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Abstract - This paper presents a spectrally-weighted balanced trun-in some frequency range of interest. Furthermore, they also do not
cation technique for RLC interconnects, when the interconnect circuiaddress the numerical difficulties when the system is nearly uncon-
parameters change as a result of variations in the manufacturing proirollable or unobservable. In paper [12], a new numerically stable, fre-
cess. The salient features of this algorithm are the inclusion of theuency-weighted balanced truncation technique was presented. The
parameter variation in the RLC interconnect, the guaranteed stabilityproposed method gives a definaepriori error bound and is guaran-

of the reduced transfer function, and the availability of provable fre-teed to be stable even when both input and output weightings are uti-
quency-weighted error bounds for the reduced-order system. Thikzed at the same time.

paper shows that the balanced truncation technique is an effective apalyzing the interconnect without taking into account the rather
model-order reduction technique when variations in the Circuit|arge variations of the interconnect geometries is not useful in prac-
parameters are taken into consideration. Experimental results showce These variations are especially large in the inter-layer dielectric
that the new variational spectrally-weighted balanced truncation | py thickness and the metal line width and height. These process-

attains, on average, 20% more accuracy than the variational Krylov-gepandent geometrical variations have a definite impact on the total
subspace-based model-order reduction techniques while the run-timg,e and inter-wire coupling parasitics, which in turn results in varia-

Is also, on average, 5% faster. tions in the signal delay and the coupling noise. &ftal.in [13] stud-
ied the effect of interconnect parameter variations on the Krylov-
1. INTRODUCTION subspace model-order reduction techniques. The paper basically com-

bines the matrix perturbation theory [14] and the Krylov-subspace-
The problem of interconnect model reduction has gained considerableased model reduction method [4], [6]. The authors allow two-dimen-
attention in the EDA community in recent years. The reason for this issional variations on the projection matrices. To compute the corre-
that the parasitic effects of interconnect have a major impact on theponding sensitivities of the susceptance and conductance matrices to
overall circuit delay and circuit performance. Model reduction tech-€ach dimensional variation, some sample points were picked up and
niques enable us to capture the interconnect effects with a muctie dominant eigenvalues/eigenvectors were calculated.
shorter Computational time than that required for simulation of the full The goa| of this paper is to consider the effects of process varia-
circuit. On the other hand, as the minimum feature sizes shrink to thﬁons and Spectra| Shaping on the model-order reduction using bal-
sub-quarter microns, geometrical variations in the line width, metaknced truncation technique and to propose an efficient order reduction
height, and dielectric thickness due to process variations have motgchnique that includes these effects. The main contribution of this
pronounced effects on the reliability and performance of VLSI cir-paper is our use of the method proposed in [12] combined with a new
cuits [1]. As a consequence, it is crucial to assess the impact of thesgriational balanced truncation approach that accounts for process
process variations on model-order reduction techniques. variations in order to obtain a new variational spectrally-weighted bal-

Among various classes of model reduction techniques, the explicianced truncation method.

moment matching algorithms (AWE [2], RICE [3]) and Krylov-sub-  Section 2 gives a brief overview of the balanced realization
space-based methods (Pact [4], PVL [5], PRIMA [6]) have receivednethod. A discussion about the effect of process variations on inter-
the most attention for generating the reduced order models of theonnect modeling is also provided in this section. Section 3 reviews
interconnects. The computational complexity of these model-ordethe formulation of the frequency-weighted model reduction proposed
reduction techniques is due to the matrix-vector products. Howevein [12]. In section 4, the new variational balanced truncation with
these methods do not provide a provable error bound for the reduceghectral shaping is illustrated, and a theoretical comparison between
system. this work and the work presented in paper [13] is made. In section 5,
An alternative to these model reduction techniques that has seefhe new model reduction technique is compared to the work pre-
renewed interest and consideration are the balanced realization tecsented in [13] by running simulations on a number of global intercon-
niques [7], [8], [9]. Balanced realization techniques have not receivediect line and clock tree scenarios. Other experimental results in this
the same attention as Krylov-based and Pade-based model reductig@ction verify the accuracy of our technique. Finally, section 6 pre-
techniques partly because these methods normally require time cogents the conclusions of our paper.
suming computations [7]. Furthermore, it is well known that the bal-
ancing transformation may be poorly conditioned when the system i€~ BACKGROUND

nearly uncontrollable or unobservable. However, a reduced systefm this section, first, we briefly explain the conventional balanced trun-
using the balanced realization technique is guaranteed to be stablgytion method. Next, a brief discussion about the effect of the process

that is, no further processing is required to make the reduced systegariations on interconnect modeling will be provided.
stable. Moreover, a provable error bound does exist for this class of

model-order reduction techniques. _ 2.a. An overview of the balanced realization
In the balanced realization-based model reduction methods, each

state is equally controllable and observable, and the reduced-ordé&ronsider a network consisting of inductances, capacitances, and resis-
model of the original transfer function is derived by minimizing the tances. Modified Nodal Analysis (MNA) can be used to obtain the fol-
Hankel-norm of the error between the transfer functions of the origilowing system of equations:
nal and the approximated system. Paper [8] uses the truncated bal- Lx = -Gx +Byu 1)
anced realization as well as the Schur decomposition method to -C
develop an efficient numerical method for the order reduction of a y = X @)
large linear time-invariant (LTI) system. The bottleneck in balancedWhere the state vector represents the vector di node voltages
truncation methods is the computational complexity incorporated irfRCroSS circuit capacitances and voltage sources and the vedibr of
solving the Lyapunov equations. Papers [9] and [10] propose efficierurrents flowing through inductors and current sources. In addition:
algorithms to solve the two Lyapunov equations in order to obtain the
controllability and the observability grammians. The algorithms are| = Cap O G E x = |V E = [ei]
based on the Alternated Direction Implicit (ADI) method that was 0 L —ET 0 ' il U
proposed in [11].

A shortcoming of these model reduction techniques is that they do
not reshape the frequency spectrum to emphasize error minimization

, G =




T — 21T H T —
[ ) . it RPR'" = Uz°U" ~ with u'u =1
1 ifbranchj is incident at nodeand oriented away from it A balancing transformatiof,, is obtained as follows:
whereg; = [JO If branchj is not incident at node T = s-V2U™R (12)

%—1 If branchyj is incident at nodeand oriented towards it. The new coordinate-transformed grammians are equal and diagonal.

The MNA equations can be rewritten in the form of the standard2 b,  Modeling of interconnect variations

state-space representation by introducing the following matrices: o ]
Due to process variations, interconnect technology parameters are

-1 -1
A=-L"G , B =L By (3-a) varying substantially. These parameters can have as muct88s a %
Hence: variation off their nominal values [1]. Therefore, the effect of the pro-
cess variations on the interconnect delay and crosstalk should be taken

X — Ax +Bu (3) into consideration. A common approach to anticipate these variations
y = Cx (4) in the design is the conventional skew-corner, worst-case modeling.
For stable LTI systems, the controllability and observability gram-This method, however, is too conservative because the probability of
mians are defined as follows: all 3-0 process corner values occurring simultaneously is very small.
© a1 ATy © AT 1 oy As a consequence, statistically-based worst-case interconnect model-
P= Le BB e 'dt ; Q= Ie C Cedt (5) ings using Monte-carlo simulation have been proposed [16], [17].
These approaches, however, fail to handle large circuits that exist in

The P andQ matrices (known as controllability and observability réality. To alleviate the problem of having large computational com-
grammians) satisfy the Lyapunov equations [7]: plexity (as also mentioned in [13]) the effect of process variations
T T T T must be taken into account in model-order reduction algorithms. Fur-
AP+PAT+BB" =0 ; ATQ+QA+C'C=0 (6)  thermore, the resulting variational reduced-order model needs to con-
The controllability and observability grammians give some inter-Verge to the reduced-order model of the nominal network when all the
esting insights about the system characteristics. A particularly interParameter variations are zero.
esting property is that the Hankel singular values of the system
transfer functionH(s), are the square-roots of the eigenvaludd@f 3. BALANCED TRUNCATION WITH SPECTRAL SHAPING

oi(H(s)) = {N(PQ)}"? @) o .
) We have seen that balanced realization is an attractive model reduc-
Each Hankel singular value represents the energy exerted by the

corresponding state variable in the controllability and observability™n technique due to the fact that it gives a provabfe  -error bound
map of the balanced system. It can be proved that there exists a sim2" e reduced-order system. Even more attractive is a balanced trun-
larity transformation matrist such that the controllability and obsery- C&tion technique extended to include weighting on the input an/or out-

ability grammians of the new systeifA,, B,, C,) are equal andpUt as shown in Fig. 1.

diagonal: N R
P. = Q, =  =diag(g,, 0, ..., G,) 8) E? Wi(s) ) B :> (sl -A) f‘> c E> Wo(s)

n
where 0, 20,2 ... 20,>0 . The balanced transformation of an - The direction of matrix multiplication
LTI system allows one to choose the state variable set that would pro-
vide a significant amount of information in the external representation Fig. 1.Block diagram of the original LTI system along with input
of the system. In fact, on the basis of the computed energy for each and output weightings.
state variablegy , we settle on a criterion for evaluating the possibility

of eliminatingxy in the reduced model scheme 3lfs partitioned into
to two submatrices:

€

To determine the state-space characteristics of the new augmented
system, we are faced with two basic questions that must be answered:

1. What set of points in the x-state space could be a part of the zero
s = 2, 0 ©) initial condition response for the weighted input denoted (by?
05, 2. What set of points in the x-state space as initial conditions could
produce a weighted output denotedgiiy?

kx k (n=k) x (n—=k) :
Wher? 2 % 0, 200 Iso ¢ and thg ne\év coourdlna';]e Consider the state-space representation of a set of tightly coupled
transformed systen#\(, B, , C,) are also partitioned conformally with - | ¢ interconnects given by equations (3) and (4). The goal of the fre-
z as: quency-weighted balanced realization technique is to calculate

HX(s) of degreek (k < n), makin
A =TAT = An Al B=TB = By Cc,=CT'= [cl cz] ) greek (k<n) f
Az Ay B, HWo(S) (H(s) —H{(s))W(s) Hoo (13)

: as small as possible. To obtain such a reduced system we first calcu-
The reduced order model based @ {, By, Cy) is stable and the late the grammians of the augmented system and go through the same

L"-error is bounded by [7]: steps that were taken for a unity-weighted system. First, we write the
H . H oa o O Laplace transformation of the input and output weighting functions:
H(s)—H;(s)| <2 [ 10 _ -
(9-Hiel.<253 2 70 o) W(s) = C(sl -A)"B +D (14)
To obtain a state-space realization from a balanced realization, we W,(s) = C,(sl =A,)"'B, + D, (15)

first solve the Lyapunov equations to obtain the grammians. Since the

; : ; . ot According to definition [18], the controllable subspace of the aug-
(A, B, C) matrices in equations (3) and (4) make a minimal realization ! f : -
of the RLC interconnect [7], the controllability and observability Mented systemki(s)Wi(s), is the solution set to the first question. A

grammians are positive-definite. As a consequence we can appf@ntroller-form realization of the augmented systels)Wi(s) is as

Cholesky factorization to matriQ: ollows:

Q =R™R (12) — _|a BC, __|Bp —_
As a resultRPRT will be a positive-definite matrix and can be diago- A= » B = -G o= [C OJ (16)
nalized as: 0 A B




Similarly, according to definition [18], the observable subspace othe range of frequencies where the noise resulting from the order
the augmented systery,(S)H(s) , is the solution set to the second reduction has very minimal energy or is out of the desired frequency
question. An observer-form realization of the augmented systenpound.

Wy(S)H(s) is as follows:
_ A 0 _ c _ 4. VARIATIONAL SPECTRALLY-WEIGHTED BALANCED
Ao = BC A B, = { } v Co = [DOC CJ (17)  TRUNCATION
0 . . . . . . .
For a complete explanation of controller and observer form reanm_(:hamcten;a’gon of tt;)e Interconnect gﬁomletry varla(tjlon IS an |mpo|r-
tions, see chapter 3 of reference [18]. Since all controllable and@nt iSsue in deep-submicron VLS| technology. In order to accurately

observable modes of these two augmented systems are determined?ﬁ;ess the performance of an interconnect system, it is essential to
Characterize the interconnect geometry, which in turn specifies the

nx n upper left corner submatrices & akd , the desired con-interconnect parasitics [13]. From a designer point of view, one
trollability and observability grammians are thus given by the corre-important source of the IC performance variability is the physical
; D 5 . source of variability [19]. For the purpose of design performance eval-
spondingn x N upper left comer submatriceof  &d uation, we are concerned with two possible cases here. The first one
® P @ Q includes the case where the interconnect (or device) parameters are
P = 12 , Q= 12 (18) constant within a die but vary within a wafer or a lot. In the second

P’ P QL Q case, the device and interconnect parameters vary within the die. The
12 722 12 Pe2z inter-die variability can be minimized by using several techniques and

whereP andQ must satisfy the following Lyapunov equations: corrections during the fabrication process. Due to its relatively low
spatial frequency and smoothness, simple models can be used to

AP+PAT +BB' = 0 (19) describe the wafer level variations. As a result, the wafer level varia-
. tion can be modeled locally (within the die) as a linear function of the
Ao Q+QA,+C,’C, = 0 (20) position within the die:

Expanding then x n  upper left corner block of the Lyapunov (X y) = Pp+ ADx+ADy (32)

equations yields: where the model parametef, A®, , aAdy are random vari-
T T ~TDT ToT _ ables and have joint probability density functions. For instance, for a
AP +PA" +BCPy, +P,C/BT +BDD/B" = 0 (1) given metal wire, if we know that there is a width variationwf  and
ATQ+QA +Q,,B,C +C™B]Q{,+C'D/D,C = 0 (22) a height variation ofw, , then the resistance and capacitance of that
Iparticular metal wire are:

From equations (21) and (22) we define the new variables as fo F(Wy, W) = Fo+Ar W, +Arpw, = ro+Ar

lows:
X = BCPy,+PL,C/B" +BD,D/B’ (23) C(Wy, Wo) = Co+ ACW. + ACW, = Co + AC
Tt T or in general, for the susceptance and conductance matrices of the
Y = Q.,B,C+C B,Q,,+C D,D,C (24) interconnect system that are exposed to the process variations, we
It is readily seen thaX andY are symmetric matrices. As a conse- have:
quence, there exist orthogonal matrit¢¢sindV and diagonal matri- Gar(Wy, Wy) = G+ AGW,; +AGwW, = G+AG (33)
cesS andZ such that: Loar(Wy, wy) = LotALw +ALwW, = L+AL (34)
X = Uusu’ (25) To obtain a balanced truncation technique that takes the process varia-
Y =VvZVT 26 tions into account, we first find the new system ma#iy,, (the so
whereS=diag(s;, % , ... , §), andZ=diag(z;, %, . . . , ), and called perturbed system matrix) of the interconnect that is affected by
S0 2[8)2 ... 2[8/20 , |z] 2|22 ... 2|2/ 20. S that process variation in terms of the ideal system matixand the per-
1 21820 2 2[5 20 |4 22 = 22 20 gppose & turbed susceptance and conductance matides ~ A&d .Lemma 1
rankX)=i and rank{)=j, wherel<1i,] <n . We can write: helps us determine this new system matrix.
R = i 1/2 1/2
? = Udiag(]s/"2 .... 5|20, ..., 0) @7) Lemma 1. Given an LTI system whose state-space representation is
C = diag(|z|"> ..., [z|Y%0, ..., o)V’ (28) provided by equations (3) and (4), let the susceptance and conduc-

R . tance matricesL.  an@ , vary according to equations (33) and (34).
Let P and Q denote the solutions of the following Lyapunov ¢ HALH << HL‘
2

. 5, then:
equations:
A'S + |5AT + BBT =0 (29) Avar =A+AA (35)
ATO+QA+C'C =0 (30)  where AA = AA +AA, (36)
We find that the transformation matrik  that simultaneously diag- AA, = —L7'AG+ LaLL G
onalizesP an(fg is as follows: AA, = L_lAL L_lAG

TPTT = (T‘l)T(AQT‘1 = diag(oy, ..., 0, 0,41, ---, O,)  (31) Proofhint; Starting with Eq. (3-a) and expanding the Laurent series of
Similar to the unit-weighted balanced truncation method, this(l + L"lAL) directly yields the desired equation.

transformation matrix] , is used to map the original system to a new ) ) ] ) .
coordinate transformed system. The reduced-order system is then This lemma enables us to obtain the relationship between the new
erturbed system matrix and the original one as well as the incremen-

g(t:)ttglrinstiic(i:;rgmrt]gev\sg?gﬁtf%;mfi%gt)i/g;im. Note that ~ contains the cha al variations of the susceptance and conductance matrices.

; P ; The balanced realization approach directly utilizes the balancing
of r6qUBNCies Wherb we waLld Tke {0 have Tt maximum acboraANSTormation (o project the existing syster [0 a new system whose
controllability and observability grammians are identical and diago-

The weighting functions should emphasize the frequency range§ ; ; ;
; : P ; -“Ralized. The diagonal elements represent all the singular values of the
where more accuracy is required. Similarly, they must de-emphasiz ystem corresponding to the state variables of the systemkThe



order truncated balanced realization is then obtained by considering
the firstk singular-values. This approach gives more intuitive informa-e
tion about theenergyexerted by each state variable and thus the con-
tribution of each state variable on the external behavior of the system,
as opposed to the Krylov-subspace methods that involve more abstract
computations. From a mathematical viewpoint, the Hankel singular
values of the system transfer function are indeed the eigenvalues of
the symmetric matrix?Q. To realize the effect of interconnect param-
eter variations on the observability and controllability grammians of
the system, we prove the following Theorem.

Theorem 1.Consider a stable LTI system with the state-space repre-
sentation given by equations (3) and (4). Suppose that the system
matrix A O 0" " is perturbed byAA T O"*" . The resulting per-
turbed system has the following controllability and observability
grammians:

P,., <AYPAY'
QuarSAY'QAY

where AY = | +(n—1) (DA AT
Proof: We provide a complete proof for Eq. (37). The similar proof is
valid for Eq. (38).

Starting from the definition of the controllability grammian dem-
onstrated by Eq. (5) and using Caley-Hamilton theorem, we can prove

37
(38)

that there exists analytical scalar functiofe, (t)} =5 , such that:
n-1
At k
= ¥ a,(t)A (39)
2

Replacing the exponential functions in Eq. (5) with their equivalent®
finite-series representation given by Eq. (39) yields:
o[-l -t O
P = OV ay(t)A B[Dz o,(t)A'BO dt
L=o =) O

ReplacingA in the above equation with+AA  and performing
some further factorizations proves the validity of Eq. (37).

O

According to Theorem 1, any perturbation in the system matrix
manifests itself as a congruence transformatifiy; , that maps the
observability and controllability grammians of the system to the ones
for the new perturbed system demonstrated by equations (37) and
(38).

To account for the effect of process variations in our proposed
model-order reduction technique, we directly utilize Theorem 1 in our
algorithm. Moreover, our proposed technique also reshapes the esti-
mated error in the frequency domain using the technique described in
section 3 and thus gives rise to a reduced order system with more
accurate time and frequency domain responses. Comparing our pro-
posed algorithm with the work in [13] on the variational Krylov-sub-
space-model-reduction, we can theoretically prove the superiority of
the truncated balanced realization technique in terms of its computa-
tional complexity. More specifically, the PRIMA-based variational
order-reduction proposed in [13] involves the calculation of ane
expanded Krylov-subspace whose projection matrix is as follows:

X (W, Wy) = X+ AX 3y Wy + AX Wy + AX oW +AX oW
wherew; andw, are dimensional variationsAX;; s are to be com-

puted by choosing a set of sample points. A variational reduced-order
model can then be constructed by inserting the resulting variational
Krylov-subspace into the PRIMA equations. The geometrical varia-
tions of interconnects are random processes. So are the corresponding

We still need to solve the Lyapunov equations to obtain the

grammians of the system. To efficiently solve the Lyapunov

equations we make use of the ADI procedure [11] which is an

iterative method for solving a Lyapunov equation,
AP+PA"+X = 0

The system is first reduced to tridiagonal form with Gaussian

similarity transformationT g4 , @s follows:

S= TtridATt_rlid
Z = TtridPT-trrid
Xs = TtridXTtTrid
Reducing a matrix to tridiagonal form h&3(n3)  order of com-
plexity. The resulting system is solved with the ADI iteration
[11]:
Z, =0

(S+ pNZ2 = X-[(S- ANZa T,

T
xs—[(s— m)z,-_ﬂ

for j=1,2,...,J
An iterative solution of the reduced Lyapunov equation is accom-
plished in O(12Jn2) flops [11]. In the above iteratio{'lpj}f=1

are the ADI parameters. We use the same optimal ADI parame-
ters that were presented in [11].

(S+ HI)ZJ- =

The calculations required to construct the balancing transfor-
mation T are complicated and sensitive to numerical errors.
In particular, the balancing transformatidn  may be poorly

conditioned when matri®Q has a high condition numbr
Paper [15] proposes an algorithm where the balancing is
avoided altogether, and as a result the numerical difficulties
are never encountered. However, this algorithm involves solv-
ing an eigenvalue problem whose dimension is as large as the
order of the original transfer function.

We can avoid the problem of solving a large eigenvalue prob-
lem by using the Krylov subspace-based methods. In fact revisit-
ing the balanced realization method reveals that it is only
necessary to find the firt largest eigenvalues of the matrix
productPQ and their corresponding left and right eigenvectors.
Based on this observation, a modified version of Safanov’s algo-
rithm is utilized here. Recall th&Q is a large symmetric matrix,
which will also be a positive definite matrix. Thus the problem is
to efficiently obtain the largest eigenvalues of a symmetric
matrix. This problem is solved by using thanczosmethod. A
complete explanation of the Lanczos method can be found in [5]
and [14]. In our algorithm, we utilize a modified version of Safa-
nov’s algorithm using the Lanczos method to obtain the balanc-
ing transformation.

To account for the effect of process variations on the intercon-
nect delay and performance, Theorem 1 is directly utilized.
However, there is a matrix inverse involved in equations (37)
and (38). To compute the inverse of a matrix more efficiently,
we elaborate the problem in the form of solving a set of linear
algebraic equations rather than explicit inverse formation.

variations on the interconnect electrical parameters. Therefore, WRow we proceed with describing our new algorithm for variational
have to consider an interval for the dimensional variations. Hence thalanced truncation.

whole model-reduction technique would be very time-consuming and
even impossible to use when handling very large circuits.

There are, however, some problems that need to be taken into
account: 1

Recall that the condition numbednd( M) = Gma(M)/ Gnin(M)

provides

a measure of the distanceMfto the set of singular matrices.



GivenH(s), Wj(s), Wq(s): transformed system as mathematically illustrated by equations (9) and

Using lemma 1, Determine matd® . (10):
2. Using Theorem 1, compute perturbing congruence transfor- a Avar A, |Byad
mation,AY . TvarAvarTvar | TB| _ A A
_ . . y CT_l D 21 Ax| B,
3. Using the ADI iteration, compute the controllability and Cuar c,|ID

observability grammians oP an@ of the original spec-
trally weighted system by solving the Lyapunov equationsMatricesBvar andCvar , Obtained from the seventh step of the spec-
(19) and (20). trally-weighted variational balanced truncation algorithm, are also

4. Apply perturbing congruence transformatiohY on thepartmoned correspondingly. It is easily proved thBts = Buar1K

n x nupper left corner blocks o an@  specified by matri- and Cyar=L Cvar,1. Thus:
cesP andQ in Eq. (18), and construct new perturbed control- HWO(S) (LCvar(sl =A ,a) 'BuarK)

lability and observability grammiang,,,  aQ,, L Cuaa (sl A, )" Brans K )Wi(S)Hm
5. Use equations (23) and (24) to compitg, and Y, from

Rar 8NdQuz; = [Wo(S)L Crar(sl =A o) "Buar)
6. Decompos&,, andY,, using the eigenvalue decomposition —Cuar1 (sl =A,,) Byar1)KW i(S)Hm

technique intdJ, S, UL an¥, . ZyaViar -

Use equations (27) and (28) to compBte,  @ngl . < [Wo(s)L ||, X

_ L _ .
Using the ADI iteration, solve the mapped Lyapunov equa- Hcvar(5| ~Aar) Buar— Crar1 (Sl =Aa) Buana )Hm x

tions (29) and (30) for the new perturbed system to compute KW i(9)].. (42)

Puar and Quar . Note that Cyq1 (Sl — Avar)fl Buar1 represents the reduced-order
9. Using the Lanczos algorlthm obtain the reduced order leftnodel of Cyar(sl — Var)‘ Byar . Hence, there exists a bounded -

and right eigen- -matricesy | var antkar . associated witherror for the former system whose reduced-order model is represented
by the latter system.
thek largest singular values of the matrix proda,g,tQ\,ar

10. Let Evar=VL,\,arVR,\,ar and compute the singular-value ZH(C"a'(SI Va') B"ar ~Cuan(sl A"a’) Bva”)H

i= +1
decomposition oEyar i.eEar= UE,varzEvar\/E, var . Plugging the above equation into Eq. (42) proves the TheoremD
11. Let SL var _VL var UE var zElf,ir 00™* and As mentioned earlier, process variations will have a definite impact
“1/2 nxk on the on-chip interconnect parasitics. These variations have two
Sk var = Vi var Ve, var 6, var 0 [ adverse effects on the system matrix as also demonstrated by Eq. (36).
12. Compute the reduced order space realization using the matl]gnorlng second-order variations, any incremental increase in the val-
- - . ues of parasitic conductances and resistances rediées , Whereas
cesSivar andSgvar as follows: any incremental increase in the values of parasitic inductances and
. . At capacitances increasAsA
StvarAvarS St varB i i i i i
Al B\,ar _ | SLvarAvarSR var L, var As an interesting special case, consider the tightly coupled RLC
- ~ (40) interconnects shown in Fig. 2. It is easily proved that, for this case, the
Cvar DvarJ CSr var | D system matrixA is a symmetric positive-definite matrix. Under these

circumstances, the following theorem proves useful in finding the
; ot ; _upper and lower limits of variations in the poles of the system transfer
Now we prpve that this new variational, spectrally weighted bal function of tightly coupled RLC interconnects that are subject to the
anced truncation has a provahf@ -error bound. process variations:
Theorem 2. The L”-error of the variational model reduction with
spectral shaping is:

0 n O
[Wo(8) (Hyar(5) —HE _(8))W,(9)]|. < kD Yoo @y
var O%1 0O

where k = [|[W,(S)L |..| KW, (S) || . = TJ
K = diag(|s|™?3 ...,|s|™3%0,...,00U™B T
L = cvdiag(|zl™Y? ..., |z 20, ..., 0) : T
Proof: Expanding the left-hand side of Eq. (13) in terms of Laplace - : . .
domain expressions oH(s) ankd ‘r‘var(s) leads to the following . o AA o Y
equation: T T T

[Wo()(C(sl —Ayar) "B = Cra(sl = Avar) Buar)Wi(5)]. =
In the spectrally-weighted variational balanced truncation, the Fig. 2. Circuit schematic of N interconnects that are electromagneti-
reduced-order system is derived by applying the transformation cally coupled to each other
matrix, T, on the original perturbed system and then truncating the



Theorem 3 [14] Given an LTI system whose state-space representa-
tion is given by equations (3) and (4), if the system ma#ixd O"™"
is perturbed YAA O O"*"  due to the process variation, then the fol-
lowing inequalities hold:

A (A +DA) =N (A)| < |AA]
whereAA is given by lemma 1.

(43)

Proofhint: Follows from theories developed for the symmetric eigen-
value problem (see pages 395-400 of reference [14]).

According to Theorem 3, the magnitude of difference between poles g
of the perturbed system and those of the original system is limited by >
2-norm of the perturbed matrig A

5. EXPERIMENTAL RESULTS

In this section the variational spectrally-weighted balanced trunca-
tion model-order reduction technique (referred to as VSWBT) is eval-
uated by performing experiments on some global interconnect lines &
such as clock trees, and coupled lines. First, the spectrally-weighted®
balanced truncation (SWBT) technique is demonstrated and the resuli
of applying this algorithm is compared with those obtained by utiliz-
ing our implementations of PRIMA [6] and the truncated balanced
realization using Vector ADI (VADI) [9]. We then apply the VSWBT
method to study the impact of the interconnect process variations on
the timing performance of the clock trees and coupled busses. Finally
the accuracy of VSWBT is validated by using it to reduce the order of
an arbitrary stable LTI system that is subject to the perturbation.

se (deg); Magnitud

5.a. Two capacitively coupled interconnects

We compare the performances of the model reduction of two
capacitively-coupled transmission lines. The order of the reduced
order system is 3. The circuit is depicted in Fig. 3. The Bode diagram
of the original system along with the reduced systems obtained b

To: Y(1)

201

30k

-40F

Bode Diagrams __ - (;';I??ll\;llzl
* :VADI
From: U(1) +

: SWBT

Frequency (rad/sec)

Fig. 4. The Bode diagram of the system in Fig. 3.

using three approaches (PRIMA, VADI, SWBT) are also shown in

Fig. 4. The output weighting function is:

10
W (s) = ———
o(S) s+0.2
Li Ry L11 Rua L1z Rpp

AAA o
A

Lo
cl =R,
C1 T R3

Tea o]

20 lumped RLC sections

Fig. 3. Two capacitively coupled RLC interconnects consisting of

20 RLC lumped sections.

%.b. H-tree clock distribution

The clock tree is routed using the TSMC Qu2figital CMOS tech-
nology library. The clock tree is an H-tree clock distribution with
tapered buffers at the root of the tree as shown in Fig. 5. The design
target of the on-chip clock frequency is 1.0 GHz. The clock tree is
modeled by a large RLC circuit. Each wire segment in Fig. 5 is mod-
eled by a large RLGtnetwork whose R, L, and C values are changed
due to metal width and ILD thickness variations. Based on the data
reported in paper [17] on the interconnect-dominated test circuits, the
typical variational distribution for metal interconnects as well as ILD
thicknesses is a normal distribution. The widths of metal and ILD lay-
ers are changing up to 30% of their nominal values (which is the mag-
nitude of the percentage ofd3variations).

L
M LR
4
e P

s
J_J_I%I__II_
FAFS « FIl

Fig. 5. The H-tree clock distribution driven by a tapered buffer.
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From Fig. 4, we observe that the frequency response of the reduced

order system obtained by SWBT closely follows the frequency We performed 20 experiments where, in each experiment, a set of
response of the original system, especially in the low frequency rangeaormally-distributed numbers for the metal and ILD width variations
Comparing the bode diagrams clearly indicates that SWBT is muchvere generated. The 50% delay at an arbitrarily chosen fan-out (leaf)
more accurate than PRIMA and also VADI in generating the reducednode were computed by VSWBT and compared with the result

order model.



obtained by [13]. The results of this comparison for different experi-The height and width of the metal layer are subject-30 % varia-
ments are provided in Table 1. Here, we assume that the geometricebns. Again we performed 20 experiments with normally distributed

variations are mutually independent.

Table 1: COMPARISON BETWEEN SIMULATION RESULTS ON AN H-
TREE CLOCK NET WITH PROCESS VARIATIONS (Star-HSPICE LEVEL
49, 0.2%1 CMOS PROCESS). DELAYS ARE GIVEN IN psec

random variations. The result of these 20 experiments are shown in
Table 2. The MATLAB-reported flop usage of our method is 10% less

than that of [13]. From Table 2, it can be seen that, for all variations

demonstrated in Table 2, the 50% delays predicted by VSWBT are
more accurate than those predicted by paper [13].

3-0 variations 50% delay Table 2: COMPARISON BETWEEN SIMULATION RESULTS ON TWO
(%) of the fan-out node e e U HEPICE LEVEL
Metal Star- 0
v:/|i_dtzh quer pa?gg)[lg] Vs(\é\él)aT HSPICE 3-0 variations of the far—ggd/o ndo((ajlzyof Line 2
width (ps) (%) (0S)
123 103 195.7 196.0 196.3 P
5.8 19.8 2155 216.4 216.2 Metal Metal Paper [13]| VSWBT | Star-HSPICE
214 223 1993 200.1 200.1 w H (ps) (ps) (ps)
-10.2 -8.2 205.0 208.2 206.6 -0.4 20.1 1592 1597 1596
2.45 22.1 201.2 204.1 203.2 15.8 -1.9 1636 1640 1639
19.2 10.6 193.1 195.0 194.2 -9.3 13.2 1519 1525 1524
243 -17.8 198.2 200.3 200.0 -1.75 10.8 1607 1612 1610
28.1 11.4 220.3 2225 221.7 15.8 -14.4 1690 1700 1697
-12.4 -5.9 219.5 221.9 220.9 -13.2 -0.9 1726 1734 1731
-14.9 25 194.1 196.2 195.6 19.1 -29.1 1711 1725 1722
-1.3 12.6 211.6 2132 2125 29.3 2.5 1531 1538 1536
25.7 7.2 203.2 207.3 206.4 -1.8 7.9 1603 1610 1607
7.6 1.6 210.7 217.7 215.3 115 -4.2 1673 1683 1680
2.3 -29.1 223.2 2334 231.8 -15.3 19.4 1650 1665 1662
20.1 -18.5 206.4 211.8 2105 14.7 25.3 1557 1567 1563
-18.8 13.7 196.2 201.0 200.3 1.1 -10.4 1662 1667 1665
22.4 -45 200.0 204.7 203.3 -15.6 22.1 1704 1717 1711
-27.6 13.6 191.7 193.1 192.8 18.2 -23.5 1622 1631 1629
5.3 14.3 216.5 218.2 217.8 -13.2 -0.5 1699 1705 1703
-13.4 -10.6 195.5 198.1 197.5 -9.4 21.7 1640 1644 1643
0.7 -11.1 1708 1713 1712
From Table 1, it is clear that our approach can predict the 509 10.8 -0.7 1621 1630 1627

delays more accurately for all possibles3variations of metal and
ILD layers that are indicated in Table 1. By comparing the number o
flops from MATLAB simulation, the CPU-time for our method is, on
average, 5% faster than the work reported in [13].

5.c. Two capacitively coupled interconnects with vari-
ational parameters

f5.d. A general example

To demonstrate the accuracy and validity of VSWBT on any arbitrary
stable LTI system exposed to perturbations, we started from an arbi-
trary state-space specification of an LTI system having 20 poles and
13 zeros, which is shown in the pole-zero map of Fig. 7. Suppose that
each and every element of the system marexperiences a normally

In this example we apply the VSWBT model reduction technique ondistributed random perturbation with a standard deviation of 30%

two capacitively-coupled microstrip lines whose electrical parameterground the nominal value. The order of the reduced order system is 3.
are subject to process variations. The schematic of these two couplegle would also like to have high accuracy in high frequencies, there-

lines along with their nominal geometrical parameters are depicted ifore the following weighting function is introduced:

Fig. 6.
0.25u technology with copper L =15mm
HT =51 WD = 1.8
TH=1u SP=0.4

Cycle-time = 4nsec

Line 1 f\{' /\I/ 7 Line 2

WD

THT

HT

Fig. 6. Two parallel microstrip lines in 0.RSCMOS technology.
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Fig. 7. The pole-zero map of the LTI system specified in section 5.d.
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In this paper a variational spectrally-weighted balanced truncation
technique for the model-order reduction of geometrically varying
multiport RLC interconnects was proposed. It was shown that the bal-
anced truncation technique is a highly effective approach when the
variations in the circuit parameters need to be taken into consider-
ation. Various experiments demonstrate that the computational
requirement of the variational spectrally weighted balanced truncation
approach is 5% lower than that of the variational Krylov-subspace-
based model-order reduction techniques while the accuracy Is also
20% higher, on average.
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