  +2 

{1,1,1} {0.19,0.04 
0.08} 

{0.03,0,0} {0.024, 0, 
0.003} 

{0, 
0,0.002} 

Prob. of missing 
faults in adder  +3 

{1,1,1} {0.24,0.06,0
.11} 

{0.04,0,0} {0.016, 0, 
0.003} 

{0,0,0} 

Prob. of missing 
faults in a  mult. 

{1,1,1} {0.27,0.07,0
.12} 

{0,0,0} {0.024, 0, 
0.003} 

{0,0, 
0.002} 

Table 5: Experimental results for FIR Filter 

6.2  Windowed Filter 
A windowed filter accepts one input, produces one output 

and implements Out = ∑i=0..14 Coef(i)×[In(i)+In(29-i)] using 15 
multiplications and 29 additions. Our implementation uses 
four adders, four multipliers and takes 9 clock cycles for each 
computation. Table 6 shows all the results. The meaning of 
each row is same as in Table 5. In this case, because original 
design consumes a large amount of hardware, area overheads 
consumed by proposed schemes are around 15%. Both 
schemes have a lower probability of missing faults in adders 
than in multipliers. The reason for this is that among the 
additions allocated to each adder, at least one of them is 
carried out prior to a multiplication and the effect of the fault(s) 
in adders is magnified by multiplication. By using CDFG 
partitioning, the probabilities of missing all possible faults are 
reduced to almost 0. 

Allocation diversity Data Diversity  
2-bits ARESO 

 Non-CED

basic partitioned 
CDFG 

basic partitioned 
CDFG 

Adders 4 4 4 4 4 
Multipliers 4 4 4 4 4 

Area (unit cell) 72293 80940 82577 81071 82257 
Area overhead -- 12% 14% 12% 14% 

Prob. of missing 
faults in adder +1 

{1,1,1} {0, 0, 0} {0, 0, 0} {0.004, 0, 0} {0, 0, 0} 

Prob. of missing 
faults in adder +2 

{1,1,1} {0, 0, 0} {0, 0, 0} {0, 0, 0} {0, 0, 0} 

Prob. of missing 
faults in adder +3 

{1,1,1} {0, 0, 0} {0, 0, 0} {0, 0, 0} {0, 0, 0} 

Prob. of missing 
faults in adder +4 

{1,1,1} {0, 0, 0} {0, 0, 0} {0, 0, 0} {0, 0, 0} 

Prob. of missing 
faults in mults ×1 

{1,1,1} {0.11, 0.01, 
0.02} 

{0, 0, 0} {0.022, 0, 
0.002} 

{0.004, 0, 
0.001} 

Prob. of missing 
faults in mults ×2 

{1,1,1} {0.11, 0.01, 
0.02} 

{0, 0, 0} {0.015, 0.001, 
0.007} 

{0, 0, 
0.004} 

Prob. of missing 
faults in mults ×3 

{1,1,1} {0.27, 0.07, 
0.11} 

{0, 0, 0} {0, 0.011, 
0.013} 

{0, 0, 
0.006} 

Prob. of missing 
faults in mult ×4 

{1,1,1} {0.27, 0.07, 
0.11} 

{0, 0, 0} {0, 0.016, 
0.023} 

{0,0,0} 

Table 6: Experimental results for Windowed Filter 

 
6.3 A one-dimensional eight-point DCT  

An eight points DCT design accepts 8 inputs and produces 8 
outputs using 4 adders, 4 multipliers and 19 clock cycles for 
one computation. Table 7 summarizes the results. In this 
design, each of the outputs corresponds to a independent sub 
CDFG. Since in algorithm level re-computing we check all 
outputs, straightforward allocation diversity achieves 0 
probability of missing fault(s). 

 Non-CED Allocation 
diversity 

Data Diversity 
(2-bit ARESO) 

Adders 4 4 4 
Multipliers 4 4 4 
Total area 42168 48682 53962 

Area overhead -- 15% 28% 
Prob. of missing 

faults in one operator 
{1,1,1} {0, 0, 0} {0, 0, 0} 

Table 7: Experimental results for DCT 

7. Conclusions 
We proposed two algorithm level re-computing CED 

schemes using allocation diversity and data diversity. In 
allocation diversity the operation-to-operator allocation used 
in the normal computation is different from the one used in re-



computation. In data diversity operands are shifted before the 
re-computation. These techniques entail about 10-30% area 
overhead depending on the size of the original design. 
Although in some designs these techniques provide good CED 
capability, they do not do as well in other designs. For such 
designs partitioning the CDFG and checking some 
intermediate results increases the CED capability. The area 
overhead for this enhancement is only slightly larger than that 
for the basic techniques.  
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